The development of small, smart and remote objects requires microscale components and energy autonomy. Activated carbon electrodes with high specific surface areas, achieving high electrical double layer capacitances present an opportunity to associate electronic components and energy storage. Transistors are a key element in any integrated circuit and the use of carbon gate electrodes has proven efficient to achieve low-voltage (sub-1 V) current modulation, reducing the energy required to operate them. Furthermore, the monolithic integration of an ion-gated transistor and a supercapacitor allowed to store and reuse up to 50% of the energy used to switch on the transistor. This paves the path to low-power, durable and autonomous devices able to function on small ambient energy harvesters and/or energy storage units.
Alexander Masson, F.P. (2021). Bridging Electronics and Micro Energy Storage. Cham, Switzerland : Springer [10.1007/978-3-030-81827-2_4].
Bridging Electronics and Micro Energy Storage
Federico PoliSecondo
;Francesca Soavi
Penultimo
;
2021
Abstract
The development of small, smart and remote objects requires microscale components and energy autonomy. Activated carbon electrodes with high specific surface areas, achieving high electrical double layer capacitances present an opportunity to associate electronic components and energy storage. Transistors are a key element in any integrated circuit and the use of carbon gate electrodes has proven efficient to achieve low-voltage (sub-1 V) current modulation, reducing the energy required to operate them. Furthermore, the monolithic integration of an ion-gated transistor and a supercapacitor allowed to store and reuse up to 50% of the energy used to switch on the transistor. This paves the path to low-power, durable and autonomous devices able to function on small ambient energy harvesters and/or energy storage units.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.