Orientation estimation is a fundamental step in most fingerprint recognition algorithms. This software implements an adaptive method based on local gradient information: a first estimation is performed and the average local consistency (strength) of orientations is used as a quality metric to determine the window size for the final estimation. Experimental results on the FOE benchmark show that the performance of this software is better than other baseline algorithms exploiting gradient information.

Raffaele Cappelli (2021). Fingerprint Orientation Estimation.

Fingerprint Orientation Estimation

Raffaele Cappelli
2021

Abstract

Orientation estimation is a fundamental step in most fingerprint recognition algorithms. This software implements an adaptive method based on local gradient information: a first estimation is performed and the average local consistency (strength) of orientations is used as a quality metric to determine the window size for the final estimation. Experimental results on the FOE benchmark show that the performance of this software is better than other baseline algorithms exploiting gradient information.
2021
Raffaele Cappelli (2021). Fingerprint Orientation Estimation.
Raffaele Cappelli
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/840168
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact