Subcellular location is related to the knowledge of the spatial distribution of a protein within the cell. The knowledge of the location of all proteins is crucial for several applications ranging from early diagnosis of a disease to monitoring of therapeutic effectiveness of drugs. This chapter focuses on the study of machine learning techniques for cell phenotype image classification and is aimed at pointing out some of the advantages of using a multi-classifier system instead of a stand-alone method to solve this difficult classification problem. The main problems and solutions proposed in this field are discussed and a new approach is proposed based on ensemble of neural networks trained by local and global features. Finally, the most used benchmarks for this problem are presented and an experimental comparison among several state-of-the-art approaches is reported which allows to quantify the performance improvement obtained by the approach proposed in this chapter.
L. Nanni, A. Lumini (2009). Ensemble of neural networks for automated cell phenotype image classification.. NEW YORK : Medical Information Science Reference.
Ensemble of neural networks for automated cell phenotype image classification.
NANNI, LORIS;LUMINI, ALESSANDRA
2009
Abstract
Subcellular location is related to the knowledge of the spatial distribution of a protein within the cell. The knowledge of the location of all proteins is crucial for several applications ranging from early diagnosis of a disease to monitoring of therapeutic effectiveness of drugs. This chapter focuses on the study of machine learning techniques for cell phenotype image classification and is aimed at pointing out some of the advantages of using a multi-classifier system instead of a stand-alone method to solve this difficult classification problem. The main problems and solutions proposed in this field are discussed and a new approach is proposed based on ensemble of neural networks trained by local and global features. Finally, the most used benchmarks for this problem are presented and an experimental comparison among several state-of-the-art approaches is reported which allows to quantify the performance improvement obtained by the approach proposed in this chapter.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.