Plant architectural features directly impact plant fitness and adaptation, and traits related to plant morphology and development represent important targets for crop breeding. Decades of mutagenesis research have provided a wealth of mutant resources, making barley (Hordeum vulgare L.) an interesting model for genetic dissection of grass morphology and architecture. Recent advances in genomics have propelled the identification of barley genes controlling different aspects of shoot and root development. In addition to gene discovery, it is important to understand the interplay between different developmental processes in order to support breeding of improved ideotypes for sustainable barley production under different climatic conditions. The purpose of the present chapter is to: (i) provide an overview of the morphology and development of shoot and root structures in barley; (ii) discuss novel insights into the genetic, molecular and hormonal mechanisms regulating root and shoot development and architecture; and (iii) highlight the genetic and physiological interactions among organs and traits with special focus on correlations between leaf and tiller development, flowering and tillering, as well as row-type and tillering.
Laura Rossini, G.J.M. (2018). Genetics of Whole Plant Morphology and Architecture. Cham, Switzerland : Springer [10.1007/978-3-319-92528-8_13].
Genetics of Whole Plant Morphology and Architecture
Silvio Salvi;
2018
Abstract
Plant architectural features directly impact plant fitness and adaptation, and traits related to plant morphology and development represent important targets for crop breeding. Decades of mutagenesis research have provided a wealth of mutant resources, making barley (Hordeum vulgare L.) an interesting model for genetic dissection of grass morphology and architecture. Recent advances in genomics have propelled the identification of barley genes controlling different aspects of shoot and root development. In addition to gene discovery, it is important to understand the interplay between different developmental processes in order to support breeding of improved ideotypes for sustainable barley production under different climatic conditions. The purpose of the present chapter is to: (i) provide an overview of the morphology and development of shoot and root structures in barley; (ii) discuss novel insights into the genetic, molecular and hormonal mechanisms regulating root and shoot development and architecture; and (iii) highlight the genetic and physiological interactions among organs and traits with special focus on correlations between leaf and tiller development, flowering and tillering, as well as row-type and tillering.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.