Smart grid (SG) is an intelligent enhancement of the conventional energy grid allowing a smarter management. In order to be implemented, SG needs to rely on a communication network connecting different node types, implementing the SG services, with different communication and energy requirements. Heterogeneous network (Het-Net) solutions are very attractive, gaining from the allocation of different radio access technologies (RATs) to the different SG node types; however, due to the heterogeneity of the system, an efficient radio resource optimization and energy management are a complex task. Through the exploitation of the most significant key performance indicators (KPIs) of the SG node types and the key features of the RATs, a joint communication and energy cost function are here defined. Through this approach it is possible to optimally assign the nodes to the RATs while respecting their requirements. In particular, we show the effect of different nodes’ density scenarios on the proposed allocation algorithm.
KOUH DARAGH, V., Tarchi, D., Vanelli-Coralli, A. (2019). Density-Aware Smart Grid Node Allocation in Heterogeneous Radio Access Technology Environments. London : IntechOpen [10.5772/intechopen.88151].
Density-Aware Smart Grid Node Allocation in Heterogeneous Radio Access Technology Environments
Vahid Kouh Daragh;Daniele Tarchi;Alessandro Vanelli-Coralli
2019
Abstract
Smart grid (SG) is an intelligent enhancement of the conventional energy grid allowing a smarter management. In order to be implemented, SG needs to rely on a communication network connecting different node types, implementing the SG services, with different communication and energy requirements. Heterogeneous network (Het-Net) solutions are very attractive, gaining from the allocation of different radio access technologies (RATs) to the different SG node types; however, due to the heterogeneity of the system, an efficient radio resource optimization and energy management are a complex task. Through the exploitation of the most significant key performance indicators (KPIs) of the SG node types and the key features of the RATs, a joint communication and energy cost function are here defined. Through this approach it is possible to optimally assign the nodes to the RATs while respecting their requirements. In particular, we show the effect of different nodes’ density scenarios on the proposed allocation algorithm.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.