We present a method for high-density super-resolution microscopy which integrates a sparsity-promoting penalty and a blur kernel correction into a nonsmooth, non-convex, nonseparable variational formulation. An efficient majorization minimization strategy is applied to reduce the challenging optimization problem to the solution of a series of easier convex problems.

Chan R.H., Lazzaro D., Morigi S., Sgallari F. (2019). A Non-convex Nonseparable Approach to Single-Molecule Localization Microscopy. Lubeck : Jan Lellmann • Martin Burger • Jan Modersitzki [10.1007/978-3-030-22368-7_39].

A Non-convex Nonseparable Approach to Single-Molecule Localization Microscopy

Lazzaro D.;Morigi S.
;
Sgallari F.
2019

Abstract

We present a method for high-density super-resolution microscopy which integrates a sparsity-promoting penalty and a blur kernel correction into a nonsmooth, non-convex, nonseparable variational formulation. An efficient majorization minimization strategy is applied to reduce the challenging optimization problem to the solution of a series of easier convex problems.
2019
Scale Space and Variational Methods in Computer Vision
498
509
Chan R.H., Lazzaro D., Morigi S., Sgallari F. (2019). A Non-convex Nonseparable Approach to Single-Molecule Localization Microscopy. Lubeck : Jan Lellmann • Martin Burger • Jan Modersitzki [10.1007/978-3-030-22368-7_39].
Chan R.H.; Lazzaro D.; Morigi S.; Sgallari F.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/691722
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact