The equimolar Cr, Mn, Fe, Co and Ni alloy, first produced in 2004, was unexpectedly found to be single-phase. Consequently, a new concept of materials was developed: high entropy alloys (HEA) forming a single solid-solution with a near equiatomic composition of the constituting elements. In this study, an equimolar CoCrFeMnNi HEA was modified by the addition of 5 at% of either Al, Cu or Zr. The cold-rolled alloys were annealed for 30 minutes at high temperature to investigate the recrystallization kinetics. The evolution of the grain boundary and the grain size were investigated, from the as-cast to the recrystallized state. Results show that the recrystallized single phase FCC structures exhibits different twin grains density, grain size and recrystallization temperatures as a function of the at.% of modifier alloying elements added. In comparison to the equimolar CoCrFeMnNi, the addition of modifier elements increases significantly the recrystallization temperature after cold deformation. The sluggish diffusion (typical of HEA alloys), the presence of a solute in solid solution as well as the low twin boundary energy are responsible for the lower driving force for recrystallization.
Elena Colombini, A.G. (2018). Al, Cu and Zr Addition to High Entropy Alloys: The Effect on Recrystallization Temperature. Reinhardstrasse 18, CH-8008 Zurich, Switzerland : Trans Tech Publications Inc [10.4028/www.scientific.net/MSF.941.1137].
Al, Cu and Zr Addition to High Entropy Alloys: The Effect on Recrystallization Temperature
Andrea Garzoni;Angelo Casagrande
2018
Abstract
The equimolar Cr, Mn, Fe, Co and Ni alloy, first produced in 2004, was unexpectedly found to be single-phase. Consequently, a new concept of materials was developed: high entropy alloys (HEA) forming a single solid-solution with a near equiatomic composition of the constituting elements. In this study, an equimolar CoCrFeMnNi HEA was modified by the addition of 5 at% of either Al, Cu or Zr. The cold-rolled alloys were annealed for 30 minutes at high temperature to investigate the recrystallization kinetics. The evolution of the grain boundary and the grain size were investigated, from the as-cast to the recrystallized state. Results show that the recrystallized single phase FCC structures exhibits different twin grains density, grain size and recrystallization temperatures as a function of the at.% of modifier alloying elements added. In comparison to the equimolar CoCrFeMnNi, the addition of modifier elements increases significantly the recrystallization temperature after cold deformation. The sluggish diffusion (typical of HEA alloys), the presence of a solute in solid solution as well as the low twin boundary energy are responsible for the lower driving force for recrystallization.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.