In this chapter, we introduce the problem of identity inference as a generalization of person re-identification. It is most appropriate to distinguish identity inference from re-identification in situations where a large number of observations must be identified without knowing a priori that groups of test images represent the same individual. The standard single- and multishot person re-identification common in the literature are special cases of our formulation. We present an approach to solving identity inference by modeling it as a labeling problem in a Conditional Random Field (CRF). The CRF model ensures that the final labeling gives similar labels to detections that are similar in feature space. Experimental results are given on the ETHZ, i-LIDS and CAVIAR datasets. Our approach yields state-of-the-art performance for multishot re-identification, and our results on the more general identity inference problem demonstrate that we are able to infer the identity of very many examples even with very few labeled images in the gallery.

Karaman, S., Lisanti, G., Bagdanov, A.D., Del Bimbo, A. (2014). From re-identification to identity inference: labeling consistency by local similarity constraints. London : Springer-Verlag London Ltd [10.1007/978-1-4471-6296-4_14].

From re-identification to identity inference: labeling consistency by local similarity constraints

Lisanti, Giuseppe;
2014

Abstract

In this chapter, we introduce the problem of identity inference as a generalization of person re-identification. It is most appropriate to distinguish identity inference from re-identification in situations where a large number of observations must be identified without knowing a priori that groups of test images represent the same individual. The standard single- and multishot person re-identification common in the literature are special cases of our formulation. We present an approach to solving identity inference by modeling it as a labeling problem in a Conditional Random Field (CRF). The CRF model ensures that the final labeling gives similar labels to detections that are similar in feature space. Experimental results are given on the ETHZ, i-LIDS and CAVIAR datasets. Our approach yields state-of-the-art performance for multishot re-identification, and our results on the more general identity inference problem demonstrate that we are able to infer the identity of very many examples even with very few labeled images in the gallery.
2014
Advances in Computer Vision and Pattern Recognition
287
307
Karaman, S., Lisanti, G., Bagdanov, A.D., Del Bimbo, A. (2014). From re-identification to identity inference: labeling consistency by local similarity constraints. London : Springer-Verlag London Ltd [10.1007/978-1-4471-6296-4_14].
Karaman, Svebor*; Lisanti, Giuseppe; Bagdanov, Andrew D.; Del Bimbo, Alberto
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/654413
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 1
social impact