The combination of N-hydroxyphthalimide (NHPI) and peracids is employed for the free-radical epoxidation of alkenes with high yields. A quite different selectivity is obtained from that of the well-known epoxidation by peracids, which is attributed to a different reaction mechanism and which evidences the molecule-induced homolysis of NHPI by peracids and dioxiranes. Electron paramagnetic resonance (EPR) and thermodynamic studies, as well as the marked solvent effect and the high selectivity in the alfa-position, strongly support the mechanistic interpretation. The in situ generation of acyl peroxyl radicals from acetaldehyde and molecular oxygen and the optimization of the reaction conditions allow the development of an innovative process for the convenient metal-free synthesis of several epoxides, suggesting an intriguing alternative route to the production of propylene oxide.
C. Punta, D. Moscatelli, O. Porta, F. Minisci, C. Gambarotti, M. Lucarini (2008). Selective aerobic radical epoxidation of alfa-olefins catalyzed by N-hydroxyphthalimide. AMSTERDAM : Elsevier.
Selective aerobic radical epoxidation of alfa-olefins catalyzed by N-hydroxyphthalimide
LUCARINI, MARCO
2008
Abstract
The combination of N-hydroxyphthalimide (NHPI) and peracids is employed for the free-radical epoxidation of alkenes with high yields. A quite different selectivity is obtained from that of the well-known epoxidation by peracids, which is attributed to a different reaction mechanism and which evidences the molecule-induced homolysis of NHPI by peracids and dioxiranes. Electron paramagnetic resonance (EPR) and thermodynamic studies, as well as the marked solvent effect and the high selectivity in the alfa-position, strongly support the mechanistic interpretation. The in situ generation of acyl peroxyl radicals from acetaldehyde and molecular oxygen and the optimization of the reaction conditions allow the development of an innovative process for the convenient metal-free synthesis of several epoxides, suggesting an intriguing alternative route to the production of propylene oxide.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.