Microbial life in hot and cold desert environments inhabits endolithic niches. The endolithic microorganisms include bacteria, fungi and lichens. To protect themselves from the inhospitable conditions, such as high UV radiation, dryness, and rapid temperature variations, microorganisms migrate into fractures or in pore spaces where the necessary nutrient, moisture, and light are sufficient for survival. Examples of endolithic communities are well documented from the Negev Desert, Antarctica and the Artic regions, and the Atacama Desert. The most common substrates are porous, crystalline sandstones with calcium carbonate cements and sulfate (gypsum) and other evaporite mineral crusts. The detection of sulfate on the Martian surface has sparked off considerable interest in the astrobiological potential of the evaporite deposits of continental environments, which may potentially host (or may have hosted) endolithic microorganisms.
Stivaletta N., Barbieri R. (2008). Survival strategies of endoliths in terrestrial arid environments: implications for astrobiology. NEW YORK : Springer.
Survival strategies of endoliths in terrestrial arid environments: implications for astrobiology
STIVALETTA, NUNZIA;BARBIERI, ROBERTO
2008
Abstract
Microbial life in hot and cold desert environments inhabits endolithic niches. The endolithic microorganisms include bacteria, fungi and lichens. To protect themselves from the inhospitable conditions, such as high UV radiation, dryness, and rapid temperature variations, microorganisms migrate into fractures or in pore spaces where the necessary nutrient, moisture, and light are sufficient for survival. Examples of endolithic communities are well documented from the Negev Desert, Antarctica and the Artic regions, and the Atacama Desert. The most common substrates are porous, crystalline sandstones with calcium carbonate cements and sulfate (gypsum) and other evaporite mineral crusts. The detection of sulfate on the Martian surface has sparked off considerable interest in the astrobiological potential of the evaporite deposits of continental environments, which may potentially host (or may have hosted) endolithic microorganisms.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.