A better knowledge of the genetic basis of the mechanisms underlying the adaptive response to drought will be instrumental to more effectively deploy marker-assisted selection (MAS) to improve yield potential while optimizing water-use efficiency. Genomics approaches allow us to identify and clone the genes and QTLs that underlie the adaptive response of durum wheat to drought. Linkage and association mapping have allowed us to identify QTLs for traits that influence drought resistance and yield in durum and bread wheat. Once major genes and QTLs that affect yield under drought conditions are identified, their cloning provides a more direct path for mining and manipulating beneficial alleles. While QTL analysis and cloning addressing natural variation will increasingly shed light on mechanisms of adaptation to drought and other adverse conditions, more emphasis on approaches relying on resequencing, candidate gene identification, ‘omics’ platforms and reverse genetics will accelerate the pace of gene/QTL discovery. Genomic selection provides a valuable option to improve wheat performance under drought conditions without prior knowledge of the relevant QTLs. Modeling crop growth and yield based on the effects of major QTLs offers an additional opportunity to leverage genomics information. Although it is expected that genomics-assisted breeding will enhance the pace of durum wheat improvement, major limiting factors are how to (i) phenotype genetic materials in an accurate, relevant and high-throughput fashion and (ii) more effectively translate the deluge of molecular and phenotypic data into improved cultivars. A multidisciplinary effort will be instrumental to meet these challenges.

Genomics Approaches to Dissect the Genetic Basis of Drought Resistance in Durum Wheat

TUBEROSA, ROBERTO;MACCAFERRI, MARCO
2015

Abstract

A better knowledge of the genetic basis of the mechanisms underlying the adaptive response to drought will be instrumental to more effectively deploy marker-assisted selection (MAS) to improve yield potential while optimizing water-use efficiency. Genomics approaches allow us to identify and clone the genes and QTLs that underlie the adaptive response of durum wheat to drought. Linkage and association mapping have allowed us to identify QTLs for traits that influence drought resistance and yield in durum and bread wheat. Once major genes and QTLs that affect yield under drought conditions are identified, their cloning provides a more direct path for mining and manipulating beneficial alleles. While QTL analysis and cloning addressing natural variation will increasingly shed light on mechanisms of adaptation to drought and other adverse conditions, more emphasis on approaches relying on resequencing, candidate gene identification, ‘omics’ platforms and reverse genetics will accelerate the pace of gene/QTL discovery. Genomic selection provides a valuable option to improve wheat performance under drought conditions without prior knowledge of the relevant QTLs. Modeling crop growth and yield based on the effects of major QTLs offers an additional opportunity to leverage genomics information. Although it is expected that genomics-assisted breeding will enhance the pace of durum wheat improvement, major limiting factors are how to (i) phenotype genetic materials in an accurate, relevant and high-throughput fashion and (ii) more effectively translate the deluge of molecular and phenotypic data into improved cultivars. A multidisciplinary effort will be instrumental to meet these challenges.
2015
Advances in Wheat Genetics: From Genome to Field: Proceedings of the 12th International Wheat Genetics Symposium
213
223
Tuberosa, Roberto; Maccaferri, Marco
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/571902
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact