We propose parametric and semiparametric IV estimators for spatial autoregressive models with network data where the network structure is endogenous. We embed a dyadic network formation process in the control function approach as in Heckman and Robb (1985). In the semiparametric case, we use power series to approximate the correction terms. We establish the consistency and asymptotic normality for both parametric and semiparametric cases. We also investigate their finite sample properties via Monte Carlo simulation

Arduini, T., Patacchini Eleonora, Rainone, E. (2015). Parametric and Semiparametric IV Estimation of Network Models with Selectivity. Roma : EIEF.

Parametric and Semiparametric IV Estimation of Network Models with Selectivity

ARDUINI, TIZIANO;
2015

Abstract

We propose parametric and semiparametric IV estimators for spatial autoregressive models with network data where the network structure is endogenous. We embed a dyadic network formation process in the control function approach as in Heckman and Robb (1985). In the semiparametric case, we use power series to approximate the correction terms. We establish the consistency and asymptotic normality for both parametric and semiparametric cases. We also investigate their finite sample properties via Monte Carlo simulation
2015
31
Arduini, T., Patacchini Eleonora, Rainone, E. (2015). Parametric and Semiparametric IV Estimation of Network Models with Selectivity. Roma : EIEF.
Arduini, Tiziano; Patacchini Eleonora; Rainone, Edoardo
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/550195
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact