Tissue Engineering is a multidisciplinary field aimed at the creation of biological substitutes that restore and maintain the biological function of a damaged tissue. The key of the success of these biomedical devices lies into surface interactions with living tissues, therefore a common strategy is to create biomimetic surfaces that helps cells to colonize the biomaterial, leading to tissue healing. Vibrational spectroscopy, in particular Raman, apart from being mainly surface and non-destructive technique, is extremely sensitive to changes in structure and molecular interactions, thus its use in investigating biomimetic devices is increasing. In particular, we have recently used vibrational spectroscopies to investigate different biomimetic materials and to test some of their proprieties: - self-assembling peptides adsorbed on titanium surfaces for bone implants [1], analyzed before and after attack from free radicals (obtained by gamma-radiolysis and mimicking inflammation processes) [2], with the aim to evaluate their capability in resisting to oxidative stress; - composite (ceramic-polymer, polymer-polymer) bioresorbable biomaterials [3, 4]; - hydroxyapatite nanomaterials functionalized with proteins to increase biocompatibility [5-7]. [1] M. Di Foggia, P. Taddei, A. Torreggiani, M. Dettin, A. Tinti, J. Raman Spectrosc. 42 (2011) 276-285. [2] M. Di Foggia, A. Torreggiani, P. Taddei, M. Dettin, A. Tinti, J. Raman Spectrosc. 44 (2013) 1446-1450. [3] V. Guarino, F. Causa, P. Taddei, M. Di Foggia, G. Ciapetti, D. Martini, C. Fagnano, N. Baldini, L. Ambrosio, Biomaterials 29 (2008) 3662-3670. [4] V. Guarino, P. Taddei, M. Di Foggia, C. Fagnano, G. Ciapetti, L. Ambrosio, Tissue Eng. A 15 (2009) 3655-3668. [5] M. Iafisco, B. Palazzo, G. Falini, M. Di Foggia, S. Bonora, S. Nicolis, L. Casella, N. Roveri, Langmuir 24 (2008) 4924-4930. [6] M. Iafisco, M. Di Foggia, S. Bonora, M. Prat, N. Roveri, Dalton Trans. 40 (2011) 820-827. [7] M. Iafisco, E. Varoni, M. Di Foggia, S. Pietronave, M. Fini, N. Roveri, L. Rimondini, M. Prat, Colloids Surf.s B 90 (2012) 1-7.
Di Foggia, M., Torreggiani, A., Taddei, P., Bonora, S., Dettin, M., Tinti, A. (2015). It’s all about the surface! Vibrational spectroscopy applied to the study of biomimetic surfaces in Tissue Engineering. F. Bella and D. Spinelli.
It’s all about the surface! Vibrational spectroscopy applied to the study of biomimetic surfaces in Tissue Engineering
DI FOGGIA, MICHELE;TADDEI, PAOLA;BONORA, SERGIO;TINTI, ANNA
2015
Abstract
Tissue Engineering is a multidisciplinary field aimed at the creation of biological substitutes that restore and maintain the biological function of a damaged tissue. The key of the success of these biomedical devices lies into surface interactions with living tissues, therefore a common strategy is to create biomimetic surfaces that helps cells to colonize the biomaterial, leading to tissue healing. Vibrational spectroscopy, in particular Raman, apart from being mainly surface and non-destructive technique, is extremely sensitive to changes in structure and molecular interactions, thus its use in investigating biomimetic devices is increasing. In particular, we have recently used vibrational spectroscopies to investigate different biomimetic materials and to test some of their proprieties: - self-assembling peptides adsorbed on titanium surfaces for bone implants [1], analyzed before and after attack from free radicals (obtained by gamma-radiolysis and mimicking inflammation processes) [2], with the aim to evaluate their capability in resisting to oxidative stress; - composite (ceramic-polymer, polymer-polymer) bioresorbable biomaterials [3, 4]; - hydroxyapatite nanomaterials functionalized with proteins to increase biocompatibility [5-7]. [1] M. Di Foggia, P. Taddei, A. Torreggiani, M. Dettin, A. Tinti, J. Raman Spectrosc. 42 (2011) 276-285. [2] M. Di Foggia, A. Torreggiani, P. Taddei, M. Dettin, A. Tinti, J. Raman Spectrosc. 44 (2013) 1446-1450. [3] V. Guarino, F. Causa, P. Taddei, M. Di Foggia, G. Ciapetti, D. Martini, C. Fagnano, N. Baldini, L. Ambrosio, Biomaterials 29 (2008) 3662-3670. [4] V. Guarino, P. Taddei, M. Di Foggia, C. Fagnano, G. Ciapetti, L. Ambrosio, Tissue Eng. A 15 (2009) 3655-3668. [5] M. Iafisco, B. Palazzo, G. Falini, M. Di Foggia, S. Bonora, S. Nicolis, L. Casella, N. Roveri, Langmuir 24 (2008) 4924-4930. [6] M. Iafisco, M. Di Foggia, S. Bonora, M. Prat, N. Roveri, Dalton Trans. 40 (2011) 820-827. [7] M. Iafisco, E. Varoni, M. Di Foggia, S. Pietronave, M. Fini, N. Roveri, L. Rimondini, M. Prat, Colloids Surf.s B 90 (2012) 1-7.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.