Dynamic Structural Health Monitoring (D-SHM) in an attractive holistic approach to Non-Destructive Testing (NdT), based on the premise that damage influences the dynamic behaviour of a structure by altering its stiffness, mass or energy dissipation properties. At present, the fact that the dynamic behaviour of a structure is severely affected by a variety of additional boundary and environmental conditions confines D-SHM to industrial applications where repeatability or environmental conditioning reduce the complexity of the problem, or where the technical and economical implications of costly and time-consuming test campaigns are not an issue. In this work, the "Smartbrick" platform - an autonomous battery-operated wireless device purpose-built for environmental and structural monitoring - has been equipped with a vibration sensor that captures detailed acceleration data in response to natural occurrences such as small seismic or human-induced events. This enhancement makes the SmartBrick a D-SHM-ready platform with multi-year battery life, which allows a dramatic reduction in both equipment and installation costs, thus potentially expanding the practice of D-SHM to a considerably larger number of existing and new structures.
Bastianini, F., Sedigh, S., Pascale, G., Perri, G. (2012). Cost-effective Dynamic Structural Health Monitoring with a compact and autonomous wireless sensor system. Heidelberg : Springer Science [10.1007/978-94-007-0723-8_149].
Cost-effective Dynamic Structural Health Monitoring with a compact and autonomous wireless sensor system
PASCALE GUIDOTTI MAGNANI, GIOVANNI;PERRI, GIUSEPPE
2012
Abstract
Dynamic Structural Health Monitoring (D-SHM) in an attractive holistic approach to Non-Destructive Testing (NdT), based on the premise that damage influences the dynamic behaviour of a structure by altering its stiffness, mass or energy dissipation properties. At present, the fact that the dynamic behaviour of a structure is severely affected by a variety of additional boundary and environmental conditions confines D-SHM to industrial applications where repeatability or environmental conditioning reduce the complexity of the problem, or where the technical and economical implications of costly and time-consuming test campaigns are not an issue. In this work, the "Smartbrick" platform - an autonomous battery-operated wireless device purpose-built for environmental and structural monitoring - has been equipped with a vibration sensor that captures detailed acceleration data in response to natural occurrences such as small seismic or human-induced events. This enhancement makes the SmartBrick a D-SHM-ready platform with multi-year battery life, which allows a dramatic reduction in both equipment and installation costs, thus potentially expanding the practice of D-SHM to a considerably larger number of existing and new structures.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.