Computational fields are spatially distributed data structures created by diffusion/aggregation processes, designed to adapt their shape to the topology of the underlying (mobile) network and to the events occurring in it: they have been proposed in a thread of recent works addressing self-organisation mechanisms for system coordination in scenarios including pervasive computing, sensor networks, and mobile robots. A key challenge for these systems is to assure behavioural correctness, namely, correspondence of micro-level specification (computational field specification) with macro-level behaviour (resulting global spatial pattern). Accordingly, in this paper we investigate the propagation process of computational fields, especially when composed one another to achieve complex spatial structures. We present a tiny, expressive, and type-sound calculus of computational fields, enjoying self-stabilisation, i.e., the ability of computational fields to react to changes in the environment finding a new stable state in finite time.

A calculus of self-stabilising computational fields / Viroli, Mirko; Damiani, Ferruccio. - STAMPA. - 8459:(2014), pp. 163-178. [10.1007/978-3-662-43376-8_11]

A calculus of self-stabilising computational fields

VIROLI, MIRKO;
2014

Abstract

Computational fields are spatially distributed data structures created by diffusion/aggregation processes, designed to adapt their shape to the topology of the underlying (mobile) network and to the events occurring in it: they have been proposed in a thread of recent works addressing self-organisation mechanisms for system coordination in scenarios including pervasive computing, sensor networks, and mobile robots. A key challenge for these systems is to assure behavioural correctness, namely, correspondence of micro-level specification (computational field specification) with macro-level behaviour (resulting global spatial pattern). Accordingly, in this paper we investigate the propagation process of computational fields, especially when composed one another to achieve complex spatial structures. We present a tiny, expressive, and type-sound calculus of computational fields, enjoying self-stabilisation, i.e., the ability of computational fields to react to changes in the environment finding a new stable state in finite time.
2014
Coordination Models and Languages
163
178
A calculus of self-stabilising computational fields / Viroli, Mirko; Damiani, Ferruccio. - STAMPA. - 8459:(2014), pp. 163-178. [10.1007/978-3-662-43376-8_11]
Viroli, Mirko; Damiani, Ferruccio
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/521214
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 29
social impact