Organic-inorganic hybrid nanofibers obtained by electrospinning technology have experienced a growing interest in the last decade thanks to the versatility and the high productivity of the technique, compared to other technologies devoted to the fabrication of nanocomposites, and to the unique and numerous features displayed by the produced nanomaterials. In this review, we classify and highlight recent progress, as well as current issues, in the production of hybrid nanofibers by electrospinning and their related applications. In particular, the scientific literature has been classified by taking into account the different methodologies that have been developed to fabricate hybrid polymeric-inorganic nanofibers by making use of electrospinning technology in combination with additional specific synthetic and processing procedures. The following technological and synthetic strategies have been discussed in detail: (1) electrospinning of inorganic dispersions in polymer solutions, (2) post treatments of electrospun fibers, (3) electrospinning combined with sol–gel processes, (4) electrospinning combined with electrospraying, (5) coaxial electrospinning, and (6) electrospinning of hybrid polymers. The huge number of different fiber morphologies, structures, and properties that can be achieved by electrospinning is impressive. The power of this technology is even more evident if we take into account that innovative hybrid nanofibers can be fabricated with a simple, versatile, extremely cheap, and scalable technology that makes electrospinning the most interesting currently available technique for the production of nanocomposites.

Gualandi, C., Celli, A., Zucchelli, A., Focarete, M. (2015). Nanohybrid materials by electrospinning. CHAM : SPRINGER INT PUBLISHING AG [10.1007/12_2014_281].

Nanohybrid materials by electrospinning

GUALANDI, CHIARA;CELLI, ANNAMARIA;ZUCCHELLI, ANDREA;FOCARETE, MARIA LETIZIA
2015

Abstract

Organic-inorganic hybrid nanofibers obtained by electrospinning technology have experienced a growing interest in the last decade thanks to the versatility and the high productivity of the technique, compared to other technologies devoted to the fabrication of nanocomposites, and to the unique and numerous features displayed by the produced nanomaterials. In this review, we classify and highlight recent progress, as well as current issues, in the production of hybrid nanofibers by electrospinning and their related applications. In particular, the scientific literature has been classified by taking into account the different methodologies that have been developed to fabricate hybrid polymeric-inorganic nanofibers by making use of electrospinning technology in combination with additional specific synthetic and processing procedures. The following technological and synthetic strategies have been discussed in detail: (1) electrospinning of inorganic dispersions in polymer solutions, (2) post treatments of electrospun fibers, (3) electrospinning combined with sol–gel processes, (4) electrospinning combined with electrospraying, (5) coaxial electrospinning, and (6) electrospinning of hybrid polymers. The huge number of different fiber morphologies, structures, and properties that can be achieved by electrospinning is impressive. The power of this technology is even more evident if we take into account that innovative hybrid nanofibers can be fabricated with a simple, versatile, extremely cheap, and scalable technology that makes electrospinning the most interesting currently available technique for the production of nanocomposites.
2015
ORGANIC-INORGANIC HYBRID NANOMATERIALS
87
142
Gualandi, C., Celli, A., Zucchelli, A., Focarete, M. (2015). Nanohybrid materials by electrospinning. CHAM : SPRINGER INT PUBLISHING AG [10.1007/12_2014_281].
Gualandi, C.; Celli, A.; Zucchelli, A.; Focarete, M.L.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/517356
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 14
social impact