Reversible debugging provides developers with a way to execute their applications both forward and backward, seeking the cause of an unexpected or undesired event. In a concurrent setting, reversing actions in the exact reverse order they have been executed may lead to undo many actions that were not related to the bug under analysis. On the other hand, undoing actions in some order that violates causal dependencies may lead to states that could not be reached in a forward execution. We propose an approach based on causal-consistent reversibility: each action can be reversed if all its consequences have already been reversed. The main feature of the approach is that it allows the programmer to easily individuate and undo exactly the actions that caused a given misbehavior till the corresponding bug is reached. This paper major contribution is the individuation of the appropriate primitives for causal-consistent reversible debugging and their prototype implementation in the CaReDeb tool. We also show how to apply CaReDeb to individuate common real-world concurrent bugs.

Giachino, E., Lanese, I., Claudio Antares, M. (2014). CaReDeb.

CaReDeb

GIACHINO, ELENA;LANESE, IVAN;
2014

Abstract

Reversible debugging provides developers with a way to execute their applications both forward and backward, seeking the cause of an unexpected or undesired event. In a concurrent setting, reversing actions in the exact reverse order they have been executed may lead to undo many actions that were not related to the bug under analysis. On the other hand, undoing actions in some order that violates causal dependencies may lead to states that could not be reached in a forward execution. We propose an approach based on causal-consistent reversibility: each action can be reversed if all its consequences have already been reversed. The main feature of the approach is that it allows the programmer to easily individuate and undo exactly the actions that caused a given misbehavior till the corresponding bug is reached. This paper major contribution is the individuation of the appropriate primitives for causal-consistent reversible debugging and their prototype implementation in the CaReDeb tool. We also show how to apply CaReDeb to individuate common real-world concurrent bugs.
2014
Giachino, E., Lanese, I., Claudio Antares, M. (2014). CaReDeb.
Giachino, Elena; Lanese, Ivan; Claudio Antares, Mezzina
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/372918
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact