The major application for PET imaging in clinical practice is represented by cancer imaging and (18)F-FDG is the most widely employed positron emitter compound. However, some diseases cannot be properly evaluated with this tracer and thus there is the necessity to develop more specific compounds. The last decades were a continuous factory for new radiopharmaceuticals leading to an endless list of PET tracers; however, just some of them guard diagnostic relevance in routine medical practice. This chapter describes a selected list of non-FDG PET tracers, basing on their introduction into and impact on clinical practice.
Egesta Lopci, Stefano Fanti (2013). Molecular Imaging in Oncology. Berlin Heidelberg : Springer [10.1007/978-3-642-10853-2_13].
Molecular Imaging in Oncology
FANTI, STEFANO
2013
Abstract
The major application for PET imaging in clinical practice is represented by cancer imaging and (18)F-FDG is the most widely employed positron emitter compound. However, some diseases cannot be properly evaluated with this tracer and thus there is the necessity to develop more specific compounds. The last decades were a continuous factory for new radiopharmaceuticals leading to an endless list of PET tracers; however, just some of them guard diagnostic relevance in routine medical practice. This chapter describes a selected list of non-FDG PET tracers, basing on their introduction into and impact on clinical practice.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.