We say that two vectors of integers a, u are coprime if the positive integers ||a||^2, ||u||^2 are coprime. We will prove that if M > 1 is a positive integer, the three following propositions are equivalent: 1) M is prime; 2) Each vector a of Z^4 such that ||a||^2 = M is coprime to each vector u of Z^4, u != 0, ||u||^2 < M and u orthogonal to a; 3) There exists a vector a of Z^4 with ||a||^2 = M such that a is coprime to each vector u of Z^4, u != 0, ||u||^2 < M and u orthogonal to a.

C. Tinaglia (2004). On a Geometric Characterization of Rational Prime Integer. BOLOGNA : Tecnoprint.

On a Geometric Characterization of Rational Prime Integer

TINAGLIA, CALOGERO
2004

Abstract

We say that two vectors of integers a, u are coprime if the positive integers ||a||^2, ||u||^2 are coprime. We will prove that if M > 1 is a positive integer, the three following propositions are equivalent: 1) M is prime; 2) Each vector a of Z^4 such that ||a||^2 = M is coprime to each vector u of Z^4, u != 0, ||u||^2 < M and u orthogonal to a; 3) There exists a vector a of Z^4 with ||a||^2 = M such that a is coprime to each vector u of Z^4, u != 0, ||u||^2 < M and u orthogonal to a.
2004
Seminari di Geometria 20001–2004
67
72
C. Tinaglia (2004). On a Geometric Characterization of Rational Prime Integer. BOLOGNA : Tecnoprint.
C. Tinaglia
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/19902
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact