The hierarchical organisation of biological systems plays a crucial role in processes of pattern formation regulated by gene expression, and in morphogenesis in general. Inspired by the development of living organisms, the ability to reproduce a system’s dynamic at different levels of its hierarchy might also prove useful in the design of engineered products that manifest spatial self-organising properties. In this chapter, we describe a computational framework capable of supporting, through modelling and simulation, both the study of biological systems and the design of artificial systems that can autonomously develop a spatial structure by exploiting the potential of multilevel dynamics. Within this framework, we propose a model of the morphogenesis of Drosophila melanogaster reproducing the expression pattern in the embryo, then we examine a scenario of pervasive computing as a possible application of this model in the realisation of engineered products.

A Computational Framework for Multilevel Morphologies

MONTAGNA, SARA;VIROLI, MIRKO
2012

Abstract

The hierarchical organisation of biological systems plays a crucial role in processes of pattern formation regulated by gene expression, and in morphogenesis in general. Inspired by the development of living organisms, the ability to reproduce a system’s dynamic at different levels of its hierarchy might also prove useful in the design of engineered products that manifest spatial self-organising properties. In this chapter, we describe a computational framework capable of supporting, through modelling and simulation, both the study of biological systems and the design of artificial systems that can autonomously develop a spatial structure by exploiting the potential of multilevel dynamics. Within this framework, we propose a model of the morphogenesis of Drosophila melanogaster reproducing the expression pattern in the embryo, then we examine a scenario of pervasive computing as a possible application of this model in the realisation of engineered products.
Morphogenetic Engineering
383
405
Sara Montagna;Mirko Viroli
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/151688
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact