Delayed Enhancement Magnetic Resonance Imaging can be used to non-invasively differentiate viable from non-viable myocardium within the Left Ventricle in patients suffering from myocardial diseases. Automated segmentation of scarified tissue can be used to accurately quantify the percentage of myocardium affected. This paper presents a method for cardiac scar detection and segmentation based on supervised learning and level set segmentation. First, a model of the appearance of scar tissue is trained using a Support Vector Machines classifier on image-derived descriptors. Based on the areas detected by the classifier, an accurate segmentation is performed using a segmentation method based on level sets.

L. Lara, S. Vera, F. Perez, N. Lanconelli, R. Morisi, B. Donini, et al. (2013). Supervised Learning Modelization and Segmentation of Cardiac Scar in Delayed Enhanced MRI. Berlino : Springer Verlag [10.1007/978-3-642-36961-2_7].

Supervised Learning Modelization and Segmentation of Cardiac Scar in Delayed Enhanced MRI

LANCONELLI, NICO;MORISI, RITA;DONINI, BRUNO;TURCO, DARIO;CORSI, CRISTIANA;LAMBERTI, CLAUDIO;
2013

Abstract

Delayed Enhancement Magnetic Resonance Imaging can be used to non-invasively differentiate viable from non-viable myocardium within the Left Ventricle in patients suffering from myocardial diseases. Automated segmentation of scarified tissue can be used to accurately quantify the percentage of myocardium affected. This paper presents a method for cardiac scar detection and segmentation based on supervised learning and level set segmentation. First, a model of the appearance of scar tissue is trained using a Support Vector Machines classifier on image-derived descriptors. Based on the areas detected by the classifier, an accurate segmentation is performed using a segmentation method based on level sets.
2013
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges
53
61
L. Lara, S. Vera, F. Perez, N. Lanconelli, R. Morisi, B. Donini, et al. (2013). Supervised Learning Modelization and Segmentation of Cardiac Scar in Delayed Enhanced MRI. Berlino : Springer Verlag [10.1007/978-3-642-36961-2_7].
L. Lara; S. Vera; F. Perez; N. Lanconelli; R. Morisi; B. Donini; D. Turco; C. Corsi; C. Lamberti; G. Gavidia; M. Bordone; E. Soudah; N. Curzen; J. Ros...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/134700
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact