Over the last few years, evidence that nearby spiral galaxies are surrounded by massive halos of cold gas has been accumulating. This extra-planar cold gas, rotating more slowly than the disk gas, is observed in galaxies with a range of different properties (such as mass and star formation rate, SFR) and it appears analogous to the Intermediate and High Velocity Clouds of the Milky Way. Models for the origin of extra-planar gas have been proposed taking into account the effects of supernova feedback (galactic fountain), cooling flow accretion and hydrostatic equilibrium. Several techniques have been used from analytical treatments and ballistic orbit integration to hydrodynamical simulations. I present a new model where a galactic fountain sweeps up ambient medium as it travels through the halo. This seems to give the best results in reproducing the kinematics of the extra-planar gas and it implies a gas accretion rate of the order of the SFR of the host galaxy.

F. Fraternali (2012). Modelling the gas kinematics in disk galaxies. CAMBRIDGE : EDP Sciences [10.1051/eas/1256058].

Modelling the gas kinematics in disk galaxies

FRATERNALI, FILIPPO
2012

Abstract

Over the last few years, evidence that nearby spiral galaxies are surrounded by massive halos of cold gas has been accumulating. This extra-planar cold gas, rotating more slowly than the disk gas, is observed in galaxies with a range of different properties (such as mass and star formation rate, SFR) and it appears analogous to the Intermediate and High Velocity Clouds of the Milky Way. Models for the origin of extra-planar gas have been proposed taking into account the effects of supernova feedback (galactic fountain), cooling flow accretion and hydrostatic equilibrium. Several techniques have been used from analytical treatments and ballistic orbit integration to hydrodynamical simulations. I present a new model where a galactic fountain sweeps up ambient medium as it travels through the halo. This seems to give the best results in reproducing the kinematics of the extra-planar gas and it implies a gas accretion rate of the order of the SFR of the host galaxy.
2012
The role of disk-halo interaction in galaxy evolution: outflows vs infall? EAS Publications Series
355
362
F. Fraternali (2012). Modelling the gas kinematics in disk galaxies. CAMBRIDGE : EDP Sciences [10.1051/eas/1256058].
F. Fraternali
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/127131
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact