Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
CRIS Current Research Information System
We have recently shown that in the reaction center – light harvesting complex 1 (RC-LH1) purified from the photosynthetic bacterium Rhodobacter sphaeroides, at pH=7.8, flash-induced P+QB-
recombines with an average rate constant ( <k> = 0.3 s-1), significantly smaller than that measured in RC deprived of the LH1 ( <k> = 1 s-1). Since the kinetics of P+QA- recombination is unaffected by the presence of the antenna, the P+QB- state appears to be energetically stabilized in core complexes
(1). The pH dependence of the P+QB- recombination kinetics has been analyzed in dimeric and monomeric forms of RC-LH1 and compared with that observed in RC deprived of the antenna. At 6.5 < pH < 8.5 recombination is essentially pH independent and significantly slower in all forms of core complexes as compared to LH1-deprived RCs. At increasing pH values, however, where the recombination rate increases, this stabilization effect decreases progressively and vanishes at pH > 10.5, indicating the involvement of protonatable groups. The recombination kinetics, moreover, becomes progressively distributed at pH > 9. The width of the rate constant distribution (sigma = 0.3 s-1
at pH < 9.0) increases by more than one order of magnitude at pH 11.0, suggesting a variety of conformations, possibly differing in the protonation state. The observed pH dependence of sigma could
be explained when assuming that such conformations interconvert at a rate which is comparable to the rate of charge recombination at physiological pH values but is considerably lower at high pH
values. Under this condition the conformational heterogeneity becomes therefore observable. A similar behaviour was observed in chromatophores of Rhodobacter capsulatus FJ2, a c2- and cyminus
strain, in which the kinetics of P+QB- recombination could be accurately studied by avoiding any interference due to exogenous electron donors/acceptors.
The lipid complement of the examined RC-LH1 complexes, determined by Inductively Coupled Plasma Emission Spectroscopy of phosphorous, ranges between 200 and 400 phospolipid molecules
per RC. A large ubiquinone (UQ) pool, varying from 15 to 30 UQ molecules per RC was systematically found to be associated with the core complexes. When similar determinations are performed in chromatophores, it appears that the effective UQ concentration in the lipid phase of core complexes is at least three times higher than the average UQ concentration in the intact membrane. This finding argues strongly in favour of an in vivo heterogeneity in the distribution of
the quinone pool within the chromatophore bilayer.
Dezi M., Francia F., Palazzo G., Mallardi A., Venturoli G. (2006). Kinetics of charge recombination and distribution of the ubiquinone pool in reaction center - Light harvesting complexes purified from Rhodobacter sphaeroides. Elsevier.
Kinetics of charge recombination and distribution of the ubiquinone pool in reaction center - Light harvesting complexes purified from Rhodobacter sphaeroides
We have recently shown that in the reaction center – light harvesting complex 1 (RC-LH1) purified from the photosynthetic bacterium Rhodobacter sphaeroides, at pH=7.8, flash-induced P+QB-
recombines with an average rate constant ( = 0.3 s-1), significantly smaller than that measured in RC deprived of the LH1 ( = 1 s-1). Since the kinetics of P+QA- recombination is unaffected by the presence of the antenna, the P+QB- state appears to be energetically stabilized in core complexes
(1). The pH dependence of the P+QB- recombination kinetics has been analyzed in dimeric and monomeric forms of RC-LH1 and compared with that observed in RC deprived of the antenna. At 6.5 < pH < 8.5 recombination is essentially pH independent and significantly slower in all forms of core complexes as compared to LH1-deprived RCs. At increasing pH values, however, where the recombination rate increases, this stabilization effect decreases progressively and vanishes at pH > 10.5, indicating the involvement of protonatable groups. The recombination kinetics, moreover, becomes progressively distributed at pH > 9. The width of the rate constant distribution (sigma = 0.3 s-1
at pH < 9.0) increases by more than one order of magnitude at pH 11.0, suggesting a variety of conformations, possibly differing in the protonation state. The observed pH dependence of sigma could
be explained when assuming that such conformations interconvert at a rate which is comparable to the rate of charge recombination at physiological pH values but is considerably lower at high pH
values. Under this condition the conformational heterogeneity becomes therefore observable. A similar behaviour was observed in chromatophores of Rhodobacter capsulatus FJ2, a c2- and cyminus
strain, in which the kinetics of P+QB- recombination could be accurately studied by avoiding any interference due to exogenous electron donors/acceptors.
The lipid complement of the examined RC-LH1 complexes, determined by Inductively Coupled Plasma Emission Spectroscopy of phosphorous, ranges between 200 and 400 phospolipid molecules
per RC. A large ubiquinone (UQ) pool, varying from 15 to 30 UQ molecules per RC was systematically found to be associated with the core complexes. When similar determinations are performed in chromatophores, it appears that the effective UQ concentration in the lipid phase of core complexes is at least three times higher than the average UQ concentration in the intact membrane. This finding argues strongly in favour of an in vivo heterogeneity in the distribution of
the quinone pool within the chromatophore bilayer.
Dezi M., Francia F., Palazzo G., Mallardi A., Venturoli G. (2006). Kinetics of charge recombination and distribution of the ubiquinone pool in reaction center - Light harvesting complexes purified from Rhodobacter sphaeroides. Elsevier.
Dezi M.; Francia F.; Palazzo G.; Mallardi A.; Venturoli G.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/122248
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
ND
ND
ND
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.