It is known that the identifiability of the structural parameters of the class of Linear(ized) Rational Expectations (LRE) models currently used in monetary policy and business cycle analysis may change dramatically across different regions of the theoretically admissible parameter space. This paper derives novel necessary and sufficient conditions for local identifiability which hold irrespective of whether the LRE model as a determinate (unique stable) reduced form solution or indeterminate (multiple stable) reduced form solutions.

FANELLI L. (2011). Robust Identification Conditions for Determinate and Indeterminate Linear Rational Expectations models.. BOLOGNA : Serie Ricerche 2011/1.

Robust Identification Conditions for Determinate and Indeterminate Linear Rational Expectations models.

FANELLI, LUCA
2011

Abstract

It is known that the identifiability of the structural parameters of the class of Linear(ized) Rational Expectations (LRE) models currently used in monetary policy and business cycle analysis may change dramatically across different regions of the theoretically admissible parameter space. This paper derives novel necessary and sufficient conditions for local identifiability which hold irrespective of whether the LRE model as a determinate (unique stable) reduced form solution or indeterminate (multiple stable) reduced form solutions.
2011
27
FANELLI L. (2011). Robust Identification Conditions for Determinate and Indeterminate Linear Rational Expectations models.. BOLOGNA : Serie Ricerche 2011/1.
FANELLI L.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/120799
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact