The Forward Search (FS) represents a useful tool for clustering data that include outlying observations, because it provides a robust clustering method in conjunction with graphical tools for outlier identification. In this paper, we show that recasting FS clustering in the framework of normal mixture models can introduce some improvements: the problem of choosing a metric for clustering is avoided; membership degree is assessed by posterior probability; a testing procedure for outlier detection can be devised.

D. G. Calò (2011). Some developments in Forward Search Clustering. HEIDELBERG : Springer-Verlag [10.1007/978-3-642-13312-1_13].

Some developments in Forward Search Clustering

CALO', DANIELA GIOVANNA
2011

Abstract

The Forward Search (FS) represents a useful tool for clustering data that include outlying observations, because it provides a robust clustering method in conjunction with graphical tools for outlier identification. In this paper, we show that recasting FS clustering in the framework of normal mixture models can introduce some improvements: the problem of choosing a metric for clustering is avoided; membership degree is assessed by posterior probability; a testing procedure for outlier detection can be devised.
2011
Classification and Multivariate Analysis for Complex Data Structures
135
143
D. G. Calò (2011). Some developments in Forward Search Clustering. HEIDELBERG : Springer-Verlag [10.1007/978-3-642-13312-1_13].
D. G. Calò
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/115100
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact