The wavelength of the electromagnetic radiation plays a key role on determining the spatial resolution an imaging system can achieve, the way how the wave interacts with matter and how it propagates. For this reason the measurement of the wavelength associated with electromagnetic radiation of any order is fundamental. For light, simple diffractioninterference experiments can lead to an appropriate measurement of this feature. For electrons, however, the wavelength value is calculated simply by the knowledge of the accelerating potential. In this work, we present an iterative method for measuring the wavelength of electromagnetic radiation of any order. By using the self-imaging effect that arises as an electromagnetic wave impinges on a periodic object, the wavelength of the wave can be determined. Experimental results of the application of the method to measure the wavelength of light are shown. The basis for the application of the method to determine the wavelength of electron waves are settled.
J. Garcia-Sucerquia, G. Matteucci (2011). Wavelength measurement with iterative self-imaging phenomenon. BELLINGHAM, WA : SPIE / International Society for Optical Engineering [10.1117/12.903347].
Wavelength measurement with iterative self-imaging phenomenon
MATTEUCCI, GIORGIO
2011
Abstract
The wavelength of the electromagnetic radiation plays a key role on determining the spatial resolution an imaging system can achieve, the way how the wave interacts with matter and how it propagates. For this reason the measurement of the wavelength associated with electromagnetic radiation of any order is fundamental. For light, simple diffractioninterference experiments can lead to an appropriate measurement of this feature. For electrons, however, the wavelength value is calculated simply by the knowledge of the accelerating potential. In this work, we present an iterative method for measuring the wavelength of electromagnetic radiation of any order. By using the self-imaging effect that arises as an electromagnetic wave impinges on a periodic object, the wavelength of the wave can be determined. Experimental results of the application of the method to measure the wavelength of light are shown. The basis for the application of the method to determine the wavelength of electron waves are settled.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.