FEM simulations are become the most powerful tools in order to optimize the different aspects of the extrusion process and an accurate flow stress definition of the alloy is a prerequisite for a reliable effectiveness of the simulation. In the paper the determination of flow stress by means of hot torsion test is initially presented and discussed: the several approximations that are usually introduced in flow stress computation are described and computed for an AA6082 alloy in order to evidence the final effect on curves shapes. The procedure for regressing the parameters of the sinhyperbolic flow stress definition is described in detailed and applied to the described results. Then four different alloys, extracted by different casting batches but all namely belonging to the 6082 class, were hot torsion tested in comparable levels of temperature and strain rate up to specimen failure. The results are analyzed and discussed in order to understand if a mean flow stress behavior can be identified for the whole material class at the different tested conditions or if specific testing conditions (chemical composition of the alloy, specimen shape, etc) influence the materials properties to a higher degree.
L. Donati, M. El Mehtedi (2011). Characterization Of Flow Stress Of Different AA6082 Alloys By Means Of Hot Torsion Test. New York : American Institute Of Physics [10.1063/1.3589557].
Characterization Of Flow Stress Of Different AA6082 Alloys By Means Of Hot Torsion Test
DONATI, LORENZO;
2011
Abstract
FEM simulations are become the most powerful tools in order to optimize the different aspects of the extrusion process and an accurate flow stress definition of the alloy is a prerequisite for a reliable effectiveness of the simulation. In the paper the determination of flow stress by means of hot torsion test is initially presented and discussed: the several approximations that are usually introduced in flow stress computation are described and computed for an AA6082 alloy in order to evidence the final effect on curves shapes. The procedure for regressing the parameters of the sinhyperbolic flow stress definition is described in detailed and applied to the described results. Then four different alloys, extracted by different casting batches but all namely belonging to the 6082 class, were hot torsion tested in comparable levels of temperature and strain rate up to specimen failure. The results are analyzed and discussed in order to understand if a mean flow stress behavior can be identified for the whole material class at the different tested conditions or if specific testing conditions (chemical composition of the alloy, specimen shape, etc) influence the materials properties to a higher degree.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.