In this paper the problem of finding a face recognition system that works well both under variable illumination conditions and under strictly controlled acquisition conditions is considered. The problem under consideration has to do with the fact that systems that work well (compared with standard methods) with variable illumination conditions often suffer a drop in performance on images where illumination is strictly controlled. In this chapter we review existing techniques for obtaining illumination robustness and propose a method for handling illumination variance that combines different matchers and preprocessing methods. An extensive evaluation of our system is performed on several datasets (CMU, ORL, Extended YALE-B, and BioLab). Our results show that even though some standalone matchers are inconsistent in performance depending on the database, the fusion of different methods performs consistently well across all tested datasets and illumination conditions. Our experiments show that the best result are obtained using gradientfaces as a preprocessing method and orthogonal linear graph embedding as a feature transform.

L. Nanni, S. Brahnam, A. Lumini (2011). Fusion of lighting insensitive approaches for illumination robust face recognition. HAUPPAUGE, NY : Nova Publishers.

Fusion of lighting insensitive approaches for illumination robust face recognition

NANNI, LORIS;LUMINI, ALESSANDRA
2011

Abstract

In this paper the problem of finding a face recognition system that works well both under variable illumination conditions and under strictly controlled acquisition conditions is considered. The problem under consideration has to do with the fact that systems that work well (compared with standard methods) with variable illumination conditions often suffer a drop in performance on images where illumination is strictly controlled. In this chapter we review existing techniques for obtaining illumination robustness and propose a method for handling illumination variance that combines different matchers and preprocessing methods. An extensive evaluation of our system is performed on several datasets (CMU, ORL, Extended YALE-B, and BioLab). Our results show that even though some standalone matchers are inconsistent in performance depending on the database, the fusion of different methods performs consistently well across all tested datasets and illumination conditions. Our experiments show that the best result are obtained using gradientfaces as a preprocessing method and orthogonal linear graph embedding as a feature transform.
2011
Biometrics: Theory, Applications and Issues
81
105
L. Nanni, S. Brahnam, A. Lumini (2011). Fusion of lighting insensitive approaches for illumination robust face recognition. HAUPPAUGE, NY : Nova Publishers.
L. Nanni; S. Brahnam; A. Lumini
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/108891
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact