This paper examines and compares various estimation methods for generalized linear latent variable models for multidimensional longitudinal binary data. In such cases, likelihood-based methods are problematic due to the high dimensional integrals involved, which lack analytical solution. Among the methods proposed in the literature to address this issue, we focus on approximate likelihood and composite likelihood methods. Specifically, within the first class, we examine the dimension-wise quadrature, while within the second class, we consider composite likelihood methods based on bivariate densities. The properties of these methods are evaluated through a comprehensive simulation study.

Guastadisegni, L., Bianconcini, S., Cagnone, S. (2025). A Comparison of Estimation Methods in Latent Variable Models for Binary Panel Data. Cham : Springer [10.1007/978-3-032-03042-9_23].

A Comparison of Estimation Methods in Latent Variable Models for Binary Panel Data

Guastadisegni, Lucia
Primo
;
Bianconcini, Silvia
Secondo
;
Cagnone, Silvia
Ultimo
2025

Abstract

This paper examines and compares various estimation methods for generalized linear latent variable models for multidimensional longitudinal binary data. In such cases, likelihood-based methods are problematic due to the high dimensional integrals involved, which lack analytical solution. Among the methods proposed in the literature to address this issue, we focus on approximate likelihood and composite likelihood methods. Specifically, within the first class, we examine the dimension-wise quadrature, while within the second class, we consider composite likelihood methods based on bivariate densities. The properties of these methods are evaluated through a comprehensive simulation study.
2025
Supervised and Unsupervised Statistical Data Analysis
260
271
Guastadisegni, L., Bianconcini, S., Cagnone, S. (2025). A Comparison of Estimation Methods in Latent Variable Models for Binary Panel Data. Cham : Springer [10.1007/978-3-032-03042-9_23].
Guastadisegni, Lucia; Bianconcini, Silvia; Cagnone, Silvia
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1022978
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact