We explore a technique to learn Support Vector Models (SVMs) when training data is partitioned among several data sources. The basic idea is to efficiently compute SVMs which can be reduced to Minimal Enclosing Ball (MEB) problems in a feature space by finding a coreset for the image of the data in that space. Our main result is that the union of local core-sets provides a close approximation to a global core-set from which the SVM can be recovered. The method requires hence a single pass through each source of data in order to compute local core-sets and then to recover the SVM from their union. Extensive simulations on real datasets are presented in order to evaluate accuracy and efficiency, comparing to a widely used single-pass heuristic to learn standard SVMs.

Learning Multi-Class Support Vector Models from Distributed Data using Core-Sets (Extended Abstract)

LODI, STEFANO;SARTORI, CLAUDIO
2010

Abstract

We explore a technique to learn Support Vector Models (SVMs) when training data is partitioned among several data sources. The basic idea is to efficiently compute SVMs which can be reduced to Minimal Enclosing Ball (MEB) problems in a feature space by finding a coreset for the image of the data in that space. Our main result is that the union of local core-sets provides a close approximation to a global core-set from which the SVM can be recovered. The method requires hence a single pass through each source of data in order to compute local core-sets and then to recover the SVM from their union. Extensive simulations on real datasets are presented in order to evaluate accuracy and efficiency, comparing to a widely used single-pass heuristic to learn standard SVMs.
Proceedings of SEBD 2010 - 18th Italian Symposium on Advanced Database Systems
150
157
S. Lodi; R. Ñanculef; C.Sartori
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/101020
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact