In this contribution, we consider a Multi-Layer Perceptron (MLP) methodology for predicting specific gift features, particularly the count of donations and the gift amounts. Moreover, we use Garson’s indicator to evaluate the relative importance of the input variables to the output(s) in the MLP model with the aim of enhancing the effectiveness of fundraising campaigns. In the discussed application, the Donors’ behaviors are estimated using a simulated dataset that includes individual characteristics and information about donation history.

Barro, D., Barzanti, L., Corazza, M., Nardon, M. (2024). Input Relevance in Multi-Layer Perceptron for Fundraising. Cham : Springer [10.1007/978-3-031-64273-9_6].

Input Relevance in Multi-Layer Perceptron for Fundraising

Luca Barzanti;
2024

Abstract

In this contribution, we consider a Multi-Layer Perceptron (MLP) methodology for predicting specific gift features, particularly the count of donations and the gift amounts. Moreover, we use Garson’s indicator to evaluate the relative importance of the input variables to the output(s) in the MLP model with the aim of enhancing the effectiveness of fundraising campaigns. In the discussed application, the Donors’ behaviors are estimated using a simulated dataset that includes individual characteristics and information about donation history.
2024
Mathematical and Statistical Methods for Actuarial Sciences and Finance. MAF 2024
31
36
Barro, D., Barzanti, L., Corazza, M., Nardon, M. (2024). Input Relevance in Multi-Layer Perceptron for Fundraising. Cham : Springer [10.1007/978-3-031-64273-9_6].
Barro, Diana; Barzanti, Luca; Corazza, Marco; Nardon, Martina
File in questo prodotto:
File Dimensione Formato  
MAF2024_FR_final.pdf

embargo fino al 01/08/2025

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 215.18 kB
Formato Adobe PDF
215.18 kB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1000929
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact