In this note we show that pseudo-analysis tools can be effective in obtaining results in a distorted probability framework. More precisely, we introduce the notion of pseudo-independence and that of pseudo-moment generating function, the latter representing a generalization of the pseudo-Laplace transform, and both aiming at extending the corresponding notions in the usual probabilistic context. We show that these concepts and their properties, and more in general pseudo-analysis, are particularly useful to provide characterization results for a class of bivariate random vectors that we call “pseudo-Schur constant” family which represents an extension of the Schur-constant class.

Mulinacci, S., Ricci, M. (2024). Pseudo-moment generating functions: Application to pseudo-Schur constant random vectors. FUZZY SETS AND SYSTEMS, 485(1 (June)), 1-13 [10.1016/j.fss.2024.108963].

Pseudo-moment generating functions: Application to pseudo-Schur constant random vectors

Mulinacci, Sabrina;Ricci, Massimo
2024

Abstract

In this note we show that pseudo-analysis tools can be effective in obtaining results in a distorted probability framework. More precisely, we introduce the notion of pseudo-independence and that of pseudo-moment generating function, the latter representing a generalization of the pseudo-Laplace transform, and both aiming at extending the corresponding notions in the usual probabilistic context. We show that these concepts and their properties, and more in general pseudo-analysis, are particularly useful to provide characterization results for a class of bivariate random vectors that we call “pseudo-Schur constant” family which represents an extension of the Schur-constant class.
2024
Mulinacci, S., Ricci, M. (2024). Pseudo-moment generating functions: Application to pseudo-Schur constant random vectors. FUZZY SETS AND SYSTEMS, 485(1 (June)), 1-13 [10.1016/j.fss.2024.108963].
Mulinacci, Sabrina; Ricci, Massimo
File in questo prodotto:
File Dimensione Formato  
11585_967681.pdf

accesso aperto

Descrizione: pdf editoriale
Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 8.15 MB
Formato Adobe PDF
8.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/967681
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact