## Supporting Information to

## A Sustainable Chemo Enzymatic Approach to the Synthesis of Liraglutide

Silvia Rizzo,<sup>1</sup> Ana Toplak,<sup>2</sup> Marco Macis,<sup>2</sup> Lucia Ferrazzano,<sup>1</sup> Antonio Ricci,<sup>2\*</sup> Alessandra Tolomelli,<sup>1\*</sup> and Walter Cabri<sup>1</sup>

<sup>1</sup> P4i Laboratory, Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum – University of Bologna, Via P. Gobetti 85, 40129, Bologna (Italy)

<sup>2</sup> Fresenius Kabi, R&D, Via San Leonardo, 45010, Villadose (RO), Italy

Number of pages: 78

Number of figures: 51

Number of tables: 48

## Table of contents

| General remarks                                                                                                    | S4  |
|--------------------------------------------------------------------------------------------------------------------|-----|
| Materials                                                                                                          | S4  |
| Analytical details                                                                                                 | S4  |
| Method 1: HPLC parameters for the analysis of H-(1-11)-CamFK-NH <sub>2</sub> 2                                     | S4  |
| Method 2: HPLC parameters for the analysis of H-(12-31)-OH 3                                                       | S5  |
| Method 3: HPLC parameters for the enzymatic coupling of 2 and 3 to form Liraglutide 1                              | S6  |
| Synthetic Protocols                                                                                                | S7  |
| Solid-phase synthesis of H-(1-11)-CamFK-NH <sub>2</sub> 2 in DMF                                                   | S7  |
| List of protocol modifications                                                                                     | S11 |
| Solid-phase synthesis of H-(1-11)-CamFK-NH <sub>2</sub> 2 in NOP/DMC (8:2), protocol modification A                | S11 |
| Solid-phase synthesis of H-(1-11)-CamFK-NH2 2 in NOP/DMC (8:2), protocol modifications A and B                     | S13 |
| Solid-phase synthesis of H-(1-11)-CamFK-NH2 2 in NOP/DMC (8:2), protocol modifications A, B, and C                 | S15 |
| Solid-phase synthesis of H-(1-11)-CamFK-NH <sub>2</sub> 2 in DMSO/EtOAc (1:9), protocol modification A             | S17 |
| Solid-phase synthesis of H-(1-11)-CamFK-NH <sub>2</sub> 2 in DMSO/EtOAc (1:9), protocol modifications A, B, and D. | S19 |
| Solid-phase synthesis of H-(1-11)-CamFK-NH <sub>2</sub> 2 in NBP/EtOAc (8:2), protocol modifications A and B       | S21 |
| Solid-phase synthesis of H-(1-11)-CamFK-NH <sub>2</sub> 2 in NBP/DMC (8:2), protocol modifications A and B         | S23 |
| Solid-phase synthesis of H-(12-31)-OH 3 in DMF                                                                     | S25 |
| Solid-phase synthesis of H-(12-31)-OH 3 in NOP/DMC (8:2), protocol modification A                                  | S34 |
| Solid-phase synthesis of H-(12-31)-OH 3 in NOP/DMC (8:2), protocol modifications A and E                           | S37 |
| Solid-phase synthesis of H-(12-31)-OH 3 in DMSO/EtOAc (1:9), protocol modifications A and F                        | S40 |
| Solid-phase synthesis of H-(12-31)-OH 3 in NBP/DMC (8:2), protocol modifications A and F                           | S43 |
| Enzymatic coupling of fragments 2 and 3 to form Liraglutide 1                                                      | S46 |
| PMI calculation for solid-phase synthesis                                                                          | S49 |
| PMI calculation for solid-phase synthesis of 2                                                                     | S50 |
| PMI calculation for solid-phase synthesis of 2 in DMF                                                              | S50 |
| PMI calculation for solid-phase synthesis of 2 in NOP/DMC (8:2)                                                    | S52 |
| PMI calculation for solid-phase synthesis of 2 in DMSO/EtOAc (1:9)                                                 | S56 |
| PMI calculation for solid-phase synthesis of 2 in NBP/EtOAc (8:2)                                                  | S58 |
| PMI calculation for solid-phase synthesis of 2 in NBP/DMC (8:2)                                                    | S60 |
| PMI calculation for solid-phase synthesis of 3                                                                     | S62 |
| PMI calculation for solid-phase synthesis of 3 in DMF                                                              | S63 |

| PMI calculation for solid-phase synthesis of 3 in NOP/DMC (8:2)    | S65 |
|--------------------------------------------------------------------|-----|
| PMI calculation for solid-phase synthesis of 3 in DMSO/EtOAc (1:9) | S67 |
| PMI calculation for solid-phase synthesis of 3 in NBP/DMC (8:2)    | S69 |
| Quantification of trifluoroacetic acid (TFA) in crude peptides     | S71 |
| Assay calculation in crude peptides                                | S77 |

### **General remarks**

#### Materials

Unless stated otherwise, all chemicals were obtained from commercial suppliers and used without further purification. Anisole, dichloromethane (DCM), diisopropyl ether (DIPE), dimethyl carbonate (DMC), dimethyl sulfoxide (DMSO), ethyl acetate (EtOAc), N,N-dimethylformamide (DMF), N-butyl pyrrolidone (NBP), N-octyl pyrrolidone (NOP) were supplied by Sigma Aldrich, as well as HPLC-grade acetonitrile (ACN) and HPLC-grade water used for HPLC-MS analyses. The N-fluorenylmethyloxycarbonyl (Fmoc) amino acids were supplied by Fluorochem. The resins were supplied by Sigma Aldrich. Piperidine, Oxyma Pure®, N,N-diisopropylcarbodiimide (DIC), trifluoroacetic acid (TFA), diisopropylethylenamine (DIPEA), triisopropyl silane (TIS), and dithiothreitol (DTT) were purchased from Merck and Iris Biotech. The solid-phase synthesis of peptides (SPPS) was carried out manually in custom vessels (SPPS reactors) consisting of double-jacketed, temperature-controlled glass tubes fitted with a porous polyethylene disc and a valve. The SPPS reactors were connected to a vacuum source to allow removal of reagents and sovlents. The IKA EUROSTAR 20 digital overhead mechanical stirrer was employed at ~50 rpm. The Huber Minichiller 300 was employed for temperature control with  $H_2O + 0.1 \text{ g/L}$  of Na<sub>2</sub>CO<sub>3</sub> as the thermal fluid.

## **Analytical details**

HPLC-MS analyses were performed on Agilent 1260 InfinityLab system coupled with Agilent InfinityLab LC/MSD ESI mass spectrometer (positive-ion mode, m/z = 100-2000 amu, fragmentor 30 V). The ChemStation software was used for data processing. Specific parameters used for the analyses are described in detail below.

#### Method 1: HPLC parameters for the analysis of H-(1-11)-CamFK-NH<sub>2</sub> 2

Column: Agilent Poroshell 120, EC-C18 2.7μm, 4.6 x 100mm Temperature: 35.0°C Polarity: Positive Scan UV: 214 nm Injection volume: 10 μL Mobile phase A: H<sub>2</sub>O+0.08% TFA Mobile phase B: ACN+0.08% TFA Gradient: see Table S1

### Table S1. Gradient of Analytical Method 1.

| Time (min) | Mobile phase A (%) | Mobile phase B (%) | Flow (mL/min) |
|------------|--------------------|--------------------|---------------|
| 0.00       | 95.0               | 5.0                | 1.000         |
| 4.00       | 80.0               | 20.0               | 1.000         |
| 8.00       | 70.0               | 30.0               | 1.000         |
| 16.00      | 50.0               | 50.0               | 1.000         |
| 18.00      | 5.0                | 95.0               | 1.000         |
| 20.00      | 5.0                | 95.0               | 1.000         |
| 22.00      | 95.0               | 5.0                | 1.000         |
| 26.00      | 95.0               | 5.0                | 1.000         |

## Method 2: HPLC parameters for the analysis of H-(12-31)-OH 3

Column: Phenomenex Luna 5  $\mu m$  C18(2) 100 Å 250 x 4.6 mm

Temperature: 35.0°C

Polarity: Positive Scan

UV: 214 nm

Injection volume: 10 µL

Mobile phase A: H<sub>2</sub>O+0.08% TFA

Mobile phase B: ACN+0.08% TFA

Gradient: See Table S2.

**Table S2.** Gradient of Analytical Method 2.

| Time (min) | Mobile phase A (%) | Mobile phase B (%) | Flow (mL/min) |
|------------|--------------------|--------------------|---------------|
| 0.00       | 80.0               | 20.0               | 1.000         |
| 8.00       | 50.0               | 50.0               | 1.000         |
| 11.00      | 50.0               | 50.0               | 1.000         |
| 26.00      | 40.0               | 60.0               | 1.000         |
| 35.00      | 30.0               | 70.0               | 1.000         |
| 45.00      | 10.0               | 90.0               | 1.000         |
| 50.00      | 10.0               | 90.0               | 1.000         |
| 55.00      | 80.0               | 20.0               | 1.000         |
| 60.00      | 80.0               | 20.0               | 1.000         |

## Method 3: HPLC parameters for the enzymatic coupling of 2 and 3 to form Liraglutide 1

Column: Waters Cortecs, C18<sup>+</sup>, 2.7µm, 4.6 x 150mm

Temperature: 40.0°C

Polarity: Positive Scan

UV: 214 nm

Injection volume: 10 µL

Flow: 1.000 mL/min

Mobile phase A: H<sub>2</sub>O+0.05% TFA

Mobile phase B: ACN+0.05% TFA

Gradient: See Table S3.

 Table S3. Gradient of Analytical Method 3.

| Time (min) | Mobile phase A (%) | Mobile phase B (%) | Flow (mL/min) |
|------------|--------------------|--------------------|---------------|
| 0.00       | 91.0               | 9.0                | 1.000         |
| 0.50       | 91.0               | 9.0                | 1.000         |
| 6.00       | 70.0               | 30.0               | 1.000         |
| 8.00       | 50.0               | 50.0               | 1.000         |
| 15.00      | 47.0               | 53.0               | 1.000         |
| 16.00      | 25.0               | 75.0               | 1.000         |
| 17.00      | 25.0               | 75.0               | 1.000         |
| 18.00      | 91.0               | 9.0                | 1.000         |
| 25.00      | 91.0               | 9.0                | 1.000         |

## **Synthetic Protocols**

Below are reported the protocols for the solid-phase synthesis of peptide fragments H-(1-11)-CamFK-NH<sub>2</sub> 2 and H-(12-31)-OH 3. Their structures are depicted in Figure S1.

Figure S1. Structures of peptide fragments H-(1-11)-CamFK-NH<sub>2</sub> 2 and H-(12-31)-OH 3.



### Solid-phase synthesis of H-(1-11)-CamFK-NH<sub>2</sub> 2 in DMF

The synthesis was performed on preloaded Fmoc-Lys(Boc)-Rink Amide resin (loading 0.62 mmol/g); all steps were carried out at 25°C. After swelling the resin with DMF (10 mL/g of resin, 30 min), the Fmoc protecting group was removed by treatment with a solution of piperidine 20% in DMF (2 times x 5 mL/g of resin, 10 min each) and with DMF (4 times x 5 mL/g of resin, 5 min each). Fmoc-Phe-OH and Oxyma Pure® (2.0 eq of each reagent with respect to the loading of the resin) were dissolved in DMF (5 mL/g of resin) and pre-activated with DIC (2.0 eq with respect to the loading of the resin) for 3 minutes. The coupling mixture was added to the resin and stirred for 90 minutes, followed by washes with DMF (3 times x 5 mL/g of resin, 5 min each). The steps of Fmoc-removal, washes and coupling were repeated until the target peptide sequence was achieved. Piperidine 20% in DMF was employed up to Phe<sup>B</sup> included, while after Ser<sup>11</sup> Fmoc-removal was performed with piperidine 10% in DMF + piperidine 5% in DMF (5 mL/g of resin, 10 min each). For each coupling, the selected Fmoc-AAx-OH, Oxyma Pure® and DIC (2.0 eq of each reagent with respect to the loading of the resin) were employed. The carboxyamidomethyl (Cam) ester was formed by coupling bromoacetic acid, Oxyma Pure® and DIC (respectively 2.0, 0.1, and 2.0 eq of the reagents with respect to the loading

of the resin) onto the resin according to the protocol described above. Subsequently, the Ser<sup>11</sup> residue was introduced by adding KI (1.0 eq with respect to the loading of the resin) directly to the reaction vessel, followed by a solution of Fmoc-Ser(tBu)-OH and DIPEA (4.0 eq with respect to the loading of the resin) in DMF (5 mL/g of resin). This coupling step was performed for 24 hours. Boc-His(Trt)-OH was used to introduced His<sup>1</sup> following the protocol described for Fmoc-amino acid residues. After the final coupling step, the resin was washed with DMF (3 times x 5 mL/g of resin, 5 min each), DCM (3 times x 5 mL/g of resin, 5 min each), and dried under vacuum for 12 hours. For cleavage, the resin was added gradually to a solution of TFA/TIS/H<sub>2</sub>O 92.5/5.0/2.5 v/v/v % (10 mL/g of resin) at 10°C, the suspension was the stirred for 3 hours at room temperature. The resin was filtered, and diisopropyl ether (30 mL/g of resin) was added to the filtered solution at 10°C under vigorous stirring. The precipitated peptide was filtered, washed with ether (3 times x 5 mL/g of resin), and dried under vacuum to obtain **2**. The crude was analyzed via HPLC-MS using Method 1 (see Analytical details section reported above).

| Species            | Peptide sequence                   | Area % | t <sub>R</sub> (min) | rrt   | m/z obs |
|--------------------|------------------------------------|--------|----------------------|-------|---------|
| Product            | H-HAEGTFTSDVSCamFK-NH <sub>2</sub> | 74.629 | 7.842                | 1.000 | 1482.6  |
| Ester hydrolysis   | HO-GFK-NH <sub>2</sub>             | 3.145  | 4.949                | 0.631 | 351.2   |
| N,O-shifts         | H-SCamFK-NH <sub>2</sub>           | 1.577  | 4.572                | 0.583 | 438.2   |
|                    | H-VSCamFK-NH <sub>2</sub>          | 2.836  | 7.303                | 0.931 | 537.6   |
|                    | H-HAEGT-OH                         | 0.922  | 7.540                | 0.961 | 514.2   |
|                    | Des-Phe                            | 3.667  | 8.074                | 1.030 | 1335.1  |
| Deletion sequences | Des-Ser                            |        |                      |       | 1395.6  |
|                    | Des-SerCam                         | 2.736  | 8.163                | 1.041 | 1337.5  |
| Else               | -                                  | 10.488 | -                    | -     | -       |

Table S4. Results for solid-phase synthesis of H-(1-11)-CamFK-NH<sub>2</sub> 2 in DMF.

Figure S2. Chromatogram of H-(1-11)-CamFK-NH<sub>2</sub> 2, solid-phase synthesis in DMF. All peaks between 3 and 18 minutes with Area  $\% \ge 0.5$  were considered.





Figure S3. Mass chromatogram for peak at 7.842 min, m/z obs = 1482.6. Zoom on mass 1482.6.

Figure S4. Mass chromatogram for peak at 4.949 min, m/z obs = 351.2.



Figure S5. Mass chromatogram for peak at 4.572 min, m/z obs = 438.2.



Figure S6. Mass chromatogram for peak at 7.303 min, m/z obs = 537.6.



Figure S7. Mass chromatogram for peak at 7.540 min, m/z obs = 514.2.



Figure S8. Mass chromatogram for peak at 8.074 min, m/z obs = 1335.1 and 1395.6.



Figure S9. Mass chromatogram for peak at 8.163 min, m/z obs = 1337.5.



#### List of protocol modifications

Protocol modification A: elongation of reaction time in Fmoc-removal step.

Protocol modification B: Fmoc-removal step carried out at 40°C after the coupling of Thr<sup>5</sup>.

Protocol modification C: All couplings repeated twice.

Protocol modification D: Elongation of reaction time for coupling of bromoacetic acid.

Protocol modification E: all steps at 40°C.

Protocol modification F: double or longer couplings. All steps at 40°C from Val<sup>27</sup> (included) onwards.

#### Solid-phase synthesis of H-(1-11)-CamFK-NH<sub>2</sub> 2 in NOP/DMC (8:2), protocol modification A

The synthesis was performed on preloaded Fmoc-Lys(Boc)-Rink Amide resin (loading 0.62 mmol/g); all steps were carried out at 25°C. After swelling the resin with NOP/DMC (8:2) (10 mL/g of resin, 240 min), the Fmoc protecting group was removed by treatment with a solution of piperidine 20% in NOP/DMC (8:2) (2 times x 5 mL/g of resin, 15 min each) and with NOP/DMC (8:2) (4 times x 5 mL/g of resin, 5 min each). Fmoc-Phe-OH and Oxyma Pure® (2.0 eq of each reagent with respect to the loading of the resin) were dissolved in NOP/DMC (8:2) (5 mL/g of resin) and preactivated with DIC (2.0 eq with respect to the loading of the resin) for 3 minutes. The coupling mixture was added to the resin and stirred for 90 minutes, followed by washes with NOP/DMC (8:2) (3 times x 5 mL/g of resin, 5 min each). The steps of Fmoc-removal, washes and coupling were repeated until the target peptide sequence was achieved. Piperidine 20% in NOP/DMC (8:2) was employed up to Phe<sup>B</sup> included, while after Ser<sup>11</sup> Fmoc-removal was performed with piperidine 10% in NOP/DMC (8:2) + piperidine 5% in NOP/DMC (8:2) (5 mL/g of resin, 15 min each). For each coupling, the selected Fmoc-AAx-OH, Oxyma Pure® and DIC (2.0 eq of each reagent with respect to the loading of the resin) were employed. The carboxyamidomethyl (Cam) ester was formed by coupling bromoacetic acid, Oxyma Pure® and DIC (respectively 2.0, 0.1, and 2.0 eq of the reagents with respect to the loading of the resin) onto the resin according to the protocol described above. Subsequently, the Ser<sup>11</sup> residue was introduced by adding KI (1.0 eq with respect to the loading of the resin) directly to the reaction vessel, followed by a solution of Fmoc-Ser(tBu)-OH and DIPEA (4.0 eq with respect to the loading of the resin) in NOP/DMC (8:2) (5 mL/g of resin). This coupling step was performed for 24 hours. Boc-His(Trt)-OH was used to introduced His1 following the protocol described for Fmoc-amino acid residues. After the final coupling step, the resin was washed with NOP/DMC (8:2) (3 times x 5 mL/g of resin, 5 min each), DCM (3 times x 5 mL/g of resin, 5 min each), and dried under vacuum for 12 hours. For cleavage, the resin was added gradually to a solution of TFA/TIS/H<sub>2</sub>O 92.5/5.0/2.5 v/v/v % (10 mL/g of resin) at 10°C, the suspension was the stirred for 3 hours at room temperature. The resin was filtered, and diisopropyl ether (30 mL/g of resin) was added to the filtered solution at 10°C under vigorous stirring. The precipitated peptide was filtered, washed with ether (3 times x 5 mL/g of resin), and dried under vacuum to obtain 2. The crude was analyzed via HPLC-MS using Method 1 (see Analytical details section reported above).

Table S5. Results for solid-phase synthesis of H-(1-11)-CamFK-NH<sub>2</sub> 2 in NOP/DMC (8:2), protocol modification A.

| Species              | Peptide sequence                  | Area % | t <sub>R</sub> (min) | rrt   | m/z obs |
|----------------------|-----------------------------------|--------|----------------------|-------|---------|
| Product              | H-HAEGTFTSDVSCamFK-NH2            | 60.938 | 7.689                | 1.000 | 1482.5  |
| Ester hydrolysis     | HO-GFK-NH <sub>2</sub>            | 2.642  | 4.844                | 0.630 | 351.2   |
| Deletion sequences   | Des-SerCam                        | 2.792  | 8.044                | 1.046 | 1337.4  |
| Incomplete Fmoc      | Fmoc-TFTSDVSCamFK-NH <sub>2</sub> | 2.730  | 16.003               | 2.081 | 1310.5  |
| removal              | Fmoc-TFTSDVFK-NH <sub>2</sub>     | 1.379  | 16.722               | 2.175 | 1165.4  |
|                      | Fmoc-FTSDVFK-NH <sub>2</sub>      |        |                      |       | 1209.4  |
| Derivatives of Fmoc- |                                   | 6 994  | 14.704               | 1.913 | 1214.4  |
| truncated sequences  |                                   | 0.571  | 15.439               | 2.008 | 1113.3  |
|                      | -                                 |        | 7.113                | 0.925 | 741.9   |
| Epimers              | -                                 | 5.345  | 7.249                | 0.943 | 741.8   |
|                      | -                                 |        | 7.406                | 0.963 | 741.9   |
| Else                 | -                                 | 17.180 | -                    | -     | -       |

Figure S10. Chromatogram of H-(1-11)-CamFK-NH<sub>2</sub> 2, solid-phase synthesis in NOP/DMC (8:2), protocol modification A. All peaks between 3 and 18 minutes with Area  $\% \ge 0.5$  were considered.



#### Solid-phase synthesis of H-(1-11)-CamFK-NH<sub>2</sub> 2 in NOP/DMC (8:2), protocol modifications A and B

The synthesis was performed on preloaded Fmoc-Lys(Boc)-Rink Amide resin (loading 0.62 mmol/g); all steps were carried out at 25°C unless stated otherwise. After swelling the resin with NOP/DMC (8:2) (10 mL/g of resin, 240 min), the Fmoc protecting group was removed by treatment with a solution of piperidine 20% in NOP/DMC (8:2) (2 times x 5 mL/g of resin, 15 min each) and with NOP/DMC (8:2) (4 times x 5 mL/g of resin, 5 min each). Fmoc-Phe-OH and Oxyma Pure® (2.0 eq of each reagent with respect to the loading of the resin) were dissolved in NOP/DMC (8:2) (5 mL/g of resin) and pre-activated with DIC (2.0 eq with respect to the loading of the resin) for 3 minutes. The coupling mixture was added to the resin and stirred for 90 minutes, followed by washes with NOP/DMC (8:2) (3 times x 5 mL/g of resin, 5 min each). The steps of Fmoc-removal, washes and coupling were repeated until the target peptide sequence was achieved. Piperidine 20% in NOP/DMC (8:2) was employed up to Phe<sup>B</sup> included, while after Ser<sup>11</sup> Fmoc-removal was performed with piperidine 10% in NOP/DMC (8:2) + piperidine 5% in NOP/DMC (8:2) (5 mL/g of resin, 15 min each); finally, from Thr<sup>5</sup> (included) onwards piperidine 20% in NOP/DMC (8:2) was used at 40°C. For each coupling, the selected Fmoc-AAx-OH, Oxyma Pure® and DIC (2.0 eq of each reagent with respect to the loading of the resin) were employed. The carboxyamidomethyl (Cam) ester was formed by coupling bromoacetic acid, Oxyma Pure® and DIC (respectively 2.0, 0.1, and 2.0 eq of the reagents with respect to the loading of the resin) onto the resin according to the protocol described above. Subsequently, the Ser<sup>11</sup> residue was introduced by adding KI (1.0 eq with respect to the loading of the resin) directly to the reaction vessel, followed by a solution of Fmoc-Ser(tBu)-OH and DIPEA (4.0 eq with respect to the loading of the resin) in NOP/DMC (8:2) (5 mL/g of resin). This coupling step was performed for 24 hours. Boc-His(Trt)-OH was used to introduced His<sup>1</sup> following the protocol described for Fmoc-amino acid residues. After the final coupling step, the resin was washed with NOP/DMC (8:2) (3 times x 5 mL/g of resin, 5 min each), DCM (3 times x 5 mL/g of resin, 5 min each), and dried under vacuum for 12 hours. For cleavage, the resin was added gradually to a solution of TFA/TIS/H<sub>2</sub>O 92.5/5.0/2.5 v/v/v % (10 mL/g of resin) at 10°C, the suspension was the stirred for 3 hours at room temperature. The resin was filtered, and diisopropyl ether (30 mL/g of resin) was added to the filtered solution at 10°C under vigorous stirring. The precipitated peptide was filtered, washed with ether (3 times x 5 mL/g of resin), and dried under vacuum to obtain 2. The crude was analyzed via HPLC-MS using Method 1 (see Analytical details section reported above).

| Table S6. Results for solid-phase synthesis of H-(1-11)-CamFK-NH <sub>2</sub> 2 in NOP/DMC (8:2), protocol modifications A |
|----------------------------------------------------------------------------------------------------------------------------|
| and B.                                                                                                                     |
|                                                                                                                            |

| Species                                     | Peptide sequence                  | Area % | t <sub>R</sub> (min) | rrt   | m/z obs |
|---------------------------------------------|-----------------------------------|--------|----------------------|-------|---------|
| Product                                     | H-HAEGTFTSDVSCamFK-NH2            | 62.692 | 7.681                | 1.000 | 1482.6  |
| Ester hydrolysis                            | HO-GFK-NH <sub>2</sub>            | 2.386  | 4.842                | 0.630 | 351.2   |
| N,O-shifts                                  | H-HAEGT-OH                        | 0.566  | 7.416                | 0.966 | 514.3   |
|                                             | Des-Phe                           | 2.936  | 6.034                | 0.786 | 1335.3  |
| Deletion sequences                          | Des-AspVal                        | 0.905  | 6.827                | 0.889 | 634.8   |
| Derenon sequences                           | Des-Ser                           | 6.978  | 7.915                | 1.030 | 1395.5  |
|                                             | Des-Ser-Des-AspVal                | 2.395  | 7.119                | 0.927 | 1181.3  |
| Incomplete Fmoc<br>removal                  | Fmoc-TFTSDVSCamFK-NH <sub>2</sub> | 0.547  | 16.005               | 2.084 | 1310.3  |
| Derivatives of Fmoc-<br>truncated sequences | -                                 | 0.721  | 14.704               | 1.914 | 1214.4  |
| Epimers                                     | -                                 | 3 332  | 7.253                | 0.944 | 741.8   |
|                                             |                                   | 5.552  | 8.038                | 1.046 | 741.8   |
| Else                                        | -                                 | 19.873 | -                    | -     | -       |

Figure S11. Chromatogram of H-(1-11)-CamFK-NH<sub>2</sub> 2, solid-phase synthesis in NOP/DMC (8:2), protocol modifications A and B. All peaks between 3 and 18 minutes with Area  $\% \ge 0.5$  were considered.



# Solid-phase synthesis of H-(1-11)-CamFK-NH<sub>2</sub> 2 in NOP/DMC (8:2), protocol modifications A, B, and C

The synthesis was performed on preloaded Fmoc-Lys(Boc)-Rink Amide resin (loading 0.62 mmol/g); all steps were carried out at 25°C unless stated otherwise. After swelling the resin with NOP/DMC (8:2) (10 mL/g of resin, 240 min), the Fmoc protecting group was removed by treatment with a solution of piperidine 20% in NOP/DMC (8:2) (2 times x 5 mL/g of resin, 15 min each) and with NOP/DMC (8:2) (4 times x 5 mL/g of resin, 5 min each). Fmoc-Phe-OH and Oxyma Pure® (2.0 eq of each reagent with respect to the loading of the resin) were dissolved in NOP/DMC (8:2) (5 mL/g of resin) and pre-activated with DIC (2.0 eq with respect to the loading of the resin) for 3 minutes. The coupling mixture was added to the resin and stirred for 90 minutes, followed by washes with NOP/DMC (8:2) (3 times x 5 mL/g of resin, 5 min each). The coupling was repeated a second time. The steps of Fmoc-removal, washes and double coupling were repeated until the target peptide sequence was achieved. Piperidine 20% in NOP/DMC (8:2) was employed up to Phe<sup>B</sup> included, while after Ser<sup>11</sup> Fmoc-removal was performed with piperidine 10% in NOP/DMC (8:2) + piperidine 5% in NOP/DMC (8:2) (5 mL/g of resin, 15 min each); finally, from Thr<sup>5</sup> (included) onwards piperidine 20% in NOP/DMC (8:2) was used at 40°C. For each coupling, the selected Fmoc-AAx-OH, Oxyma Pure® and DIC (2.0 eq of each reagent with respect to the loading of the resin) were employed; all couplings were performed twice. The carboxyamidomethyl (Cam) ester was formed by coupling bromoacetic acid, Oxyma Pure® and DIC (respectively 2.0, 0.1, and 2.0 eq of the reagents with respect to the loading of the resin) onto the resin according to the protocol described above. Subsequently, the Ser<sup>11</sup> residue was introduced by adding KI (1.0 eq with respect to the loading of the resin) directly to the reaction vessel, followed by a solution of Fmoc-Ser(tBu)-OH and DIPEA (4.0 eq with respect to the loading of the resin) in NOP/DMC (8:2) (5 mL/g of resin). This coupling step was performed for 24 hours. The couplings of bromoacetic acid and Ser<sup>11</sup> were not repeated a second time. Boc-His(Trt)-OH was used to introduced His<sup>1</sup> following the protocol described for Fmoc-amino acid residues. After the final coupling step, the resin was washed with NOP/DMC (8:2) (3 times x 5 mL/g of resin, 5 min each), DCM (3 times x 5 mL/g of resin, 5 min each), and dried under vacuum for 12 hours. For cleavage, the resin was added gradually to a solution of TFA/TIS/H<sub>2</sub>O 92.5/5.0/2.5 v/v/v % (10 mL/g of resin) at 10°C, the suspension was the stirred for 3 hours at room temperature. The resin was filtered, and diisopropyl ether (30 mL/g of resin) was added to the filtered solution at 10°C under vigorous stirring. The precipitated peptide was filtered, washed with ether (3 times x 5 mL/g of resin), and dried under vacuum to obtain 2. The crude was analyzed via HPLC-MS using Method 1 (see Analytical details section reported above).

| Table S7. Results for solid-phase synthesis of H-(1-11)-CamFK-NH2 2 in NOP/DMC (8:2), protocol modi | fications A, |
|-----------------------------------------------------------------------------------------------------|--------------|
| B, and C.                                                                                           |              |

| Species                                     | Peptide sequence                  | Area % | t <sub>R</sub> (min) | rrt   | m/z obs |
|---------------------------------------------|-----------------------------------|--------|----------------------|-------|---------|
| Product                                     | H-HAEGTFTSDVSCamFK-NH2            | 69.923 | 7.797                | 1     | 1482.5  |
| Ester hydrolysis                            | HO-GFK-NH <sub>2</sub>            | 1.218  | 4.945                | 0.634 | 351.2   |
|                                             | H-HAEGTFTSDVS-OH                  | 2.216  | 6.114                | 0.784 | 1150.4  |
| N,O-shifts                                  | H-HAEGT-OH                        | 1.478  | 7.473                | 0.958 | 514.2   |
| Deletion sequences                          | Des-SerCam                        | 1.269  | 8.171                | 1.048 | 1337.5  |
| Incomplete Fmoc<br>removal                  | Fmoc-TFTSDVSCamFK-NH <sub>2</sub> | 2.891  | 16.077               | 2.062 | 1310.3  |
| Derivatives of Fmoc-<br>truncated sequences | -                                 | 0.989  | 14.752               | 1.892 | 1214.6  |
| Epimers                                     | -                                 | 4.323  | 7.248                | 0.93  | 741.5   |
| Else                                        | -                                 | 15.693 | -                    | -     | -       |

Figure S12. Chromatogram of H-(1-11)-CamFK-NH<sub>2</sub> 2, solid-phase synthesis in NOP/DMC (8:2), protocol modifications A, B, and C. All peaks between 3 and 18 minutes with Area  $\% \ge 0.5$  were considered.



#### Solid-phase synthesis of H-(1-11)-CamFK-NH<sub>2</sub> 2 in DMSO/EtOAc (1:9), protocol modification A

The synthesis was performed on preloaded Fmoc-Lys(Boc)-Rink Amide resin (loading 0.62 mmol/g); all steps were carried out at 25°C. After swelling the resin with DMSO/EtOAc (1:9) (10 mL/g of resin, 240 min), the Fmoc protecting group was removed by treatment with a solution of piperidine 20% in NOP/DMC (8:2) (2 times x 5 mL/g of resin, 15 min each) and with DMSO/EtOAc (1:9) (4 times x 5 mL/g of resin, 5 min each). Fmoc-Phe-OH and Oxyma Pure® (2.0 eq of each reagent with respect to the loading of the resin) were dissolved in DMSO/EtOAc (1:9) (5 mL/g of resin) and pre-activated with DIC (2.0 eq with respect to the loading of the resin) for 3 minutes. The coupling mixture was added to the resin and stirred for 90 minutes, followed by washes with DMSO/EtOAc (1:9) (3 times x 5 mL/g of resin, 5 min each). The steps of Fmoc-removal, washes and coupling were repeated until the target peptide sequence was achieved. Piperidine 20% in DMSO/EtOAc (1:9) was employed up to Phe<sup>B</sup> included, while after Ser<sup>11</sup> Fmoc-removal was performed with piperidine 10% in DMSO/EtOAc (1:9) + piperidine 5% in DMSO/EtOAc (1:9) (5 mL/g of resin, 15 min each). For each coupling, the selected Fmoc-AAx-OH, Oxyma Pure® and DIC (2.0 eq of each reagent with respect to the loading of the resin) were employed. The carboxyamidomethyl (Cam) ester was formed by coupling bromoacetic acid, Oxyma Pure® and DIC (respectively 2.0, 0.1, and 2.0 eq of the reagents with respect to the loading of the resin) onto the resin according to the protocol described above. Subsequently, the Ser<sup>11</sup> residue was introduced by adding KI (1.0 eq with respect to the loading of the resin) directly to the reaction vessel, followed by a solution of Fmoc-Ser(tBu)-OH and DIPEA (4.0 eq with respect to the loading of the resin) in DMSO/EtOAc (1:9) (5 mL/g of resin). This coupling step was performed for 24 hours. Boc-His(Trt)-OH was used to introduced His<sup>1</sup> following the protocol described for Fmoc-amino acid residues. After the final coupling step, the resin was washed with DMSO/EtOAc (1:9) (3 times x 5 mL/g of resin, 5 min each), DCM (3 times x 5 mL/g of resin, 5 min each), and dried under vacuum for 12 hours. For cleavage, the resin was added gradually to a solution of TFA/TIS/H<sub>2</sub>O 92.5/5.0/2.5 v/v/v % (10 mL/g of resin) at 10°C, the suspension was the stirred for 3 hours at room temperature. The resin was filtered, and diisopropyl ether (30 mL/g of resin) was added to the filtered solution at 10°C under vigorous stirring. The precipitated peptide was filtered, washed with ether (3 times x 5 mL/g of resin), and dried under vacuum to obtain 2. The crude was analyzed via HPLC-MS using Method 1 (see Analytical details section reported above).

| Table S8. Results for solid-phase synthesis of H-(1-11)-CamFK-NH <sub>2</sub> 2 in DMSO/EtOAc (1:9), protocol mod | dification |
|-------------------------------------------------------------------------------------------------------------------|------------|
| Α.                                                                                                                |            |

| Species            | Peptide sequence                 | Area %             | t <sub>R</sub> (min) | rrt   | m/z obs |
|--------------------|----------------------------------|--------------------|----------------------|-------|---------|
| Product            | H-HAEGTFTSDVSCamFK-NH2           | 32.820             | 7.630                | 1.000 | 1482.5  |
| Ester bydrolysis   | HO-GFK-NH <sub>2</sub>           | 1.431              | 4.836                | 0.634 | 351.2   |
|                    | H-HAEGTFTSDVS-OH                 | DVS-OH 2.314 6.013 |                      | 0.788 | 1150.3  |
| N,O-shifts         | H-HAEGT-OH                       | 1.194              | 7.333                | 0.961 | 514.2   |
| Deletion sequences | Des-SerCam                       | 11.052             | 7.970                | 1.045 | 1337.5  |
| Defetion sequences | Des Sereum                       | 8.661              | 8.661                | 1.135 | 1337.4  |
|                    | Emoc-TETSDVSCamEK-NH2            | 26 925             | 14.982               | 1.964 | 1310.4  |
|                    |                                  | 20.720             | 15.930               | 2.088 | 1310.5  |
| Incomplete Fmoc    | Fmoc-TFTSDVFK-NH <sub>2</sub>    | 9.228              | 16.689               | 2.187 | 1165.4  |
| removal            | Fmoc-FTSDVSCamFK-NH <sub>2</sub> |                    |                      |       | 1209.4  |
|                    | Fmoc-TFTSDVFK-NH <sub>2</sub>    | 0.555              | 17.117               | 2.243 | 1165.4  |
|                    | Fmoc-FTSDVFK-NH <sub>2</sub>     | 2.752              | 17.465               | 2.289 | 1064.3  |
| Enimers            | -                                | 2 951              | 7.112                | 0.932 | 741.8   |
| Dpiniers           | -                                | 2.951              | 7.280                | 0.954 | 741.8   |
| Else               | -                                | 8.778              | -                    | -     | -       |

Figure S13. Chromatogram of H-(1-11)-CamFK-NH<sub>2</sub> 2, solid-phase synthesis in DMSO/EtOAc (1:9), protocol modification A. All peaks between 3 and 18 minutes with Area  $\% \ge 0.5$  were considered.



# Solid-phase synthesis of H-(1-11)-CamFK-NH<sub>2</sub> 2 in DMSO/EtOAc (1:9), protocol modifications A, B, and D

The synthesis was performed on preloaded Fmoc-Lys(Boc)-Rink Amide resin (loading 0.62 mmol/g); all steps were carried out at 25°C unless stated otherwise. After swelling the resin with DMSO/EtOAc (1:9) (10 mL/g of resin, 240 min), the Fmoc protecting group was removed by treatment with a solution of piperidine 20% in DMSO/EtOAc (1:9) (2 times x 5 mL/g of resin, 15 min each) and with DMSO/EtOAc (1:9) (4 times x 5 mL/g of resin, 5 min each). Fmoc-Phe-OH and Oxyma Pure® (2.0 eq of each reagent with respect to the loading of the resin) were dissolved in DMSO/EtOAc (1:9) (5 mL/g of resin) and pre-activated with DIC (2.0 eq with respect to the loading of the resin) for 3 minutes. The coupling mixture was added to the resin and stirred for 90 minutes, followed by washes with DMSO/EtOAc (1:9) (3 times x 5 mL/g of resin, 5 min each). The steps of Fmoc-removal, washes and coupling were repeated until the target peptide sequence was achieved. Piperidine 20% in DMSO/EtOAc (1:9) was employed up to Phe<sup>B</sup> included, while after Ser<sup>11</sup> Fmoc-removal was performed with piperidine 10% in DMSO/EtOAc (1:9) + piperidine 5% in DMSO/EtOAc (1:9) (5 mL/g of resin, 15 min each); finally, from Thr<sup>5</sup> (included) onwards piperidine 20% in DMSO/EtOAc (1:9) was used at 40°C. For each coupling, the selected Fmoc-AAx-OH, Oxyma Pure® and DIC (2.0 eq of each reagent with respect to the loading of the resin) were employed. The carboxyamidomethyl (Cam) ester was formed by coupling bromoacetic acid, Oxyma Pure® and DIC (respectively 2.0, 0.1, and 2.0 eq of the reagents with respect to the loading of the resin) onto the resin according to the protocol described above for 180 minutes. Subsequently, the Ser<sup>11</sup> residue was introduced by adding KI (1.0 eq with respect to the loading of the resin) directly to the reaction vessel, followed by a solution of Fmoc-Ser(tBu)-OH and DIPEA (4.0 eq with respect to the loading of the resin) in DMSO/EtOAc (1:9) (5 mL/g of resin). This coupling step was performed for 24 hours. Boc-His(Trt)-OH was used to introduced His<sup>1</sup> following the protocol described for Fmoc-amino acid residues. After the final coupling step, the resin was washed with DMSO/EtOAc (1:9) (3 times x 5 mL/g of resin, 5 min each), DCM (3 times x 5 mL/g of resin, 5 min each), and dried under vacuum for 12 hours. For cleavage, the resin was added gradually to a solution of TFA/TIS/H<sub>2</sub>O 92.5/5.0/2.5 v/v/v % (10 mL/g of resin) at 10°C, the suspension was the stirred for 3 hours at room temperature. The resin was filtered, and diisopropyl ether (30 mL/g of resin) was added to the filtered solution at 10°C under vigorous stirring. The precipitated peptide was filtered, washed with ether (3 times x 5 mL/g of resin), and dried under vacuum to obtain 2. The crude was analyzed via HPLC-MS using Method 1 (see Analytical details section reported above).

| Table S9. Results for solid-phase synthesis of H-(1-11)-CamFK-NH <sub>2</sub> 2 in DMSO/EtOAc (1:9), protocol modification |
|----------------------------------------------------------------------------------------------------------------------------|
| A, B, and D.                                                                                                               |

| Species                    | Peptide sequence              | Area %                        | $t_{R}$ (min) | rrt   | m/z obs          |
|----------------------------|-------------------------------|-------------------------------|---------------|-------|------------------|
| Product                    | H-HAEGTFTSDVSCamFK-NH2        | 50.945                        | 7.811         | 1.000 | 1482.5           |
| Ester hydrolysis           | HO-GFK-NH <sub>2</sub>        | GFK-NH <sub>2</sub> 1.421 4.9 |               | 0.633 | 351.2            |
| Loter ny drory ond         | H-HAEGTFTSDVS-OH              | 0.576                         | 6.075         | 0.778 | 1150.3           |
| N,O-shifts                 | H-HAEGT-OH                    | 1.194                         | 7.333         | 0.961 | 514.2            |
| Deletion sequences         | Des-SerCam<br>Des-Thr         | 25.826                        | 8.150         | 1.043 | 1337.5<br>1381.5 |
| Incomplete Fmoc<br>removal | Fmoc-TFTSDVFK-NH <sub>2</sub> | 0.966                         | 16.796        | 2.15  | 1165.4           |
| Enimers                    | -                             | 2 112                         | 7.227         | 0.925 | 742              |
| Lpinors                    | -                             | 212                           | 7.395         | 0.947 | 741.8            |
| Else                       | -                             | 16.960                        | -             | -     | -                |

Figure S14. Chromatogram of H-(1-11)-CamFK-NH<sub>2</sub> 2, solid-phase synthesis in DMSO/EtOAc (1:9), protocol modifications A, B, and D. All peaks between 3 and 18 minutes with Area  $\% \ge 0.5$  were considered.



# Solid-phase synthesis of H-(1-11)-CamFK-NH<sub>2</sub> 2 in NBP/EtOAc (8:2), protocol modifications A and B

The synthesis was performed on preloaded Fmoc-Lys(Boc)-Rink Amide resin (loading 0.62 mmol/g); all steps were carried out at 25°C unless stated otherwise. After swelling the resin with NBP/EtOAc (8:2) (10 mL/g of resin, 240 min), the Fmoc protecting group was removed by treatment with a solution of piperidine 20% in NBP/EtOAc (8:2) (2 times x 5 mL/g of resin, 15 min each) and with NBP/EtOAc (8:2) (4 times x 5 mL/g of resin, 5 min each). Fmoc-Phe-OH and Oxyma Pure® (2.0 eq of each reagent with respect to the loading of the resin) were dissolved in NBP/EtOAc (8:2) (5 mL/g of resin) and pre-activated with DIC (2.0 eq with respect to the loading of the resin) for 3 minutes. The coupling mixture was added to the resin and stirred for 90 minutes, followed by washes with NBP/EtOAc (8:2) (3 times x 5 mL/g of resin, 5 min each). The steps of Fmoc-removal, washes and coupling were repeated until the target peptide sequence was achieved. Piperidine 20% in NBP/EtOAc (8:2) was employed up to Phe<sup>B</sup> included, then from Ser<sup>11</sup> Fmoc-removal was performed with piperidine 10% in NBP/EtOAc (8:2) + piperidine 5% in NBP/EtOAc (8:2) (5 mL/g of resin, 15 min each); finally, from Thr<sup>5</sup> (included) onwards piperidine 20% in NBP/EtOAc (8:2) was used at 40°C. For each coupling, the selected Fmoc-AAx-OH, Oxyma Pure® and DIC (2.0 eq of each reagent with respect to the loading of the resin) were employed. The carboxyamidomethyl (Cam) ester was formed by coupling bromoacetic acid, Oxyma Pure® and DIC (respectively 2.0, 0.1, and 2.0 eq of the reagents with respect to the loading of the resin) onto the resin according to the protocol described above. Subsequently, the Ser<sup>11</sup> residue was introduced by adding KI (1.0 eq with respect to the loading of the resin) directly to the reaction vessel, followed by a solution of Fmoc-Ser(tBu)-OH and DIPEA (4.0 eq with respect to the loading of the resin) in NBP/EtOAc (8:2) (5 mL/g of resin). This coupling step was performed for 24 hours. Boc-His(Trt)-OH was used to introduced His<sup>1</sup> following the protocol described for Fmoc-amino acid residues. After the final coupling step, the resin was washed with NBP/EtOAc (8:2) (3 times x 5 mL/g of resin, 5 min each), DCM (3 times x 5 mL/g of resin, 5 min each), and dried under vacuum for 12 hours. For cleavage, the resin was added gradually to a solution of TFA/TIS/H<sub>2</sub>O 92.5/5.0/2.5 v/v/v % (10 mL/g of resin) at 10°C, the suspension was the stirred for 3 hours at room temperature. The resin was filtered, and diisopropyl ether (30 mL/g of resin) was added to the filtered solution at 10°C under vigorous stirring. The precipitated peptide was filtered, washed with ether (3 times x 5 mL/g of resin), and dried under vacuum to obtain 2. The crude was analyzed via HPLC-MS using Method 1 (see Analytical details section reported above).

**Table S10.** Results for solid-phase synthesis of H-(1-11)-CamFK-NH<sub>2</sub> **2** in NBP/EtOAc (8:2), protocol modifications A and B.

| Species          | Peptide sequence       | Area % | t <sub>R</sub> (min) | rrt   | m/z obs |
|------------------|------------------------|--------|----------------------|-------|---------|
| Product          | H-HAEGTFTSDVSCamFK-NH2 | 72.439 | 7.804                | 1     | 1482.5  |
| Ester hydrolysis | HO-GFK-NH <sub>2</sub> | 4.484  | 4.945                | 0.634 | 351.2   |
|                  | H-HAEGTFTSDVS-OH       | 1.222  | 6.081                | 0.779 | 1150.3  |
| N,O-shifts       | H-HAEGT-OH             | 1.579  | 7.443                | 0.927 | 514.2   |
| Epimers          | -                      | -      | 7.512                | 0.963 | 514.4   |
| Else             | -                      | 18.019 | -                    | -     | -       |

Figure S15. Chromatogram of H-(1-11)-CamFK-NH<sub>2</sub> 2, solid-phase synthesis in NBP/DMC (8:2), protocol modifications A and B. All peaks between 3 and 18 minutes with Area  $\% \ge 0.5$  were considered.



#### Solid-phase synthesis of H-(1-11)-CamFK-NH<sub>2</sub> 2 in NBP/DMC (8:2), protocol modifications A and B

The synthesis was performed on preloaded Fmoc-Lys(Boc)-Rink Amide resin (loading 0.62 mmol/g); all steps were carried out at 25°C unless stated otherwise. After swelling the resin with NBP/DMC (8:2) (10 mL/g of resin, 240 min), the Fmoc protecting group was removed by treatment with a solution of piperidine 20% in NBP/DMC (8:2) (2 times x 5 mL/g of resin, 15 min each) and with NBP/DMC (8:2) (4 times x 5 mL/g of resin, 5 min each). Fmoc-Phe-OH and Oxyma Pure® (2.0 eq of each reagent with respect to the loading of the resin) were dissolved in NBP/DMC (8:2) (5 mL/g of resin) and pre-activated with DIC (2.0 eq with respect to the loading of the resin) for 3 minutes. The coupling mixture was added to the resin and stirred for 90 minutes, followed by washes with NBP/DMC (8:2) (3 times x 5 mL/g of resin, 5 min each). The steps of Fmoc-removal, washes and coupling were repeated until the target peptide sequence was achieved. Piperidine 20% in NBP/DMC (8:2) was employed up to Phe<sup>B</sup> included, then from Ser<sup>11</sup> Fmoc-removal was performed with piperidine 10% in NBP/DMC (8:2) + piperidine 5% in NBP/DMC (8:2) (5 mL/g of resin, 15 min each); finally, from Thr<sup>5</sup> (included) onwards piperidine 20% in NBP/DMC (8:2) was used at 40°C. For each coupling, the selected Fmoc-AAx-OH, Oxyma Pure® and DIC (2.0 eq of each reagent with respect to the loading of the resin) were employed. The carboxyamidomethyl (Cam) ester was formed by coupling bromoacetic acid, Oxyma Pure® and DIC (respectively 2.0, 0.1, and 2.0 eq of the reagents with respect to the loading of the resin) onto the resin according to the protocol described above. Subsequently, the Ser<sup>11</sup> residue was introduced by adding KI (1.0 eq with respect to the loading of the resin) directly to the reaction vessel, followed by a solution of Fmoc-Ser(tBu)-OH and DIPEA (4.0 eq with respect to the loading of the resin) in NBP/DMC (8:2) (5 mL/g of resin). This coupling step was performed for 24 hours. Boc-His(Trt)-OH was used to introduced His<sup>1</sup> following the protocol described for Fmoc-amino acid residues. After the final coupling step, the resin was washed with NBP/DMC (8:2) (3 times x 5 mL/g of resin, 5 min each), DCM (3 times x 5 mL/g of resin, 5 min each), and dried under vacuum for 12 hours. For cleavage, the resin was added gradually to a solution of TFA/TIS/H2O 92.5/5.0/2.5 v/v/v % (10 mL/g of resin) at 10°C, the suspension was the stirred for 3 hours at room temperature. The resin was filtered, and diisopropyl ether (30 mL/g of resin) was added to the filtered solution at 10°C under vigorous stirring. The precipitated peptide was filtered, washed with ether (3 times x 5 mL/g of resin), and dried under vacuum to obtain 2. The crude was analyzed via HPLC-MS using Method 1 (see Analytical details section reported above).

**Table S11.** Results for solid-phase synthesis of H-(1-11)-CamFK-NH<sub>2</sub> **2** in NBP/DMC (8:2), protocol modifications A and B.

| Species            | Peptide sequence                  | Area %       | t <sub>R</sub> (min) | rrt   | m/z obs |
|--------------------|-----------------------------------|--------------|----------------------|-------|---------|
| Product            | H-HAEGTFTSDVSCamFK-NH2            | 74.534 7.678 |                      | 1     | 1482.4  |
| Ester hydrolysis   | HO-GFK-NH <sub>2</sub>            | 5.058        | 4.831                | 0.629 | 351.2   |
| N,O-shifts         | H-SCamFK-NH <sub>2</sub>          | 1.037        | 4.463                | 0.581 | 438.2   |
|                    | H-HAEGT-OH                        | 0.956        | 7.326                | 0.954 | 514.2   |
| Deletion sequences | Fmoc-TFTSDVSCamFK-NH <sub>2</sub> | 0.821        | 15.995               | 2.083 | 1310.3  |
| Enimers            | -                                 | 4 981        | 7.100                | 0.925 | 741.9   |
| Epiniers           | -                                 |              | 7.292                | 0.95  | 741.9   |
| Else               | -                                 | 12.613       | -                    | -     | -       |

Figure S16. Chromatogram of H-(1-11)-CamFK-NH<sub>2</sub> 2, solid-phase synthesis in NBP/DMC (8:2), protocol modifications A and B. All peaks between 3 and 18 minutes with Area  $\% \ge 0.5$  were considered.



#### Solid-phase synthesis of H-(12-31)-OH 3 in DMF

The synthesis was performed on preloaded Fmoc-Gly-MBH resin (loading 0.5 mmol/g); steps were carried out at 25°C up to Glu<sup>21</sup> included, and 40°C from Ala<sup>19</sup> onwards, unless stated otherwise. After swelling the resin with DMF (10 mL/g of resin, 30 minutes), the Fmoc protecting group was removed by treatment with a solution of piperidine 20% in DMF (2 times x 5 mL/g of resin, 10 minutes each) and washed with DMF (4 times x 5 mL/g of resin, 5 minutes each). Fmoc-Arg(Pbf)-OH and Oxyma Pure® (2.0 eq of each reagent with respect to the loading of the resin) were dissolved in DMF (5 mL/g of resin) and pre-activated with DIC (2.0 eq with respect to the loading of the resin) for 3 minutes. The coupling mixture was added to the resin and stirred for 90 minutes, followed by washes with DMF (3 times x 5 mL/g of resin, 5 minutes each). The steps of Fmoc-removal, washing and coupling were repeated until the target peptide sequence was achieved. For each coupling, the selected Fmoc-AAx-OH, Oxyma Pure® and DIC were employed; in some cases, the equivalents, duration of the coupling, double coupling and temperature were modified. For Arg<sup>28</sup>, Val<sup>27</sup>, Trp<sup>25</sup>, Ala<sup>24</sup>, Phe<sup>22</sup>, Ala<sup>19</sup>, and Gln<sup>17</sup> 3.0 eq of each reagent with respect to the loading of the resin were employed. For Leu<sup>26</sup>, Ile<sup>23</sup>, and Glu<sup>21</sup> the coupling time was shortened to 60 minutes and a double coupling was performed for 45 minutes. For Glu<sup>15</sup> a double coupling (1.0 eq of each reagent with respect to the loading of the resin) of 60 minutes was performed; while for Ser<sup>12</sup> the coupling time was shortened to 60 minutes and a double coupling (1.0 eq of each reagent with respect to the loading of the resin) of 45 minutes was added. For Lys(GluPal)<sup>20</sup> the coupling time was extended to 24 hours at 50°C. Details for each coupling step are summarized in Table S12. After the final coupling step, the resin was washed with DMF (3 times x 5 mL/g of resin, 5 minutes each), DCM (3 times x 5 mL/g of resin, 5 minutes each), and dried under vacuum for 12 hours. For cleavage, the resin was added gradually to a solution of TFA/TIS/H<sub>2</sub>O/DTT 85.0/5.0/5.0/5.0 v/v/v/v % (10 mL/g of resin) at 10°C, the suspension was the stirred for 3 hours at room temperature. The resin was filtered, and diisopropyl ether (30 mL/g of resin) was added to the filtered solution at 10°C under vigorous stirring. The precipitated peptide was filtered, washed with ether (3 times x 5 mL/g of resin), and dried under vacuum to obtain 3. The crude was analyzed via HPLC-MS using Method 2 (see Analytical details section reported above).

| Coupling | Amino acid                  | Eq  | Time (min) | T (°C) |
|----------|-----------------------------|-----|------------|--------|
| 30       | Fmoc-Arg(Pbf)-OH            | 2   | 90         | 25     |
| 29       | Fmoc-Gly-OH                 | 2   | 90         | 25     |
| 28       | Fmoc-Arg(Pbf)-OH            | 3   | 90         | 25     |
| 27       | Fmoc-Val-OH                 | 3   | 90         | 25     |
| 26       | Fmoc-Leu-OH                 | 2+2 | 60+45      | 25     |
| 25       | Fmoc-Trp(Boc)-OH            | 3   | 90         | 25     |
| 24       | Fmoc-Ala-OH                 | 3   | 90         | 25     |
| 23       | Fmoc-Ile-OH                 | 2+2 | 60+45      | 25     |
| 22       | Fmoc-Phe-OH                 | 3   | 90         | 25     |
| 21       | Fmoc-Glu(OtBu)-OH           | 2+2 | 60+45      | 25     |
| 20       | Fmoc-Lys(γ-Glu(OtBu)Pal)-OH | 2   | 24h        | 50     |
| 19       | Fmoc-Ala-OH                 | 3   | 90         | 40     |
| 18       | Fmoc-Ala-OH                 | 2   | 90         | 40     |
| 17       | Fmoc-Gln(Trt)-OH            | 3   | 90         | 40     |
| 16       | Fmoc-Gly-OH                 | 2   | 90         | 40     |
| 15       | Fmoc-Glu(OtBu)-OH           | 2+1 | 90+60      | 40     |
| 14       | Fmoc-Leu-OH                 | 2   | 90         | 40     |
| 13       | Fmoc-Tyr(tBu)-OH            | 2   | 90         | 40     |
| 12       | Fmoc-Ser(tBu)-OH            | 2+1 | 60+45      | 40     |

## Table S12. Synthetic steps for H-(12-31)-OH 3 in DMF.

| Species            |                    | Area % | t <sub>R</sub> (min)                                                                                                                                                   | rrt                                           | m/z obs |
|--------------------|--------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------|
| Product            | Н-(12-31)-ОН       | 65.296 | 20.466                                                                                                                                                                 | 1.000                                         | 1310.1  |
|                    | Des-Glu-LysGluPal  | 1.629  | 8.905                                                                                                                                                                  | 0.435                                         | 997.5   |
|                    | Des-LysGluPal      | 1.906  | 9.909                                                                                                                                                                  | 0.484                                         | 1062.2  |
|                    | Des-Leu(Ile) 2.161 | 14.935 | 0.730                                                                                                                                                                  | 1253.7                                        |         |
|                    | Des Lea(ne)        | 2.101  | $t_R$ (min)rrt20.4661.0008.9050.4359.9090.48414.9350.73020.2580.99015.1790.74215.6360.76416.1000.78722.8881.11821.7861.06527.9491.36628.8061.40832.0301.56520.0850.981 | 1253.2                                        |         |
|                    | Des-Phe            | 0.868  | 15.179                                                                                                                                                                 | 0.742                                         | 1236.3  |
|                    | Des-Trp            | 1.124  | 15.636                                                                                                                                                                 | 0.764                                         | 1216.7  |
|                    | Des-Ala            | 5 226  | 16.100                                                                                                                                                                 | 0.787                                         | 1274.7  |
| Deletion sequences | Debrind            | 5.220  | 22.888                                                                                                                                                                 | 100         0.787           388         1.118 | 1274.1  |
|                    | Des-Tyr            |        |                                                                                                                                                                        |                                               | 1228.3  |
|                    | Des-Glu            | 8.993  | 21.786 1.065                                                                                                                                                           | 1.065                                         | 1245.3  |
|                    | Des-Gly            |        |                                                                                                                                                                        |                                               | 1281.8  |
|                    | Des-Gln            | 2.758  | 27.949                                                                                                                                                                 | 1.366                                         | 1245.9  |
|                    | Des-Arg            | 2.514  | 28.806                                                                                                                                                                 | 1.408                                         | 1231.7  |
|                    | Des-Gly            | 1.588  | 32.030                                                                                                                                                                 | 1.565                                         | 1281.3  |
|                    | Total              | 28.768 | -                                                                                                                                                                      | -                                             | -       |
| Epimers            |                    | 1.085  | 20.085                                                                                                                                                                 | 0.981                                         | 1309.8  |
| Else               | -                  | 4.851  | -                                                                                                                                                                      | -                                             | -       |

Table S13. Results for solid-phase synthesis of H-(12-31)-OH 3 in DMF.

Figure S17. Chromatogram of H-(12-31)-OH 3, solid-phase synthesis in DMF. All peaks between 6 and 46 minutes with Area  $\% \ge 0.5$  were considered.



Figure S18. Mass chromatogram for peak at 20.466 min, m/z obs = 1310.1.



Figure S19. Mass chromatogram for peak at 8.905 min, m/z obs = 997.5. Zoom on mass 997.5.



Figure S20. Mass chromatogram for peak at 9.909 min, m/z obs = 1062.2.







Figure S22. Mass chromatogram for peak at 20.258 min, m/z obs = 1253.2.



Figure S23. Mass chromatogram for peak at 15.179 min, m/z obs = 1236.3. Zoom on mass 1236.3.





Figure S24. Mass chromatogram for peak at 15.636 min, m/z obs = 1216.7. Zoom on mass 1216.7.

Figure S25. Mass chromatogram for peak at 16.100 min, m/z obs = 1274.1. Zoom on mass 1274.1.



Figure S26. Mass chromatogram for peak at 22.888 min, m/z obs = 1274.1.



**Figure S27.** Mass chromatogram for peak at 21.786 min, m/z obs = 1228.3 and 1245.3 and 1281.8. Zoom on masses 1228.3 and 1245.3 and 1281.8.





Figure S28. Mass chromatogram for peak at 27.949 min, m/z obs = 1245.9. Zoom on mass 1245.9.

Figure S29. Mass chromatogram for peak at 28.806 min, m/z obs = 1231.7.



Figure S30. Mass chromatogram for peak at 32.030 min, m/z obs = 1281.3.



Figure S31. Mass chromatogram for peak at 20.085 min, m/z obs = 1309.8.



#### Solid-phase synthesis of H-(12-31)-OH 3 in NOP/DMC (8:2), protocol modification A

The synthesis was performed on preloaded Fmoc-Gly-MBH resin (loading 0.5 mmol/g); steps were carried out at 25°C up to Glu<sup>21</sup> included, and 40°C from Ala<sup>19</sup> onwards, unless stated otherwise. After swelling the resin with NOP/DMC (8:2) (10 mL/g of resin, 30 minutes), the Fmoc protecting group was removed by treatment with a solution of piperidine 20% in NOP/DMC (8:2) (2 times x 5 mL/g of resin, 15 minutes each) and washed with NOP/DMC (8:2) (4 times x 5 mL/g of resin, 5 minutes each). Fmoc-Arg(Pbf)-OH and Oxyma Pure® (2.0 eq of each reagent with respect to the loading of the resin) were dissolved in NOP/DMC (8:2) (5 mL/g of resin) and pre-activated with DIC (2.0 eq with respect to the loading of the resin) for 3 minutes. The coupling mixture was added to the resin and stirred for 90 minutes, followed by washes with NOP/DMC (8:2) (3 times x 5 mL/g of resin, 5 minutes each). The steps of Fmoc-removal, washing and coupling were repeated until the target peptide sequence was achieved. For each coupling, the selected Fmoc-AAx-OH, Oxyma Pure® and DIC were employed; in some cases, the equivalents, duration of the coupling, double coupling and temperature were modified. For Arg<sup>28</sup>, Val<sup>27</sup>, Trp<sup>25</sup>, Ala<sup>24</sup>, Phe<sup>22</sup>, Ala<sup>19</sup>, and Gln<sup>17</sup> 3.0 eq of each reagent with respect to the loading of the resin were employed. For Leu<sup>26</sup>, Ile<sup>23</sup>, and Glu<sup>21</sup> the coupling time was shortened to 60 minutes and a double coupling was performed for 45 minutes. For Glu<sup>15</sup> a double coupling (1.0 eq of each reagent with respect to the loading of the resin) of 60 minutes was performed; while for Ser<sup>12</sup> the coupling time was shortened to 60 minutes and a double coupling (1.0 eq of each reagent with respect to the loading of the resin) of 45 minutes was added. For Lys(GluPal)<sup>20</sup> the coupling time was extended to 24 hours at 50°C. Details for each coupling step are summarized in Table S14. After the final coupling step, the resin was washed with NOP/DMC (8:2) (3 times x 5 mL/g of resin, 5 minutes each), DCM (3 times x 5 mL/g of resin, 5 minutes each), and dried under vacuum for 12 hours. For cleavage, the resin was added gradually to a solution of TFA/TIS/H<sub>2</sub>O/DTT 85.0/5.0/5.0 v/v/v/v % (10 mL/g of resin) at 10°C, the suspension was the stirred for 3 hours at room temperature. The resin was filtered, and disopropyl ether (30 mL/g of resin) was added to the filtered solution at 10°C under vigorous stirring. The precipitated peptide was filtered, washed with ether (3 times x 5 mL/g of resin), and dried under vacuum to obtain 3. The crude was analyzed via HPLC-MS using Method 2 (see Analytical details section reported above).

| Coupling | Amino acid                  | Eq  | Time (min) | T (°C) |
|----------|-----------------------------|-----|------------|--------|
| 30       | Fmoc-Arg(Pbf)-OH            | 2   | 90         | 25     |
| 29       | Fmoc-Gly-OH                 | 2   | 90         | 25     |
| 28       | Fmoc-Arg(Pbf)-OH            | 3   | 90         | 25     |
| 27       | Fmoc-Val-OH                 | 3   | 90         | 25     |
| 26       | Fmoc-Leu-OH                 | 2+2 | 60+45      | 25     |
| 25       | Fmoc-Trp(Boc)-OH            | 3   | 90         | 25     |
| 24       | Fmoc-Ala-OH                 | 3   | 90         | 25     |
| 23       | Fmoc-Ile-OH                 | 2+2 | 60+45      | 25     |
| 22       | Fmoc-Phe-OH                 | 3   | 90         | 25     |
| 21       | Fmoc-Glu(OtBu)-OH           | 2+2 | 60+45      | 25     |
| 20       | Fmoc-Lys(γ-Glu(OtBu)Pal)-OH | 2   | 24h        | 50     |
| 19       | Fmoc-Ala-OH                 | 3   | 90         | 40     |
| 18       | Fmoc-Ala-OH                 | 2   | 90         | 40     |
| 17       | Fmoc-Gln(Trt)-OH            | 3   | 90         | 40     |
| 16       | Fmoc-Gly-OH                 | 2   | 90         | 40     |
| 15       | Fmoc-Glu(OtBu)-OH           | 2+1 | 90+60      | 40     |
| 14       | Fmoc-Leu-OH                 | 2   | 90         | 40     |
| 13       | Fmoc-Tyr(tBu)-OH            | 2   | 90         | 40     |
| 12       | Fmoc-Ser(tBu)-OH            | 2+1 | 60+45      | 40     |

# Table S14. Synthetic steps for H-(12-31)-OH 3 in NOP/DMC (8:2), protocol modification A.

| Species            |                     | Area % | t <sub>R</sub> (min) | rrt                                        | m/z obs |
|--------------------|---------------------|--------|----------------------|--------------------------------------------|---------|
| Product            | Lira(12-31)         | 24.868 | 20.986               | 1                                          | 1310.1  |
|                    | +tBu                | 0.849  | 23.503               | 1.120                                      | 1337.4  |
|                    | Des-Glu-LysGluPal   | 1.431  | 8.990                | 0.428                                      | 997.7   |
|                    | Des-LysGluPal       | 0.877  | 10.009               | 0.477                                      | 1062.5  |
|                    | Des-Leu(Ile)        | 2.606  | 15.017               | 0.716                                      | 1253.3  |
|                    | Des-Phe             | 1.485  | 15.273               | 0.728                                      | 1236.4  |
|                    | Des-Gln-Phe         | 0.774  | 15.661               | 0.746                                      | 1172.2  |
|                    | Des-Tyr             | 1.816  | 21.906               | 1.044                                      | 1228.4  |
| Deletion sequences | Des-Glu             |        |                      |                                            | 1245.3  |
|                    | Des-Ala             | 2.277  | 25.250               | 1.203                                      | 1273.7  |
|                    | Des-Arg             | 7,191  | 29.210               | 1.044       1.203       1.392       36.948 | 1231.7  |
|                    | Des-Gln             |        |                      |                                            | 1246.2  |
|                    | Des-Arg-Arg         | 3.438  | 36.948               | 36.948                                     | 1153.7  |
|                    | Des-Gln-Lys(GluPal) | 2.281  | 42.199               | 2.011                                      | 998.8   |
|                    | Des-Gln-Ala         | 0.740  | 42.888               | 2.044                                      | 1210.1  |
|                    | Total               | 24.916 | -                    | -                                          | -       |
| N,O-shift          | Н-23-31-ОН          | 0.960  | 39.030               | 1.860                                      | 1027.3  |
| Else               | -                   | 48.406 | -                    | -                                          | -       |

Table S15. Results for solid-phase synthesis of H-(12-31)-OH 3 in NOP/DMC (8:2), protocol modification A.

Figure S32. Chromatogram of H-(12-31)-OH 3, solid-phase synthesis in NOP/DMC (8:2), protocol modification A. All peaks between 6 and 46 minutes with Area  $\% \ge 0.5$  were considered.


### Solid-phase synthesis of H-(12-31)-OH 3 in NOP/DMC (8:2), protocol modifications A and E

The synthesis was performed on preloaded Fmoc-Gly-MBH resin (loading 0.5 mmol/g); all steps were carried out at 40°C. After swelling the resin with NOP/DMC (8:2) (10 mL/g of resin, 240 minutes), the Fmoc protecting group was removed by treatment with a solution of piperidine 20% in NOP/DMC (8:2) (2 times x 5 mL/g of resin, 15 minutes each) and washed with NOP/DMC (8:2) (4 times x 5 mL/g of resin, 5 minutes each). Fmoc-Arg(Pbf)-OH and Oxyma Pure® (2.0 eq of each reagent with respect to the loading of the resin) were dissolved in NOP/DMC (8:2) (5 mL/g of resin) and pre-activated with DIC (2.0 eq with respect to the loading of the resin) for 3 minutes. The coupling mixture was added to the resin and stirred for 90 minutes, followed by washes with NOP/DMC (8:2) (3 times x 5 mL/g of resin, 5 minutes each). The steps of Fmoc-removal, washing and coupling were repeated until the target peptide sequence was achieved. For each coupling, the selected Fmoc-AAx-OH, Oxyma Pure® and DIC were employed; in some cases, the equivalents, duration of the coupling, and double coupling were modified. For Arg<sup>28</sup>, Val<sup>27</sup>, Trp<sup>25</sup>, Ala<sup>24</sup>, Phe<sup>22</sup>, Ala<sup>19</sup>, and Gln<sup>17</sup> 3.0 eq of each reagent with respect to the loading of the resin were employed. For Leu<sup>26</sup>, Ile<sup>23</sup>, and Glu<sup>21</sup> the coupling time was shortened to 60 minutes and a double coupling was performed for 45 minutes. For Glu<sup>15</sup> a double coupling (1.0 eq of each reagent with respect to the loading of the resin) of 60 minutes was performed; while for  $Ser^{12}$ the coupling time was shortened to 60 minutes and a double coupling (1.0 eq of each reagent with respect to the loading of the resin) of 45 minutes was added. For Lys(GluPal)<sup>20</sup> the coupling time was extended to 24 hours. Details for each coupling step are summarized in Table S16. After the final coupling step, the resin was washed with NOP/DMC (8:2) (3 times x 5 mL/g of resin, 5 min each), DCM (3 times x 5 mL/g of resin, 5 min each), and dried under vacuum for 12 hours. For cleavage, the resin was added gradually to a solution of TFA/TIS/H2O/DTT 85.0/5.0/5.0 v/v/v/v % (10 mL/g of resin) at 10°C, the suspension was then stirred for 3 hours at room temperature. The resin was filtered, and diisopropyl ether (30 mL/g of resin) was added to the filtered solution at 10°C under vigorous stirring. The precipitated peptide was filtered, washed with ether (3 times x 5 mL/g of resin), and dried under vacuum to obtain 3. The crude was analyzed via HPLC-MS using Method 2 (see Analytical details section reported above).

| Coupling | Amino acid                  | Eq  | Time (min) | T (°C) |
|----------|-----------------------------|-----|------------|--------|
| 30       | Fmoc-Arg(Pbf)-OH            | 2   | 90         | 40     |
| 29       | Fmoc-Gly-OH                 | 2   | 90         | 40     |
| 28       | Fmoc-Arg(Pbf)-OH            | 3   | 90         | 40     |
| 27       | Fmoc-Val-OH                 | 3   | 90         | 40     |
| 26       | Fmoc-Leu-OH                 | 2+2 | 60+45      | 40     |
| 25       | Fmoc-Trp(Boc)-OH            | 3   | 90         | 40     |
| 24       | Fmoc-Ala-OH                 | 3   | 90         | 40     |
| 23       | Fmoc-Ile-OH                 | 2+2 | 60+45      | 40     |
| 22       | Fmoc-Phe-OH                 | 3   | 90         | 40     |
| 21       | Fmoc-Glu(OtBu)-OH           | 2+2 | 60+45      | 40     |
| 20       | Fmoc-Lys(γ-Glu(OtBu)Pal)-OH | 2   | 24h        | 40     |
| 19       | Fmoc-Ala-OH                 | 3   | 90         | 40     |
| 18       | Fmoc-Ala-OH                 | 2   | 90         | 40     |
| 17       | Fmoc-Gln(Trt)-OH            | 3   | 90         | 40     |
| 16       | Fmoc-Gly-OH                 | 2   | 90         | 40     |
| 15       | Fmoc-Glu(OtBu)-OH           | 2+1 | 90+60      | 40     |
| 14       | Fmoc-Leu-OH                 | 2   | 90         | 40     |
| 13       | Fmoc-Tyr(tBu)-OH            | 2   | 90         | 40     |
| 12       | Fmoc-Ser(tBu)-OH            | 2+1 | 60+45      | 40     |

# Table S16. Synthetic steps for H-(12-31)-OH 3 in NOP/DMC (8:2), protocol modifications A and E.

| Spe                | cies              | Area % | $t_R(min)$ | rrt   | m/z obs |
|--------------------|-------------------|--------|------------|-------|---------|
| Product            | Н-(12-31)-ОН      | 53.349 | 20.358     | 1.000 | 1310.1  |
|                    | +tBu              | 0.557  | 23.281     | 1.144 | 1337.9  |
|                    | +Pbf              | 0.772  | 33.944     | 1.667 | 1435.7  |
|                    | Des-Glu-LysGluPal | 0.914  | 8.928      | 0.439 | 997.7   |
|                    | Des-Leu(Ile)      | 0.802  | 14.911     | 0.732 | 1253.3  |
|                    | Des-Phe           | 1.630  | 15.145     | 0.744 | 1236.6  |
|                    | Des-Ala           | 0.981  | 15.990     | 0.785 | 1274.6  |
|                    | Des-Tyr           |        | 21.829     |       | 1228.8  |
|                    | Des-Glu           | 1.573  |            | 1.072 | 1245.3  |
| Deletion sequences | Des-Gly           |        |            |       | 1281.2  |
| Deletion sequences | Des-Ala           | 4.691  | 22.817     | 1.121 | 1274.3  |
|                    |                   |        | 31.495     | 1.547 | 1274.1  |
|                    | Des-Gln           | 9.752  | 27.733     | 1.362 | 1246.2  |
|                    | Des-Arg           | 1.886  | 28.720     | 1.411 | 1231.8  |
|                    | Des-Gly-Arg       | 0.732  | 30.322     | 1.489 | 1203.2  |
|                    | Des-Gln-Arg       | 3.458  | 36.456     | 1.791 | 1167.9  |
|                    | Total             | 26.419 | -          | -     | -       |
| Epimers            | -                 | 0.844  | 19.943     | 0.980 | 1310.2  |
| Else               | -                 | 18.060 | -          | -     | -       |

Table S17. Results for solid-phase synthesis of H-(12-31)-OH 3 in NOP/DMC (8:2), protocol modifications A and E.

Figure S33. Chromatogram of H-(12-31)-OH 3, solid-phase synthesis in NOP/DMC (8:2), protocol modifications A and E. All peaks between 6 and 46 minutes with Area  $\% \ge 0.5$  were considered.



#### Solid-phase synthesis of H-(12-31)-OH 3 in DMSO/EtOAc (1:9), protocol modifications A and F

The synthesis was performed on preloaded Fmoc-Gly-MBH resin (loading 0.5 mmol/g); steps were carried out at 25°C up to Arg<sup>28</sup> included, and at 40°C from Val<sup>27</sup> onwards. After swelling the resin with DMSO/EtOAc (1:9) (10 mL/g of resin, 120 minutes), the Fmoc protecting group was removed by treatment with a solution of piperidine 20% in DMSO/EtOAc (1:9) (2 times x 5 mL/g of resin, 15 minutes each) and washed with DMSO/EtOAc (1:9) (4 times x 5 mL/g of resin, 5 minutes each). Fmoc-Arg(Pbf)-OH and Oxyma Pure® (2.0 eq of each reagent with respect to the loading of the resin) were dissolved in DMSO/EtOAc (1:9) (5 mL/g of resin) and pre-activated with DIC (2.0 eq with respect to the loading of the resin) for 3 minutes. The coupling mixture was added to the resin and stirred for 90 minutes, followed by washes with DMSO/EtOAc (1:9) (3 times x 5 mL/g of resin, 5 minutes each). The steps of Fmoc-removal, washing and coupling were repeated until the target peptide sequence was achieved. For each coupling, the selected Fmoc-AAx-OH, Oxyma Pure® and DIC were employed; in some cases, the equivalents, duration of the coupling, and double coupling were modified. For Ala<sup>24</sup>, Ala<sup>18</sup>, Gly<sup>16</sup>, Leu<sup>14</sup>, and Tyr<sup>13</sup> 3.0 eq of each reagent with respect to the loading of the resin were employed. For Arg<sup>28</sup>, Val<sup>27</sup>, Leu<sup>26</sup>, Trp<sup>25</sup>, Ile<sup>23</sup>, Phe<sup>22</sup>, Ala<sup>19</sup>, and Ser<sup>12</sup> the coupling time was shortened to 60 minutes and a double coupling was performed for 45 minutes. For Glu<sup>21</sup>, Gln<sup>17</sup>, and Glu<sup>15</sup> a double coupling of 60 minutes was performed. For Lys(GluPal)<sup>20</sup> the coupling time was extended to 8 hours, and the coupling was repeated twice. Details for each coupling step are summarized in Table S18. After the final coupling step, the resin was washed with DMSO/EtOAc (1:9) (3 times x 5 mL/g of resin, 5 minutes each), DCM (3 times x 5 mL/g of resin, 5 minutes each), and dried under vacuum for 12 hours. For cleavage, the resin was added gradually to a solution of TFA/TIS/H<sub>2</sub>O/DTT 85.0/5.0/5.0 v/v/v/v % (10 mL/g of resin) at 10°C, the suspension was then stirred for 3 hours at room temperature. The resin was filtered, and diisopropyl ether (30 mL/g of resin) was added dropwise to the filtered solution at 10°C under vigorous stirring. The precipitated peptide was filtered, washed with ether (3 times x 5 mL/g of resin), and dried under vacuum to obtain 3. The crude was analyzed via HPLC-MS using Method 2 (see Analytical details section reported above).

| Coupling | Amino acid                  | Eq  | Time (min) | T (°C) |
|----------|-----------------------------|-----|------------|--------|
| 30       | Fmoc-Arg(Pbf)-OH            | 2   | 90         | 25     |
| 29       | Fmoc-Gly-OH                 | 2   | 90         | 25     |
| 28       | Fmoc-Arg(Pbf)-OH            | 2+2 | 60+45      | 25     |
| 27       | Fmoc-Val-OH                 | 2+2 | 60+45      | 40     |
| 26       | Fmoc-Leu-OH                 | 2+2 | 60+45      | 40     |
| 25       | Fmoc-Trp(Boc)-OH            | 2+2 | 60+45      | 40     |
| 24       | Fmoc-Ala-OH                 | 3   | 90         | 40     |
| 23       | Fmoc-Ile-OH                 | 2+2 | 60+45      | 40     |
| 22       | Fmoc-Phe-OH                 | 2+2 | 60+45      | 40     |
| 21       | Fmoc-Glu(OtBu)-OH           | 2+2 | 90+60      | 40     |
| 20       | Fmoc-Lys(γ-Glu(OtBu)Pal)-OH | 2+2 | 8h+8h      | 40     |
| 19       | Fmoc-Ala-OH                 | 2+2 | 60+45      | 40     |
| 18       | Fmoc-Ala-OH                 | 3   | 90         | 40     |
| 17       | Fmoc-Gln(Trt)-OH            | 2+2 | 90+60      | 40     |
| 16       | Fmoc-Gly-OH                 | 3   | 90         | 40     |
| 15       | Fmoc-Glu(OtBu)-OH           | 2+2 | 90+60      | 40     |
| 14       | Fmoc-Leu-OH                 | 3   | 90         | 40     |
| 13       | Fmoc-Tyr(tBu)-OH            | 3   | 90         | 40     |
| 12       | Fmoc-Ser(tBu)-OH            | 2+2 | 60+45      | 40     |

| Spe                | cies              | t <sub>R</sub> (min) | rrt    | Area % | m/z obs |
|--------------------|-------------------|----------------------|--------|--------|---------|
| Product            | Н-(12-31)-ОН      | 63.020               | 21.241 | 1.000  | 1310.1  |
| 110 4000           | +Pbf              | 1.001                | 25.691 | 1.209  | 1435.6  |
|                    | Des-Glu-LysGluPal | 1.271                | 9.101  | 0.428  | 997.8   |
|                    | Des-LysGluPal     | 0.746                | 10.152 | 0.478  | 1062.2  |
|                    | Des-Leu(Ile)-Ala  | 1.139                | 15.008 | 0.707  | 1217.8  |
|                    | Des-Leu(Ile)      | 0.722                | 15.516 | 0.730  | 1253.4  |
|                    | Des-Trp           | 0.834                | 16.299 | 0.767  | 1217.8  |
|                    | Des-Ala           | 5.071                | 16.733 | 0.788  | 1274.3  |
|                    | 2001110           | 01071                | 23.721 | 1.117  | 1274.1  |
|                    | Des-Leu(Ile)      | 0.661                | 17.000 | 0.800  | 1253.2  |
| Deletion sequences | Des-Ser-Tyr       | 0.940                | 20.726 | 0.976  | 1184.3  |
| -                  | Des-Ser           | 0.621                | 22.113 | 1.041  | 1266.3  |
|                    | Des-Tyr           |                      |        |        | 1228.6  |
|                    | Des-Glu           | 2.587                | 22.663 | 1.067  | 1245.1  |
|                    | Des-Gly           |                      |        |        | 1281.3  |
|                    | Des-Gln           | 7.430                | 29.249 | 1.377  | 1245.7  |
|                    | Des-Arg           |                      |        |        | 1231.8  |
|                    | Des-Gly-Arg       | 0.861                | 30.954 | 1.457  | 1203.7  |
|                    | Des-Arg-Arg       | 1.181                | 37.127 | 1.748  | 1153.6  |
|                    | Total             | 24.065               | -      | -      | -       |
| Else               | -                 | 11.914               | -      | -      | -       |

**Table S19.** Chromatogram of H-(12-31)-OH **3**, solid-phase synthesis in DMSO/EtOAc (1:9), protocol modifications A and F. All peaks between 6 and 46 minutes with Area  $\% \ge 0.5$  were considered.

**Figure S34.** Chromatogram of H-(12-31)-OH **3**, solid-phase synthesis in DMSO/EtOAc (1:9), protocol modifications A and F. All peaks between 6 and 46 minutes with Area  $\% \ge 0.5$  were considered.



### Solid-phase synthesis of H-(12-31)-OH 3 in NBP/DMC (8:2), protocol modifications A and F

The synthesis was performed on preloaded Fmoc-Gly-MBH resin (loading 0.5 mmol/g); steps were carried out at 25°C up to Arg<sup>28</sup> included, and at 40°C from Val<sup>27</sup> onwards. After swelling the resin with NBP/DMC (8:2) (10 mL/g of resin, 240 minutes), the Fmoc protecting group was removed by treatment with a solution of piperidine 20% in NBP/DMC (8:2) (2 times x 5 mL/g of resin, 15 minutes each) and washed with NBP/DMC (8:2) (4 times x 5 mL/g of resin, 5 minutes each). Fmoc-Arg(Pbf)-OH and Oxyma Pure® (2.0 eq of each reagent with respect to the loading of the resin) were dissolved in NBP/DMC (8:2) (5 mL/g of resin) and pre-activated with DIC (2.0 eq with respect to the loading of the resin) for 3 minutes. The coupling mixture was added to the resin and stirred for 90 minutes, followed by washes with NBP/DMC (8:2) (3 times x 5 mL/g of resin, 5 minutes each). The steps of Fmoc-removal, washing and coupling were repeated until the target peptide sequence was achieved. For each coupling, the selected Fmoc-AAx-OH, Oxyma Pure® and DIC were employed; in some cases, the equivalents, duration of the coupling, and double coupling were modified. For Ala<sup>24</sup>, Ala<sup>18</sup>, Gly<sup>16</sup>, Leu<sup>14</sup>, and Tyr<sup>13</sup> 3.0 eq of each reagent with respect to the loading of the resin were employed. For Arg<sup>28</sup>, Val<sup>27</sup>, Leu<sup>26</sup>, Trp<sup>25</sup>, Ile<sup>23</sup>, Phe<sup>22</sup>, Ala<sup>19</sup>, and Ser<sup>12</sup> the coupling time was shortened to 60 minutes and a double coupling was performed for 45 minutes. For Glu<sup>21</sup>, Gln<sup>17</sup>, and Glu<sup>15</sup> a double coupling of 60 minutes was performed. For Lys(GluPal)<sup>20</sup> the coupling time was extended to 8 hours, and the coupling was repeated twice. Details for each coupling step are summarized in Table S20. After the final coupling step, the resin was washed with NBP/DMC (8:2) (3 times x 5 mL/g of resin, 5 minutes each), DCM (3 times x 5 mL/g of resin, 5 minutes each), and dried under vacuum for 12 hours. For cleavage, the resin was added gradually to a solution of TFA/TIS/H<sub>2</sub>O/DTT 85.0/5.0/5.0/ v/v/v/v % (10 mL/g of resin) at 10°C, the suspension was then stirred for 3 hours at room temperature. The resin was filtered, and diisopropyl ether (30 mL/g of resin) was added dropwise to the filtered solution at 10°C under vigorous stirring. The precipitated peptide was filtered, washed with ether (3 times x 5 mL/g of resin), and dried under vacuum to obtain 3. The crude was analyzed via HPLC-MS using Method 2 (see Analytical details section reported above).

| Coupling | Amino acid                  | Eq  | Time (min) | T (°C) |
|----------|-----------------------------|-----|------------|--------|
| 30       | Fmoc-Arg(Pbf)-OH            | 2   | 90         | 25     |
| 29       | Fmoc-Gly-OH                 | 2   | 90         | 25     |
| 28       | Fmoc-Arg(Pbf)-OH            | 2+2 | 60+45      | 25     |
| 27       | Fmoc-Val-OH                 | 2+2 | 60+45      | 40     |
| 26       | Fmoc-Leu-OH                 | 2+2 | 60+45      | 40     |
| 25       | Fmoc-Trp(Boc)-OH            | 2+2 | 60+45      | 40     |
| 24       | Fmoc-Ala-OH                 | 3   | 90         | 40     |
| 23       | Fmoc-Ile-OH                 | 2+2 | 60+45      | 40     |
| 22       | Fmoc-Phe-OH                 | 2+2 | 60+45      | 40     |
| 21       | Fmoc-Glu(OtBu)-OH           | 2+2 | 90+60      | 40     |
| 20       | Fmoc-Lys(γ-Glu(OtBu)Pal)-OH | 2+2 | 8h+8h      | 40     |
| 19       | Fmoc-Ala-OH                 | 2+2 | 60+45      | 40     |
| 18       | Fmoc-Ala-OH                 | 3   | 90         | 40     |
| 17       | Fmoc-Gln(Trt)-OH            | 2+2 | 90+60      | 40     |
| 16       | Fmoc-Gly-OH                 | 3   | 90         | 40     |
| 15       | Fmoc-Glu(OtBu)-OH           | 2+2 | 90+60      | 40     |
| 14       | Fmoc-Leu-OH                 | 3   | 90         | 40     |
| 13       | Fmoc-Tyr(tBu)-OH            | 3   | 90         | 40     |
| 12       | Fmoc-Ser(tBu)-OH            | 2+2 | 60+45      | 40     |

| Spe                | Species           |        | $t_{R}$ (min) | rrt   | m/z obs |
|--------------------|-------------------|--------|---------------|-------|---------|
| Product            | Н-(12-31)-ОН      | 69.056 | 21.624        | 1.000 | 1310.2  |
| Tioduct            | +Pbf              | 0.811  | 26.237        | 1.213 | 1435.8  |
|                    | Des-Glu-LysGluPal | 1.403  | 9.125         | 0.422 | 997.6   |
|                    | Des-Leu(Ile)-Ala  | 1.242  | 15.214        | 0.704 | 1217.6  |
|                    | Des-Leu(Ile)      | 0.871  | 15.716        | 0.727 | 1253.9  |
|                    | Des-Trp           | 0.828  | 16.489        | 0.763 | 1216.7  |
|                    | Des-Ala           | 5.057  | 16.931        | 0.783 | 1274.3  |
|                    |                   |        | 24.135        | 1.116 | 1274.3  |
|                    | Des-Leu(Ile)      | 0.827  | 17.183        | 0.795 | 1253.3  |
| Deletion sequences | Des-Tyr           |        |               |       | 1228.3  |
|                    | Des-Glu           | 2.957  | 23.088        | 1.068 | 1244.9  |
|                    | Des-Gly           |        |               |       | 1281.2  |
|                    | Des-Gln           | 1.367  | 29.309        | 1.355 | 1246.2  |
|                    | Des-Arg           | 6.475  | 29.863        | 1.381 | 1231.8  |
|                    | Des-Gly-Arg       | 0.865  | 31.460        | 1.455 | 1203.4  |
|                    | Des-Arg-Arg       | 1.265  | 37.465        | 1.733 | 1153.8  |
|                    | Total             | 23.157 | -             | -     | -       |
| Else               | -                 | 6.976  | -             | -     | -       |

Table S21. Results for solid-phase synthesis of H-(12-31)-OH 3 in NBP/DMC (8:2), protocol modifications A and F.

Figure S35. Chromatogram of H-(12-31)-OH 3, solid-phase synthesis in NBP/DMC (8:2), protocol modifications A and F. All peaks between 6 and 46 minutes with Area  $\% \ge 0.5$  were considered.



### Enzymatic coupling of fragments 2 and 3 to form Liraglutide 1

Fragment **3** (1.0 eq, 100.8 mg based on Assay) was dissolved in Tricine buffer 50mM (5 mL) at pH 8.5, the pH was then adjusted to 11.0 with KOH 3M, and the solution was left stirring until complete dissolution. In another flask, fragment **2** (2.0 eq, 113.4 mg based on Assay) was dissolved in tricine buffer 50mM (6 mL) at pH 8.5, then TCEP (25  $\mu$ L) was added to the solution of **2** and the mixture was stirred until complete dissolution. The solution of **3** was added to the solution of **2**, followed by the Liraligase enzyme (108  $\mu$ L, 1.25% w/w with respect to **3**). The mixture was stirred at room temperature keeping the pH at 8.0 for 24 hours. Reaction progress was monitored via HPLC-MS using Method 3 (see Analytical method section reported above).

Table S22. Results of the enzymatic coupling of peptide fragments 2 and 3 to form Liraglutide 1 after 24 hours.

| Species               | Peptide sequence                           | t <sub>R</sub> (min) | rrt   | m/z obs | Area % |
|-----------------------|--------------------------------------------|----------------------|-------|---------|--------|
| H-GFK-NH <sub>2</sub> | HO-CamFK-NH <sub>2</sub>                   | 4.114                | 0.344 | 351.2   | 27.05  |
| Н-(1-11)-ОН           | H-HAEGTFTSDVS-OH                           | 5.200                | 0.461 | 1150.4  | 31.49  |
| Liraglutide           | H-HAEGTFTSDVSSYLEGQAAK(EPal)EFIAWLVRGRG-OH | 12.141               | 1.000 | 1250.9  | 34.58  |
| Fragment 12-31        | H-SYLEGQAAK(EPal)EFIAWLVRGRG-OH            | 13.492               | 1.030 | 1310.2  | 6.88   |



Figure S36. Chromatogram of the enzymatic coupling of 2 and 3 to form Liraglutide 1 after 24 hours.

Figure S37. Mass chromatogram for peak at 4.114 min, m/z obs = 351.2.



Figure S38. Mass chromatogram for peak at 5.200 min, m/z obs = 1150.4.



Figure S39. Mass chromatogram for peak at 12.141 min, m/z obs = 1250.9.



Figure S40. Mass chromatogram for peak at 13.492 min, m/z obs = 1310.2.



## **PMI calculation for solid-phase synthesis**

Process Mass Intensity (PMI) is defined as the ratio between the total mass of materials employed for the synthesis and the mass of the isolated product, as follows:

$$PMI = \frac{\Sigma \text{ mass of materials}}{\text{mass of isolated product}}$$

In the solid-phase synthesis of peptide fragments 2 and 3, the materials employed for the synthesis include:

- Reagents employed for deprotection and coupling steps: amino acid residues (Fmoc-AAx(PG)-OH or Boc-AAx(PG)-OH), bromoacetic acid, Oxyma Pure, DIC, KI, DIPEA, piperidine
- Reagents and solvents employed for cleavage from the resin: TFA, TIS, DTT, H<sub>2</sub>O, DCM, DIPE
- Solvents employed throughout the synthesis for swelling, coupling, deprotection and washing steps

The contribution of reagents employed for the coupling steps depends on the protocol, which was optimized for each solvent and therefore both the solvent and chemicals vary for each PMI calculation. For cleavage, the contribution is constant for the same peptide fragment.

This calculation yields the total PMI for each peptide fragment **2** and **3**, which is highly dependent on chain length. The value of PMI/aa can also be calculated as follows:

$$PMI/aa = \frac{PMI}{number \ of \ amino \ acid \ residues}$$

The recovery of solvents and piperidine used for deprotection can be considered, and the PMI consequently adjusted to PMI after recovery (PMIr):

$$PMIr = \frac{\Sigma \text{ mass of materials} - \Sigma \text{ mass of recovered materials}}{\text{mass of isolated product}}$$

Same as above, the process mass intensity can be expressed independently of chain length, as PMIr/aa:

$$PMIr/aa = \frac{PMIr}{number of amino acid residues}$$

The process mass intensity values (PMI, PMI/aa, PMIr, PMIr/aa) for all syntheses of **2** and **3** described in the Experimental Section are calculated below. Piperidine recovery accounts for the formation of the DBF-piperidine adduct, which was subtracted from the recoverable volume. The values of molecular weight, density, and recovery of the green solvent mixtures are calculated as follows:

| Species          | MW (g/mol) | d (g/mL) | Recovery (%) |
|------------------|------------|----------|--------------|
| DMC              | 90.08      | 1.07     | 95           |
| DMSO             | 78.13      | 1.1004   | 70           |
| EtOAc            | 88.11      | 0.902    | 86           |
| NBP              | 141.21     | 0.958    | 85           |
| NOP              | 197.32     | 0.92     | 85           |
| Piperidine       | 85.15      | 0.862    | 95           |
| DMSO/EtOAc (1:9) | 87.11      | 0.92     | 73.2         |
| NBP/DMC (8:2)    | 130.98     | 0.9804   | 87           |
| NOP/DMC (8:2)    | 175.87     | 0.95     | 87           |
| NBP/EtOAc (8:2)  | 130.59     | 0.95     | 85.2         |

**Table S23.** Molecular weight, density, and recovery for green solvent mixtures and base used in solid-phase synthesis of 2 and 3.

### PMI calculation for solid-phase synthesis of 2

All calculations are reported on the same scale (1.0 g of resin, 0.62 mmol/g, 0.62 mmol); the amount of crude product was considered to be the same in all cases (0.673 g, yield = 73.25 %), based on the amount of product isolated in the solid-phase synthesis of **2** with DMF.

To allow for solvent and base recycling, the waste stream of deprotection steps (including the following washing steps) and coupling steps (including swelling and washing steps) were collected separately.

### PMI calculation for solid-phase synthesis of 2 in DMF

Below is the total mass of reagents and solvents employed for swelling, deprotection, coupling, washes, and final cleavage of the peptide from the resin in the protocol for the synthesis of **2** in DMF.

| Contribution | Species                      | MW      | d      | Ea   | n      | V     | М     | Ren | m <sub>tot</sub> |
|--------------|------------------------------|---------|--------|------|--------|-------|-------|-----|------------------|
|              |                              | (g/mol) | (g/mL) | 24   | (mmol) | (mL)  | (g)   | nop | (g)              |
| Resin        | Fmoc-Lys(Boc)-Rink Amide     |         |        | 1.0  | 0.62   |       | 1.00  |     | 1.00             |
| Deprotection | Piperidine                   | 85.15   | 0.862  |      |        | 24.00 | 20.69 |     | 20.69            |
| Coupling     | Fmoc-Phe-OH                  | 387.43  | 1.000  | 2.0  | 1.24   |       | 0.48  | 1   | 0.48             |
|              | BrAc                         | 138.95  | 1.000  | 2.0  | 1.24   |       | 0.17  | 1   | 0.17             |
|              | Fmoc-Ser(tBu)-OH             | 383.45  | 1.000  | 4.0  | 2.48   |       | 0.95  | 1   | 0.95             |
|              | Fmoc-Val-OH                  | 339.40  | 1.000  | 2.0  | 1.24   |       | 0.42  | 1   | 0.42             |
|              | Fmoc-Asp(tBu)-OH             | 411.45  | 1.000  | 2.0  | 1.24   |       | 0.51  | 1   | 0.51             |
|              | Fmoc-Ser(tBu)-OH             | 383.45  | 1.000  | 2.0  | 1.24   |       | 0.48  | 1   | 0.48             |
|              | Fmoc-Thr(tBu)-OH             | 397.43  | 1.000  | 2.0  | 1.24   |       | 0.49  | 1   | 0.49             |
|              | Fmoc-Phe-OH                  | 387.43  | 1.000  | 2.0  | 1.24   |       | 0.48  | 1   | 0.48             |
|              | Fmoc-Thr(tBu)-OH             | 397.43  | 1.000  | 2.0  | 1.24   |       | 0.49  | 1   | 0.49             |
|              | Fmoc-Gly-OH                  | 297.31  | 1.000  | 2.0  | 1.24   |       | 0.37  | 1   | 0.37             |
| l            | Fmoc-Glu(OtBu)-OH            | 425.49  | 1.000  | 2.0  | 1.24   |       | 0.53  | 1   | 0.53             |
|              | Fmoc-Ala-OH•H <sub>2</sub> O | 329.30  | 1.000  | 2.0  | 1.24   |       | 0.41  | 1   | 0.41             |
|              | Boc-His(Trt)-OH              | 497.58  | 1.000  | 2.0  | 1.24   |       | 0.62  | 1   | 0.62             |
| l            | Oxyma Pure                   | 142.11  | 1.000  | 22.1 | 13.70  |       | 1.95  |     | 1.95             |
|              | DIC                          | 126.20  | 0.815  | 24.0 | 14.88  |       | 1.88  |     | 1.88             |
|              | KI                           | 166.00  | 1.000  | 1.0  | 0.62   |       | 0.10  | 1   | 0.10             |
| l            | DIPEA                        | 129.25  | 0.742  | 4.0  | 2.48   |       | 0.32  | 1   | 0.32             |
| Cleavage     | TFA                          | 114.02  | 1.489  |      |        | 9.25  | 13.77 | 1   | 13.77            |
| l            | TIS                          | 158.36  | 0.773  |      | 1      | 0.50  | 0.39  | 1   | 0.39             |
|              | H <sub>2</sub> O             | 18.02   | 0.997  |      | 1      | 0.25  | 0.25  | 1   | 0.25             |
|              | DIPE                         | 102.17  | 0.725  |      |        | 45.00 | 32.63 | 1   | 32.63            |
|              | DCM                          | 84.93   | 1.325  |      | 1      | 5.00  | 6.63  | 3   | 19.88            |
| Total        | DMF                          |         | i.     |      | i.     |       |       |     | 572.06           |
| Total sum    |                              |         | 1      |      | 1      |       |       |     | 671.31           |

Table S24. Overview of all reagents and solvents used for the SPPS of 2 in DMF.

The PMI and PMI/aa can then be calculated as follows:

### PMI calculation for solid-phase synthesis of 2 in NOP/DMC (8:2)

The synthesis of 2 in NOP/DMC (8:2) was performed according to different protocols, which implies different amounts of reagents and solvents. The process mass intensity values were calculated separately for the different protocols. Below is the total mass of reagents and solvents employed for swelling, deprotection, coupling, washing steps and final cleavage of the peptide from the resin in the protocol for the synthesis of 2 in NOP/DMC (8:2) with protocol modification **A** or both modifications **A** and **B**.

**Table S25.** Overview of all reagents and solvents used for the SPPS of **2** in NOP/DMC (8:2), protocol modifications A or A and B.

| Contribution | Species                  | MW      | d      | Ea   | n      | V      | М     | Ren | m <sub>tot</sub> |
|--------------|--------------------------|---------|--------|------|--------|--------|-------|-----|------------------|
| Contribution | species                  | (g/mol) | (g/mL) | 24   | (mmol) | (mL)   | (g)   | nep | (g)              |
| Resin        | Fmoc-Lys(Boc)-Rink Amide |         |        | 1.0  | 0.62   |        | 1.00  |     | 1.00             |
| Deprotection | Piperidine               | 85.15   | 0.862  |      |        | 16.50  | 14.22 |     | 14.22            |
| Coupling     | Fmoc-Phe-OH              | 387.43  | 1.000  | 2.0  | 1.24   |        | 0.48  | 1   | 0.48             |
|              | BrAc                     | 138.95  | 1.000  | 2.0  | 1.24   |        | 0.17  | 1   | 0.17             |
|              | Fmoc-Ser(tBu)-OH         | 383.45  | 1.000  | 4.0  | 2.48   |        | 0.95  | 1   | 0.95             |
|              | Fmoc-Val-OH              | 339.40  | 1.000  | 2.0  | 1.24   |        | 0.42  | 1   | 0.42             |
|              | Fmoc-Asp(tBu)-OH         | 411.45  | 1.000  | 2.0  | 1.24   |        | 0.51  | 1   | 0.51             |
|              | Fmoc-Ser(tBu)-OH         | 383.45  | 1.000  | 2.0  | 1.24   |        | 0.48  | 1   | 0.48             |
|              | Fmoc-Thr(tBu)-OH         | 397.43  | 1.000  | 2.0  | 1.24   |        | 0.49  | 1   | 0.49             |
|              | Fmoc-Phe-OH              | 387.43  | 1.000  | 2.0  | 1.24   |        | 0.48  | 1   | 0.48             |
|              | Fmoc-Thr(tBu)-OH         | 397.43  | 1.000  | 2.0  | 1.24   |        | 0.49  | 1   | 0.49             |
|              | Fmoc-Gly-OH              | 297.31  | 1.000  | 2.0  | 1.24   |        | 0.37  | 1   | 0.37             |
|              | Fmoc-Glu(OtBu)-OH        | 425.49  | 1.000  | 2.0  | 1.24   |        | 0.53  | 1   | 0.53             |
|              | Fmoc-Ala-OH*H2O          | 329.30  | 1.000  | 2.0  | 1.24   |        | 0.41  | 1   | 0.41             |
|              | Boc-His(Trt)-OH          | 497.58  | 1.000  | 2.0  | 1.24   |        | 0.62  | 1   | 0.62             |
|              | Oxyma Pure               | 142.11  | 1.000  | 22.1 | 13.70  |        | 1.95  |     | 1.95             |
|              | DIC                      | 126.20  | 0.815  | 24.0 | 14.88  |        | 1.88  |     | 1.88             |
|              | KI                       | 166.00  | 1.000  | 1.0  | 0.62   |        | 0.10  | 1   | 0.10             |
|              | DIPEA                    | 129.25  | 0.742  | 4.0  | 2.48   |        | 0.32  | 1   | 0.32             |
| Cleavage     | TFA                      | 114.02  | 1.489  |      |        | 9.25   | 13.77 | 1   | 13.77            |
|              | TIS                      | 158.36  | 0.773  |      |        | 0.50   | 0.39  | 1   | 0.39             |
|              | H <sub>2</sub> O         | 18.02   | 0.997  |      |        | 0.25   | 0.25  | 1   | 0.25             |
|              | DIPE                     | 102.17  | 0.725  |      |        | 45.00  | 32.63 | 1   | 32.63            |
|              | DCM                      | 84.93   | 1.325  |      |        | 5.00   | 6.63  | 3   | 19.88            |
| Total        | NOP/DMC (8:2)            |         |        |      |        | 613.50 |       |     | 582.83           |
| Total sum    |                          |         |        |      |        |        |       |     | 675.60           |

The PMI and PMI/aa can then be calculated as follows:

$$PMI = \frac{\Sigma \text{ mass of materials}}{\text{mass of isolated product}} = \frac{675.60}{0.67} = 1004.13$$
$$PMI/aa = \frac{PMI}{\text{number of amino acid residues}} = \frac{1004.13}{14} = 71.72$$

The PMIr can be calculated to consider recycling of NOP/DMC (8:2) (recovery 87%) as follows:

$$PMIr = \frac{\Sigma \text{ mass of materials} - \Sigma \text{ mass of recovered materials}}{\text{mass of isolated product}} = \frac{126.18}{0.67} = 187.54$$
$$PMIr/aa = \frac{PMIr}{number \text{ of amino acid residues}} = \frac{187.54}{14} = 13.40$$

Since modification C introduced double couplings, a new value for process mass intensity must be calculated. Below is the total mass of reagents and solvents employed for swelling, deprotection, coupling, washing steps and final cleavage of the peptide from the resin in the protocol for the synthesis of 2 in NOP/DMC (8:2) with protocol modifications A, B, and C.

| Contribution | Species                      | MW      | d      | Ea   | n      | V      | М     | Ren | m <sub>tot</sub> |
|--------------|------------------------------|---------|--------|------|--------|--------|-------|-----|------------------|
| Contribution | Species                      | (g/mol) | (g/mL) | 24   | (mmol) | (mL)   | (g)   | nop | (g)              |
| Resin        | Fmoc-Lys(Boc)-Rink Amide     |         |        | 1.0  | 0.62   |        | 1.00  |     | 1.00             |
| Deprotection | Piperidine                   | 85.15   | 0.862  |      |        | 16.50  | 14.22 |     | 14.22            |
| Coupling     | Fmoc-Phe-OH                  | 387.43  | 1.000  | 2.0  | 1.24   |        | 0.48  | 2   | 0.96             |
|              | BrAc                         | 138.95  | 1.000  | 2.0  | 1.24   |        | 0.17  | 1   | 0.17             |
|              | Fmoc-Ser(tBu)-OH             | 383.45  | 1.000  | 4.0  | 2.48   |        | 0.95  | 1   | 0.95             |
|              | Fmoc-Val-OH                  | 339.40  | 1.000  | 2.0  | 1.24   |        | 0.42  | 2   | 0.84             |
|              | Fmoc-Asp(tBu)-OH             | 411.45  | 1.000  | 2.0  | 1.24   |        | 0.51  | 2   | 1.02             |
|              | Fmoc-Ser(tBu)-OH             | 383.45  | 1.000  | 2.0  | 1.24   |        | 0.48  | 2   | 0.95             |
|              | Fmoc-Thr(tBu)-OH             | 397.43  | 1.000  | 2.0  | 1.24   |        | 0.49  | 2   | 0.99             |
|              | Fmoc-Phe-OH                  | 387.43  | 1.000  | 2.0  | 1.24   |        | 0.48  | 2   | 0.96             |
|              | Fmoc-Thr(tBu)-OH             | 397.43  | 1.000  | 2.0  | 1.24   |        | 0.49  | 2   | 0.99             |
|              | Fmoc-Gly-OH                  | 297.31  | 1.000  | 2.0  | 1.24   |        | 0.37  | 2   | 0.74             |
|              | Fmoc-Glu(OtBu)-OH            | 425.49  | 1.000  | 2.0  | 1.24   |        | 0.53  | 2   | 1.06             |
|              | Fmoc-Ala-OH•H <sub>2</sub> O | 329.30  | 1.000  | 2.0  | 1.24   |        | 0.41  | 2   | 0.82             |
|              | Boc-His(Trt)-OH              | 497.58  | 1.000  | 2.0  | 1.24   |        | 0.62  | 2   | 1.23             |
|              | Oxyma Pure                   | 142.11  | 1.000  | 44.1 | 27.34  |        | 3.89  |     | 3.89             |
|              | DIC                          | 126.20  | 0.815  | 46.0 | 28.52  |        | 3.60  |     | 3.60             |
|              | KI                           | 166.00  | 1.000  | 1.0  | 0.62   |        | 0.10  | 1   | 0.10             |
|              | DIPEA                        | 129.25  | 0.742  | 4.0  | 2.48   |        | 0.32  | 1   | 0.32             |
| Cleavage     | TFA                          | 114.02  | 1.489  |      |        | 9.25   | 13.77 | 1   | 13.77            |
| l            | TIS                          | 158.36  | 0.773  |      |        | 0.50   | 0.39  | 1   | 0.39             |
| l            | H <sub>2</sub> O             | 18.02   | 0.997  |      |        | 0.25   | 0.25  | 1   | 0.25             |
|              | DIPE                         | 102.17  | 0.725  |      | i.     | 45.00  | 32.63 | 1   | 32.63            |
|              | DCM                          | 84.93   | 1.325  |      | i.     | 5.00   | 6.63  | 3   | 19.88            |
| Total        | NOP/DMC (8:2)                |         | i.     |      | i.     | 833.50 |       |     | 791.83           |
| Total sum    |                              |         |        |      |        |        |       |     | 893.54           |

Table S26. Overview of all reagents and solvents used for the SPPS of 2 in NOP/DMC (8:2), protocol modifications A, B, and C.

The PMI and PMI/aa can then be calculated as follows:

$$PMI = \frac{\Sigma \text{ mass of materials}}{\text{mass of isolated product}} = \frac{893.54}{0.67} = 1328.04$$

$$PMI/aa = \frac{PMI}{number of amino acid residues} = \frac{1328.04}{14} = 94.86$$

The PMIr can be calculated to consider recycling of NOP/DMC (8:2) (recovery 87%) as follows:

$$PMIr = \frac{\Sigma \text{ mass of materials} - \Sigma \text{ mass of recovered materials}}{\text{mass of isolated product}} = \frac{152.72}{0.67} = 226.98$$
$$PMIr/aa = \frac{PMIr}{number \text{ of amino acid residues}} = \frac{226.98}{14} = 16.21$$

## PMI calculation for solid-phase synthesis of 2 in DMSO/EtOAc (1:9)

Below is the total mass of reagents and solvents employed for swelling, deprotection, coupling, washing steps and final cleavage of the peptide from the resin in the protocol for the synthesis of **2** in DMSO/EtOAc (1:9) described above.

| Contribution | Species                      | MW      | d      | Ea   | n      | V      | М     | Ren | m <sub>tot</sub> |
|--------------|------------------------------|---------|--------|------|--------|--------|-------|-----|------------------|
| Contribution | Species                      | (g/mol) | (g/mL) | 24   | (mmol) | (mL)   | (g)   | nop | (g)              |
| Resin        | Fmoc-Lys(Boc)-Rink Amide     |         |        | 1.0  | 0.62   |        | 1.00  |     | 1.00             |
| Deprotection | Piperidine                   | 85.15   | 0.862  |      |        | 16.50  | 14.22 |     | 14.22            |
| Coupling     | Fmoc-Phe-OH                  | 387.43  | 1.000  | 2.0  | 1.24   |        | 0.48  | 1   | 0.48             |
|              | BrAc                         | 138.95  | 1.000  | 2.0  | 1.24   |        | 0.17  | 1   | 0.17             |
|              | Fmoc-Ser(tBu)-OH             | 383.45  | 1.000  | 4.0  | 2.48   |        | 0.95  | 1   | 0.95             |
|              | Fmoc-Val-OH                  | 339.40  | 1.000  | 2.0  | 1.24   |        | 0.42  | 1   | 0.42             |
|              | Fmoc-Asp(tBu)-OH             | 411.45  | 1.000  | 2.0  | 1.24   |        | 0.51  | 1   | 0.51             |
|              | Fmoc-Ser(tBu)-OH             | 383.45  | 1.000  | 2.0  | 1.24   |        | 0.48  | 1   | 0.48             |
|              | Fmoc-Thr(tBu)-OH             | 397.43  | 1.000  | 2.0  | 1.24   |        | 0.49  | 1   | 0.49             |
|              | Fmoc-Phe-OH                  | 387.43  | 1.000  | 2.0  | 1.24   |        | 0.48  | 1   | 0.48             |
|              | Fmoc-Thr(tBu)-OH             | 397.43  | 1.000  | 2.0  | 1.24   |        | 0.49  | 1   | 0.49             |
|              | Fmoc-Gly-OH                  | 297.31  | 1.000  | 2.0  | 1.24   |        | 0.37  | 1   | 0.37             |
|              | Fmoc-Glu(OtBu)-OH            | 425.49  | 1.000  | 2.0  | 1.24   |        | 0.53  | 1   | 0.53             |
|              | Fmoc-Ala-OH•H <sub>2</sub> O | 329.30  | 1.000  | 2.0  | 1.24   |        | 0.41  | 1   | 0.41             |
|              | Boc-His(Trt)-OH              | 497.58  | 1.000  | 2.0  | 1.24   |        | 0.62  | 1   | 0.62             |
|              | Oxyma Pure                   | 142.11  | 1.000  | 22.1 | 13.70  |        | 1.95  |     | 1.95             |
|              | DIC                          | 126.20  | 0.815  | 24.0 | 14.88  |        | 1.88  |     | 1.88             |
|              | KI                           | 166.00  | 1.000  | 1.0  | 0.62   |        | 0.10  | 1   | 0.10             |
|              | DIPEA                        | 129.25  | 0.742  | 4.0  | 2.48   |        | 0.32  | 1   | 0.32             |
| Cleavage     | TFA                          | 114.02  | 1.489  |      |        | 9.25   | 13.77 | 1   | 13.77            |
|              | TIS                          | 158.36  | 0.773  |      |        | 0.50   | 0.39  | 1   | 0.39             |
|              | H <sub>2</sub> O             | 18.02   | 0.997  |      |        | 0.25   | 0.25  | 1   | 0.25             |
|              | DIPE                         | 102.17  | 0.725  |      |        | 45.00  | 32.63 | 1   | 32.63            |
|              | DCM                          | 84.93   | 1.325  |      | i.     | 5.00   | 6.63  | 3   | 19.88            |
| Total        | DMSO/EtOAc (1:9)             |         | Î.     |      | Î.     | 613.50 |       |     | 565.55           |
| Total sum    |                              |         | 1      |      | 1      |        |       |     | 658.33           |

| Table | S27. | Overview | v of all | reagents | and solv | vents used | l for the | SPPS | of <b>2</b> i | in DMS | SO/EtO/ | Ac (1 | 1:9). | • |
|-------|------|----------|----------|----------|----------|------------|-----------|------|---------------|--------|---------|-------|-------|---|
|       |      |          |          | <u> </u> |          |            |           |      |               |        |         | · · · |       |   |

The PMI and PMI/residue can then be calculated as follows:

$$PMI = \frac{\Sigma \text{ mass of materials}}{\text{mass of isolated product}} = \frac{658.33}{0.67} = 978.46$$

$$PMI/residue = \frac{PMI}{number of amino acid residues} = \frac{978.46}{14} = 69.89$$

The PMIr can be calculated to consider recycling of DMSO/EtOAc (1:9) (recovery 73.2%) as follows:

$$PMIr = \frac{\Sigma \text{ mass of materials} - \Sigma \text{ mass of recovered materials}}{\text{mass of isolated product}} = \frac{193.57}{0.67} = 287.70$$
$$PMIr/residue = \frac{PMIr}{number \text{ of amino acid residues}} = \frac{287.70}{14} = 20.55$$

### PMI calculation for solid-phase synthesis of 2 in NBP/EtOAc (8:2)

Below is the total mass of reagents and solvents employed for swelling, deprotection, coupling, washing steps and final cleavage of the peptide from the resin in the protocol for the synthesis of **2** in NBP/EtOAc (8:2) described above. The molecular weight and density of the green solvent mixture are calculated as well.

| Contribution | Species                      | MW      | d      | Ea   | n      | V      | М     | Rep | m <sub>tot</sub> |
|--------------|------------------------------|---------|--------|------|--------|--------|-------|-----|------------------|
|              |                              | (g/mol) | (g/mL) | 24   | (mmol) | (mL)   | (g)   | mp  | (g)              |
| Resin        | Fmoc-Lys(Boc)-Rink Amide     |         |        | 1.0  | 0.62   |        | 1.00  |     | 1.00             |
| Deprotection | Piperidine                   | 85.15   | 0.862  |      |        | 16.50  | 14.22 |     | 14.22            |
| Coupling     | Fmoc-Phe-OH                  | 387.43  | 1.000  | 2.0  | 1.24   |        | 0.48  | 1   | 0.48             |
|              | BrAc                         | 138.95  | 1.000  | 2.0  | 1.24   |        | 0.17  | 1   | 0.17             |
|              | Fmoc-Ser(tBu)-OH             | 383.45  | 1.000  | 4.0  | 2.48   |        | 0.95  | 1   | 0.95             |
|              | Fmoc-Val-OH                  | 339.40  | 1.000  | 2.0  | 1.24   |        | 0.42  | 1   | 0.42             |
|              | Fmoc-Asp(tBu)-OH             | 411.45  | 1.000  | 2.0  | 1.24   |        | 0.51  | 1   | 0.51             |
|              | Fmoc-Ser(tBu)-OH             | 383.45  | 1.000  | 2.0  | 1.24   |        | 0.48  | 1   | 0.48             |
|              | Fmoc-Thr(tBu)-OH             | 397.43  | 1.000  | 2.0  | 1.24   |        | 0.49  | 1   | 0.49             |
|              | Fmoc-Phe-OH                  | 387.43  | 1.000  | 2.0  | 1.24   |        | 0.48  | 1   | 0.48             |
|              | Fmoc-Thr(tBu)-OH             | 397.43  | 1.000  | 2.0  | 1.24   |        | 0.49  | 1   | 0.49             |
|              | Fmoc-Gly-OH                  | 297.31  | 1.000  | 2.0  | 1.24   |        | 0.37  | 1   | 0.37             |
|              | Fmoc-Glu(OtBu)-OH            | 425.49  | 1.000  | 2.0  | 1.24   |        | 0.53  | 1   | 0.53             |
|              | Fmoc-Ala-OH•H <sub>2</sub> O | 329.30  | 1.000  | 2.0  | 1.24   |        | 0.41  | 1   | 0.41             |
|              | Boc-His(Trt)-OH              | 497.58  | 1.000  | 2.0  | 1.24   |        | 0.62  | 1   | 0.62             |
|              | Oxyma Pure                   | 142.11  | 1.000  | 22.1 | 13.70  |        | 1.95  |     | 1.95             |
|              | DIC                          | 126.20  | 0.815  | 24.0 | 14.88  |        | 1.88  |     | 1.88             |
|              | KI                           | 166.00  | 1.000  | 1.0  | 0.62   |        | 0.10  | 1   | 0.10             |
|              | DIPEA                        | 129.25  | 0.742  | 4.0  | 2.48   |        | 0.32  | 1   | 0.32             |
| Cleavage     | TFA                          | 114.02  | 1.489  |      |        | 9.25   | 13.77 | 1   | 13.77            |
|              | TIS                          | 158.36  | 0.773  |      |        | 0.50   | 0.39  | 1   | 0.39             |
|              | H <sub>2</sub> O             | 18.02   | 0.997  |      |        | 0.25   | 0.25  | 1   | 0.25             |
|              | DIPE                         | 102.17  | 0.725  |      |        | 45.00  | 32.63 | 1   | 32.63            |
|              | DCM                          | 84.93   | 1.325  |      |        | 5.00   | 6.63  | 3   | 19.88            |
| Total        | NBP/EtOAc (8:2)              |         |        |      |        | 613.50 |       |     | 580.86           |
| Total sum    |                              |         |        |      |        |        |       |     | 673.64           |

| Table S28. Overview of all reagents and solvents used for the SPPS of 2 in NBP/EtOAc (8:2) | ). |
|--------------------------------------------------------------------------------------------|----|
|--------------------------------------------------------------------------------------------|----|

The PMI and PMI/residue can then be calculated as follows:

$$PMI = \frac{\Sigma \text{ mass of materials}}{\text{mass of isolated product}} = \frac{673.64}{0.67} = 1001.22$$

$$PMI/residue = \frac{PMI}{number of amino acid residues} = \frac{1001.22}{14} = 71.52$$

The PMIr can be calculated to consider recycling of NBP/EtOAc (8:2) (recovery 85.2%) as follows:

$$PMIr = \frac{\Sigma \text{ mass of materials} - \Sigma \text{ mass of recovered materials}}{\text{mass of isolated product}} = \frac{135.26}{0.67} = 201.04$$
$$PMIr/residue = \frac{PMIr}{number \text{ of amino acid residues}} = \frac{201.04}{14} = 14.36$$

### PMI calculation for solid-phase synthesis of 2 in NBP/DMC (8:2)

Below is the total mass of reagents and solvents employed for swelling, deprotection, coupling, washing steps and final cleavage of the peptide from the resin in the protocol for the synthesis of **2** in NBP/DMC (8:2) described above.

| Contribution | Species                      | MW      | d      | Ea   | n      | V      | М     | Ren | m <sub>tot</sub> |
|--------------|------------------------------|---------|--------|------|--------|--------|-------|-----|------------------|
| Contribution | species                      | (g/mol) | (g/mL) | 24   | (mmol) | (mL)   | (g)   | nop | (g)              |
| Resin        | Fmoc-Lys(Boc)-Rink Amide     |         |        | 1.0  | 0.62   |        | 1.00  |     | 1.00             |
| Deprotection | Piperidine                   | 85.15   | 0.862  |      |        | 16.50  | 14.22 |     | 14.22            |
| Coupling     | Fmoc-Phe-OH                  | 387.43  | 1.000  | 2.0  | 1.24   |        | 0.48  | 1   | 0.48             |
|              | BrAc                         | 138.95  | 1.000  | 2.0  | 1.24   |        | 0.17  | 1   | 0.17             |
|              | Fmoc-Ser(tBu)-OH             | 383.45  | 1.000  | 4.0  | 2.48   |        | 0.95  | 1   | 0.95             |
|              | Fmoc-Val-OH                  | 339.40  | 1.000  | 2.0  | 1.24   |        | 0.42  | 1   | 0.42             |
|              | Fmoc-Asp(tBu)-OH             | 411.45  | 1.000  | 2.0  | 1.24   |        | 0.51  | 1   | 0.51             |
|              | Fmoc-Ser(tBu)-OH             | 383.45  | 1.000  | 2.0  | 1.24   |        | 0.48  | 1   | 0.48             |
|              | Fmoc-Thr(tBu)-OH             | 397.43  | 1.000  | 2.0  | 1.24   |        | 0.49  | 1   | 0.49             |
|              | Fmoc-Phe-OH                  | 387.43  | 1.000  | 2.0  | 1.24   |        | 0.48  | 1   | 0.48             |
|              | Fmoc-Thr(tBu)-OH             | 397.43  | 1.000  | 2.0  | 1.24   |        | 0.49  | 1   | 0.49             |
|              | Fmoc-Gly-OH                  | 297.31  | 1.000  | 2.0  | 1.24   |        | 0.37  | 1   | 0.37             |
|              | Fmoc-Glu(OtBu)-OH            | 425.49  | 1.000  | 2.0  | 1.24   |        | 0.53  | 1   | 0.53             |
|              | Fmoc-Ala-OH•H <sub>2</sub> O | 329.30  | 1.000  | 2.0  | 1.24   |        | 0.41  | 1   | 0.41             |
|              | Boc-His(Trt)-OH              | 497.58  | 1.000  | 2.0  | 1.24   |        | 0.62  | 1   | 0.62             |
|              | Oxyma Pure                   | 142.11  | 1.000  | 22.1 | 13.70  |        | 1.95  |     | 1.95             |
|              | DIC                          | 126.20  | 0.815  | 24.0 | 14.88  |        | 1.88  |     | 1.88             |
|              | KI                           | 166.00  | 1.000  | 1.0  | 0.62   |        | 0.10  | 1   | 0.10             |
|              | DIPEA                        | 129.25  | 0.742  | 4.0  | 2.48   |        | 0.32  | 1   | 0.32             |
| Cleavage     | TFA                          | 114.02  | 1.489  |      |        | 9.25   | 13.77 | 1   | 13.77            |
|              | TIS                          | 158.36  | 0.773  |      |        | 0.50   | 0.39  | 1   | 0.39             |
|              | H <sub>2</sub> O             | 18.02   | 0.997  |      |        | 0.25   | 0.25  | 1   | 0.25             |
|              | DIPE                         | 102.17  | 0.725  |      |        | 45.00  | 32.63 | 1   | 32.63            |
|              | DCM                          | 84.93   | 1.325  |      |        | 5.00   | 6.63  | 3   | 19.88            |
| Total        | NBP/DMC (8:2)                |         |        |      |        | 613.50 |       |     | 601.48           |
| Total sum    |                              |         |        |      |        |        |       |     | 694.25           |

Table S29. Overview of all reagents and solvents used for the SPPS of 2 in NBP/DMC (8:2).

The PMI and PMI/aa can then be calculated as follows:

$$PMI = \frac{\Sigma \text{ mass of materials}}{\text{mass of isolated product}} = \frac{694.25}{0.67} = 1031.85$$

$$PMI/aa = \frac{PMI}{number of amino acid residues} = \frac{1031.85}{14} = 73.70$$

The PMIr can be calculated to consider recycling of NBP/DMC (8:2) (recovery 87%) as follows:

$$PMIr = \frac{\Sigma \text{ mass of materials} - \Sigma \text{ mass of recovered materials}}{\text{mass of isolated product}} = \frac{144.83}{0.67} = 215.26$$
$$PMIr/aa = \frac{PMIr}{\text{number of amino acid residues}} = \frac{215.26}{14} = 15.38$$

### PMI calculation for solid-phase synthesis of 3

All calculations are reported on the same scale (1.0 g of resin, 0.5 mmol/g, 0.5 mmol); the amount of crude product was considered to be the same in all cases (0.316 g, yield = 63.19 %), based on the amount of product isolated in the solid-phase synthesis of **3** with DMF.

To allow for solvent and base recycling, the waste stream of deprotection steps (including the following washing steps) and coupling steps (including swelling and washing steps) were collected separately.

## PMI calculation for solid-phase synthesis of 3 in DMF

Below is the total mass of reagents and solvents employed for swelling, deprotection, coupling, washes, and final cleavage of the peptide from the resin in the protocol for the synthesis of **3** in DMF described above.

| Contribution | Species             | MW      | d      | Ea   | n      | V     | М     | Rep | m <sub>tot</sub> |
|--------------|---------------------|---------|--------|------|--------|-------|-------|-----|------------------|
| Conuio anon  | Species             | (g/mol) | (g/mL) |      | (mmol) | (mL)  | (g)   | mp  | (g)              |
| Resin        | Fmoc-Gly-MBH resin  |         |        | 1.0  | 0.50   |       | 1.00  |     | 1.00             |
| Deprotection | Piperidine          | 85.15   | 0.862  |      |        | 40.00 | 34.48 |     | 34.48            |
| Coupling     | Fmoc-Arg(Pbf)-OH    | 648.77  | 1.000  | 2.0  | 1.00   |       | 0.65  | 1   | 0.65             |
|              | Fmoc-Gly-OH         | 297.32  | 1.000  | 2.0  | 1.00   |       | 0.30  | 1   | 0.30             |
|              | Fmoc-Arg(Pbf)-OH    | 648.77  | 1.000  | 3.0  | 1.50   |       | 0.97  | 1   | 0.97             |
|              | Fmoc-Val-OH         | 339.39  | 1.000  | 3.0  | 1.50   |       | 0.51  | 1   | 0.51             |
|              | Fmoc-Leu-OH         | 353.41  | 1.000  | 2.0  | 1.00   |       | 0.35  | 2   | 0.71             |
|              | Fmoc-Trp(Boc)-OH    | 426.46  | 1.000  | 3.0  | 1.50   |       | 0.64  | 1   | 0.64             |
|              | Fmoc-Ala-OH•H2O     | 329.34  | 1.000  | 3.0  | 1.50   |       | 0.49  | 1   | 0.49             |
|              | Fmoc-Ile-OH         | 353.41  | 1.000  | 2.0  | 1.00   |       | 0.35  | 2   | 0.71             |
|              | Fmoc-Phe-OH         | 387.43  | 1.000  | 3.0  | 1.50   |       | 0.58  | 1   | 0.58             |
|              | Fmoc-Glu(OtBu)-OH   | 425.47  | 1.000  | 2.0  | 1.00   |       | 0.43  | 2   | 0.85             |
|              | Fmoc-Lys(GluPal)-OH | 792.06  | 1.000  | 2.0  | 1.00   |       | 0.79  | 1   | 0.79             |
|              | Fmoc-Ala-OH•H2O     | 329.34  | 1.000  | 3.0  | 1.50   |       | 0.49  | 1   | 0.49             |
|              | Fmoc-Ala-OH•H2O     | 329.34  | 1.000  | 2.0  | 1.00   |       | 0.33  | 1   | 0.33             |
|              | Fmoc-Gln(Trt)-OH    | 610.70  | 1.000  | 3.0  | 1.50   |       | 0.92  | 1   | 0.92             |
|              | Fmoc-Gly-OH         | 297.32  | 1.000  | 2.0  | 1.00   |       | 0.30  | 1   | 0.30             |
|              | Fmoc-Glu(OtBu)-OH   | 425.47  | 1.000  | 2.0  | 1.00   |       | 0.43  | 1.5 | 0.64             |
|              | Fmoc-Leu-OH         | 353.41  | 1.000  | 2.0  | 1.00   |       | 0.35  | 1   | 0.35             |
|              | Fmoc-Tyr(tBu)-OH    | 459.53  | 1.000  | 2.0  | 1.00   |       | 0.46  | 1   | 0.46             |
|              | Fmoc-Ser(tBu)-OH    | 383.44  | 1.000  | 2.0  | 1.00   |       | 0.38  | 1.5 | 0.58             |
|              | Oxyma Pure          | 142.11  | 1.000  | 53.0 | 26.50  |       | 3.77  |     | 3.77             |
|              | DIC                 | 126.20  | 0.815  | 53.0 | 26.50  |       | 3.34  |     | 3.34             |
| Cleavage     | TFA                 | 114.02  | 1.489  |      | 1      | 8.50  | 12.66 | 1   | 12.66            |
|              | TIS                 | 158.36  | 0.773  |      |        | 0.50  | 0.39  | 1   | 0.39             |
|              | H <sub>2</sub> O    | 18.02   | 0.997  |      |        | 0.50  | 0.50  | 1   | 0.50             |
|              | DTT                 | 154.25  | 1.000  |      | l.     | 0.50  | 0.50  | 1   | 0.50             |
|              | DIPE                | 102.17  | 0.725  |      | 1      | 45.00 | 32.63 | 1   | 32.63            |
|              | DCM                 | 84.93   | 1.325  |      | Î.     | 5.00  | 6.63  | 3   | 19.88            |
| Total        | DMF                 |         |        |      |        |       |       |     | 991.20           |
| Total sum    |                     |         |        |      |        |       |       |     | 1111.59          |

Table S30. Overview of all reagents and solvents used for the SPPS of 3 in DMF.

The PMI and PMI/residue can then be calculated as follows:

$$PMI = \frac{\Sigma \text{ mass of materials}}{\text{mass of isolated product}} = \frac{1111.59}{0.83} = 1344.28$$
$$PMI/residue = \frac{PMI}{\text{number of amino acid residues}} = \frac{1344.28}{20} = 67.21$$

## PMI calculation for solid-phase synthesis of 3 in NOP/DMC (8:2)

Below is the total mass of reagents and solvents employed for swelling, deprotection, coupling, washing steps and final cleavage of the peptide from the resin in the protocol for the synthesis of **3** in NOP/DMC (8:2) described above.

| Contribution | Species             | MW      | d      | Ea   | n      | V       | М     | Rep | m <sub>tot</sub> |
|--------------|---------------------|---------|--------|------|--------|---------|-------|-----|------------------|
| Conuio Mion  | Species             | (g/mol) | (g/mL) | 24   | (mmol) | (mL)    | (g)   | mp  | (g)              |
| Resin        | Fmoc-Gly-MBH resin  |         |        | 1.0  | 0.50   |         | 1.00  |     | 1.00             |
| Deprotection | Piperidine          | 85.15   | 0.862  |      |        | 40.00   | 34.48 |     | 34.48            |
| Coupling     | Fmoc-Arg(Pbf)-OH    | 648.77  | 1.000  | 2.0  | 1.00   |         | 0.65  | 1   | 0.65             |
|              | Fmoc-Gly-OH         | 297.32  | 1.000  | 2.0  | 1.00   |         | 0.30  | 1   | 0.30             |
|              | Fmoc-Arg(Pbf)-OH    | 648.77  | 1.000  | 3.0  | 1.50   |         | 0.97  | 1   | 0.97             |
|              | Fmoc-Val-OH         | 339.39  | 1.000  | 3.0  | 1.50   |         | 0.51  | 1   | 0.51             |
|              | Fmoc-Leu-OH         | 353.41  | 1.000  | 2.0  | 1.00   |         | 0.35  | 2   | 0.71             |
|              | Fmoc-Trp(Boc)-OH    | 426.46  | 1.000  | 3.0  | 1.50   |         | 0.64  | 1   | 0.64             |
|              | Fmoc-Ala-OH•H2O     | 329.34  | 1.000  | 3.0  | 1.50   |         | 0.49  | 1   | 0.49             |
|              | Fmoc-Ile-OH         | 353.41  | 1.000  | 2.0  | 1.00   |         | 0.35  | 2   | 0.71             |
|              | Fmoc-Phe-OH         | 387.43  | 1.000  | 3.0  | 1.50   |         | 0.58  | 1   | 0.58             |
|              | Fmoc-Glu(OtBu)-OH   | 425.47  | 1.000  | 2.0  | 1.00   |         | 0.43  | 2   | 0.85             |
|              | Fmoc-Lys(GluPal)-OH | 792.06  | 1.000  | 2.0  | 1.00   |         | 0.79  | 1   | 0.79             |
|              | Fmoc-Ala-OH•H2O     | 329.34  | 1.000  | 3.0  | 1.50   |         | 0.49  | 1   | 0.49             |
|              | Fmoc-Ala-OH•H2O     | 329.34  | 1.000  | 2.0  | 1.00   |         | 0.33  | 1   | 0.33             |
|              | Fmoc-Gln(Trt)-OH    | 610.70  | 1.000  | 3.0  | 1.50   |         | 0.92  | 1   | 0.92             |
|              | Fmoc-Gly-OH         | 297.32  | 1.000  | 2.0  | 1.00   |         | 0.30  | 1   | 0.30             |
|              | Fmoc-Glu(OtBu)-OH   | 425.47  | 1.000  | 2.0  | 1.00   |         | 0.43  | 1.5 | 0.64             |
|              | Fmoc-Leu-OH         | 353.41  | 1.000  | 2.0  | 1.00   |         | 0.35  | 1   | 0.35             |
|              | Fmoc-Tyr(tBu)-OH    | 459.53  | 1.000  | 2.0  | 1.00   |         | 0.46  | 1   | 0.46             |
|              | Fmoc-Ser(tBu)-OH    | 383.44  | 1.000  | 2.0  | 1.00   |         | 0.38  | 1.5 | 0.58             |
|              | Oxyma Pure          | 142.11  | 1.000  | 53.0 | 26.50  |         | 3.77  |     | 3.77             |
|              | DIC                 | 126.20  | 0.815  | 53.0 | 26.50  |         | 3.34  |     | 3.34             |
| Cleavage     | TFA                 | 114.02  | 1.489  |      | 1      | 8.50    | 12.66 | 1   | 12.66            |
|              | TIS                 | 158.36  | 0.773  |      |        | 0.50    | 0.39  | 1   | 0.39             |
|              | H <sub>2</sub> O    | 18.02   | 0.997  |      |        | 0.50    | 0.50  | 1   | 0.50             |
|              | DTT                 | 154.25  | 1.000  |      |        | 0.50    | 0.50  | 1   | 0.50             |
|              | DIPE                | 102.17  | 0.725  |      |        | 45.00   | 32.63 | 1   | 32.63            |
|              | DCM                 | 84.93   | 1.325  |      |        | 5.00    | 6.63  | 3   | 19.88            |
| Total        | NOP/DMC (8:2)       |         |        |      |        | 1050.00 |       |     | 997.50           |
| Total sum    |                     |         |        |      |        |         |       |     | 1117.89          |

Table S31. Overview of all reagents and solvents used for the SPPS of 3 in NOP/DMC (8:2).

The PMI and PMI/residue can then be calculated as follows:

$$PMI = \frac{\Sigma \text{ mass of materials}}{\text{mass of isolated product}} = \frac{1117.89}{0.83} = 1351.90$$

$$PMI/residue = \frac{PMI}{number of amino acid residues} = \frac{1351.90}{20} = 67.60$$

The PMIr can be calculated to consider recycling of NOP/DMC (8:2) (recovery 87%) as follows:

$$PMIr = \frac{\Sigma \text{ mass of materials} - \Sigma \text{ mass of recovered materials}}{\text{mass of isolated product}} = \frac{166.39}{0.83} = 201.23$$

$$PMIr \qquad 226.98$$

$$PMIr/residue = \frac{PMIr}{number of amino acid residues} = \frac{226.98}{14} = 10.06$$

## PMI calculation for solid-phase synthesis of 3 in DMSO/EtOAc (1:9)

Below is the total mass of reagents and solvents employed for swelling, deprotection, coupling, washing steps and final cleavage of the peptide from the resin in the protocol for the synthesis of 3 in DMSO/EtOAc (1:9) described above.

| Contribution | Species             | MW      | d      | Eq   | n      | V       | М     | Rep | m <sub>tot</sub> |
|--------------|---------------------|---------|--------|------|--------|---------|-------|-----|------------------|
| Contro anon  | Species             | (g/mol) | (g/mL) |      | (mmol) | (mL)    | (g)   | mp  | (g)              |
| Resin        | Fmoc-Gly-MBH resin  |         |        | 1.0  | 0.50   |         | 1.00  |     | 1.00             |
| Deprotection | Piperidine          | 85.15   | 0.862  |      |        | 40.00   | 34.48 |     | 34.48            |
| Coupling     | Fmoc-Arg(Pbf)-OH    | 648.77  | 1.000  | 2.0  | 1.00   |         | 0.65  | 1   | 0.65             |
|              | Fmoc-Gly-OH         | 297.32  | 1.000  | 2.0  | 1.00   |         | 0.30  | 1   | 0.30             |
|              | Fmoc-Arg(Pbf)-OH    | 648.77  | 1.000  | 2.0  | 1.00   |         | 0.65  | 2   | 1.30             |
|              | Fmoc-Val-OH         | 339.39  | 1.000  | 2.0  | 1.00   |         | 0.34  | 2   | 0.68             |
|              | Fmoc-Leu-OH         | 353.41  | 1.000  | 2.0  | 1.00   |         | 0.35  | 2   | 0.71             |
|              | Fmoc-Trp(Boc)-OH    | 426.46  | 1.000  | 2.0  | 1.00   |         | 0.43  | 2   | 0.85             |
|              | Fmoc-Ala-OH•H2O     | 329.34  | 1.000  | 3.0  | 1.50   |         | 0.49  | 1   | 0.49             |
|              | Fmoc-Ile-OH         | 353.41  | 1.000  | 2.0  | 1.00   |         | 0.35  | 2   | 0.71             |
|              | Fmoc-Phe-OH         | 387.43  | 1.000  | 2.0  | 1.00   |         | 0.39  | 2   | 0.77             |
|              | Fmoc-Glu(OtBu)-OH   | 425.47  | 1.000  | 2.0  | 1.00   |         | 0.43  | 2   | 0.85             |
|              | Fmoc-Lys(GluPal)-OH | 792.06  | 1.000  | 2.0  | 1.00   |         | 0.79  | 2   | 1.58             |
|              | Fmoc-Ala-OH•H2O     | 329.34  | 1.000  | 2.0  | 1.00   |         | 0.33  | 2   | 0.66             |
|              | Fmoc-Ala-OH•H2O     | 329.34  | 1.000  | 2.0  | 1.00   |         | 0.33  | 1   | 0.33             |
|              | Fmoc-Gln(Trt)-OH    | 610.70  | 1.000  | 2.0  | 1.00   |         | 0.61  | 2   | 1.22             |
|              | Fmoc-Gly-OH         | 297.32  | 1.000  | 3.0  | 1.50   |         | 0.45  | 1   | 0.45             |
|              | Fmoc-Glu(OtBu)-OH   | 425.47  | 1.000  | 2.0  | 1.00   |         | 0.43  | 2   | 0.85             |
|              | Fmoc-Leu-OH         | 353.41  | 1.000  | 3.0  | 1.50   |         | 0.53  | 1   | 0.53             |
|              | Fmoc-Tyr(tBu)-OH    | 459.53  | 1.000  | 3.0  | 1.50   |         | 0.69  | 1   | 0.69             |
|              | Fmoc-Ser(tBu)-OH    | 383.44  | 1.000  | 2.0  | 1.00   |         | 0.38  | 2   | 0.77             |
|              | Oxyma Pure          | 142.11  | 1.000  | 66.0 | 33.00  |         | 4.69  |     | 4.69             |
|              | DIC                 | 126.20  | 0.815  | 66.0 | 33.00  |         | 4.16  |     | 4.16             |
| Cleavage     | TFA                 | 114.02  | 1.489  |      |        | 8.50    | 12.66 | 1   | 12.66            |
|              | TIS                 | 158.36  | 0.773  |      |        | 0.50    | 0.39  | 1   | 0.39             |
|              | H <sub>2</sub> O    | 18.02   | 0.997  |      |        | 0.50    | 0.50  | 1   | 0.50             |
|              | DTT                 | 154.25  | 1.000  |      |        | 0.50    | 0.50  | 1   | 0.50             |
|              | DIPE                | 102.17  | 0.725  |      |        | 45.00   | 32.63 | 1   | 32.63            |
|              | DCM                 | 84.93   | 1.325  |      |        | 5.00    | 6.63  | 3   | 19.88            |
| Total        | DMSO/EtOAc (1:9)    |         |        |      |        | 1190.00 |       |     | 1096.99          |
| Total sum    |                     |         |        |      |        |         |       |     | 1222.25          |

Table S32. Overview of all reagents and solvents used for the SPPS of 3 in DMSO/EtOAc (1:9).

The PMI and PMI/residue can then be calculated as follows:

$$PMI = \frac{\Sigma \text{ mass of materials}}{\text{mass of isolated product}} = \frac{1222.25}{0.83} = 1478.10$$
$$PMI/residue = \frac{PMI}{\text{number of amino acid residues}} = \frac{1478.10}{20} = 73.91$$

The PMIr can be calculated to consider recycling of DMSO/EtOAc (1:9) (recovery 73.2%) as follows:

$$PMIr = \frac{\Sigma \text{ mass of materials} - \Sigma \text{ mass of recovered materials}}{\text{mass of isolated product}} = \frac{313.17}{0.83} = 378.73$$
$$PMIr/residue = \frac{PMIr}{\text{number of amino acid residues}} = \frac{378.73}{20} = 18.94$$

## PMI calculation for solid-phase synthesis of 3 in NBP/DMC (8:2)

Below is the total mass of reagents and solvents employed for swelling, deprotection, coupling, washing steps and final cleavage of the peptide from the resin in the protocol for the synthesis of **3** in NBP/DMC (8:2) described above.

| Contribution | Species                      | MW      | d      | Eq   | n      | V       | М     | Rep | m <sub>tot</sub> |
|--------------|------------------------------|---------|--------|------|--------|---------|-------|-----|------------------|
|              | -1                           | (g/mol) | (g/mL) | -1   | (mmol) | (mL)    | (g)   | 1   | (g)              |
| Resin        | Fmoc-Gly-MBH resin           |         |        | 1.0  | 0.50   |         | 1.00  |     | 1.00             |
| Deprotection | Piperidine                   | 85.15   | 0.862  |      |        | 40.00   | 34.48 |     | 34.48            |
| Coupling     | Fmoc-Arg(Pbf)-OH             | 648.77  | 1.000  | 2.0  | 1.00   |         | 0.65  | 1   | 0.65             |
|              | Fmoc-Gly-OH                  | 297.32  | 1.000  | 2.0  | 1.00   |         | 0.30  | 1   | 0.30             |
|              | Fmoc-Arg(Pbf)-OH             | 648.77  | 1.000  | 2.0  | 1.00   |         | 0.65  | 2   | 1.30             |
|              | Fmoc-Val-OH                  | 339.39  | 1.000  | 2.0  | 1.00   |         | 0.34  | 2   | 0.68             |
|              | Fmoc-Leu-OH                  | 353.41  | 1.000  | 2.0  | 1.00   |         | 0.35  | 2   | 0.71             |
|              | Fmoc-Trp(Boc)-OH             | 426.46  | 1.000  | 2.0  | 1.00   |         | 0.43  | 2   | 0.85             |
|              | Fmoc-Ala-OH•H2O              | 329.34  | 1.000  | 3.0  | 1.50   |         | 0.49  | 1   | 0.49             |
|              | Fmoc-Ile-OH                  | 353.41  | 1.000  | 2.0  | 1.00   |         | 0.35  | 2   | 0.71             |
|              | Fmoc-Phe-OH                  | 387.43  | 1.000  | 2.0  | 1.00   |         | 0.39  | 2   | 0.77             |
|              | Fmoc-Glu(OtBu)-OH            | 425.47  | 1.000  | 2.0  | 1.00   |         | 0.43  | 2   | 0.85             |
|              | Fmoc-Lys(GluPal)-OH          | 792.06  | 1.000  | 2.0  | 1.00   |         | 0.79  | 2   | 1.58             |
|              | Fmoc-Ala-OH•H <sub>2</sub> O | 329.34  | 1.000  | 2.0  | 1.00   |         | 0.33  | 2   | 0.66             |
|              | Fmoc-Ala-OH•H2O              | 329.34  | 1.000  | 3.0  | 1.50   |         | 0.49  | 1   | 0.49             |
|              | Fmoc-Gln(Trt)-OH             | 610.70  | 1.000  | 2.0  | 1.00   |         | 0.61  | 2   | 1.22             |
|              | Fmoc-Gly-OH                  | 297.32  | 1.000  | 3.0  | 1.50   |         | 0.45  | 1   | 0.45             |
|              | Fmoc-Glu(OtBu)-OH            | 425.47  | 1.000  | 2.0  | 1.00   |         | 0.43  | 2   | 0.85             |
|              | Fmoc-Leu-OH                  | 353.41  | 1.000  | 3.0  | 1.50   |         | 0.53  | 1   | 0.53             |
|              | Fmoc-Tyr(tBu)-OH             | 459.53  | 1.000  | 3.0  | 1.50   |         | 0.69  | 1   | 0.69             |
|              | Fmoc-Ser(tBu)-OH             | 383.44  | 1.000  | 2.0  | 1.00   |         | 0.38  | 2   | 0.77             |
|              | Oxyma Pure                   | 142.11  | 1.000  | 67.0 | 33.50  |         | 4.76  |     | 4.76             |
|              | DIC                          | 126.20  | 0.815  | 67.0 | 33.50  |         | 4.23  |     | 4.23             |
| Cleavage     | TFA                          | 114.02  | 1.489  |      |        | 8.50    | 12.66 | 1   | 12.66            |
|              | TIS                          | 158.36  | 0.773  |      |        | 0.50    | 0.39  | 1   | 0.39             |
|              | H <sub>2</sub> O             | 18.02   | 0.997  |      |        | 0.50    | 0.50  | 1   | 0.50             |
|              | DTT                          | 154.25  | 1.000  |      |        | 0.50    | 0.50  | 1   | 0.50             |
|              | DIPE                         | 102.17  | 0.725  |      |        | 45.00   | 32.63 | 1   | 32.63            |
|              | DCM                          | 84.93   | 1.325  |      |        | 5.00    | 6.63  | 3   | 19.88            |
| Total        | NBP/DMC (8:2)                |         |        |      |        | 1190.00 |       |     | 1166.68          |
| Total sum    |                              |         |        |      |        |         |       |     | 1292.24          |

Table S33. Overview of all reagents and solvents used for the SPPS of 3 in NBP/DMC (8:2).

The PMI and PMI/residue can then be calculated as follows:

$$PMI = \frac{\Sigma \text{ mass of materials}}{\text{mass of isolated product}} = \frac{1292.24}{0.83} = 1562.74$$
$$PMI/residue = \frac{PMI}{number of amino acid residues} = \frac{1562.74}{20} = 78.14$$

The PMIr can be calculated to consider recycling of NBP/DMC (8:2) (recovery 87%) as follows:

$$PMIr = \frac{\Sigma \text{ mass of materials} - \Sigma \text{ mass of recovered materials}}{\text{mass of isolated product}} = \frac{218.94}{0.83} = 264.77$$
$$PMIr/residue = \frac{PMIr}{\text{number of amino acid residues}} = \frac{264.77}{20} = 13.24$$

 Table S34. Overview of process mass intensity values for all synthetic protocols.

| Fragment | Solvent          | Protocol modifications | PMI     | PMI/aa | PMIr   | PMIr/aa |
|----------|------------------|------------------------|---------|--------|--------|---------|
| 1-11     | DMF              | -                      | 997.75  | 71.27  | -      | -       |
|          | NOP/DMC (8:2)    | A or A and B           | 1328.04 | 94.86  | 226.98 | 16.21   |
|          | NOP/DMC (8:2)    | A, B, and C            | 1004.13 | 71.72  | 187.54 | 13.40   |
|          | DMSO/EtOAc (1:9) | A or A, B, and D       | 978.46  | 69.89  | 287.70 | 20.55   |
|          | NBP/EtOAc (8:2)  | -                      | 1001.22 | 71.52  | 201.04 | 14.36   |
|          | NBP/DMC (8:2)    | -                      | 1031.85 | 73.70  | 215.26 | 15.38   |
| 12-31    | DMF              | -                      | 1344.28 | 67.21  | -      | -       |
|          | NOP/DMC (8:2)    | -                      | 1351.90 | 67.60  | 201.23 | 10.06   |
|          | NBP/DMC (8:2)    | -                      | 1562.74 | 78.14  | 264.77 | 13.24   |
|          | DMSO/EtOAc (1:9) | -                      | 1478.10 | 73.91  | 378.73 | 18.94   |

## Quantification of trifluoroacetic acid (TFA) in crude peptides

The TFA content (%) in crude peptides was quantified via <sup>19</sup>F-NMR with an internal standard. A known amount of crude peptide was weighed out, dissolved in the selected solvent and a known amount of standard was added. The amount of TFA is then calculated as follows:

$$TFA \ content \ (\%) = \frac{\int sample}{\int STD} \times \frac{\#F_{STD}}{\#F_{sample}} \times \frac{n_{STD} \times MW_{TFA}}{m_{sample}} \times 100$$

Fragment 2 was dissolved in H<sub>2</sub>O while fragment 3 was dissolved in H<sub>2</sub>O+0.5% NaOH 1M. 4-F-phenethylamine (MW=139.17 g/mol; d=1.061 g/mL; solution 0.5% v/v) was selected as the internal standard to match the solubility of the peptide fragments. In this case,  $\#F_{STD}=1$  and  $\#F_{sample}=3$ ; MW<sub>TFA</sub>=114.02 g/mol. The results of TFA quantification are summarized in Table S35 and reported in detail below together with the <sup>19</sup>F-NMR spectra.

**Table S35.** TFA quantification via <sup>19</sup>F-NMR.

| Entry | Fragment                       | Solvent          | Protocol<br>modifications | TFA content (%) |
|-------|--------------------------------|------------------|---------------------------|-----------------|
| 1     |                                | DMF              |                           | 21.03           |
| 2     |                                | NOP/DMC (8:2)    | A, B, C                   | 19.11           |
| 3     | H-(1-11)-CamFK-NH <sub>2</sub> | DMSO/EtOAc (1:9) | A, B, D                   | 21.77           |
| 4     |                                | NBP/EtOAc (8:2)  |                           | 26.84           |
| 5     |                                | NBP/DMC (8:2)    |                           | 30.98           |
| 6     |                                | DMF              |                           | 15.65           |
| 7     | Н-(12-31)-ОН                   | NOP/DMC (8:2)    | A, E                      | 21.01           |
| 8     |                                | NBP/DMC (8:2)    |                           | 12.42           |
| 9     |                                | DMSO/EtOAc (1:9) |                           | 18.72           |

## Figure S41. <sup>19</sup>F-NMR spectrum of fragment 2 in DMF.



Table S36. TFA quantification for fragment 2 in DMF.

| Entry | Fragment                       | ∫sample | ∫STD  | STD (µL) | Sample (mg) | TFA content (%) |
|-------|--------------------------------|---------|-------|----------|-------------|-----------------|
| 1     | H-(1-11)-CamFK-NH <sub>2</sub> | 4.209   | 1.000 | 100      | 2.9         | 21.03           |

Figure S42. <sup>19</sup>F-NMR spectrum of fragment 2 in NOP/DMC (8:2), protocol modifications A, B, and C.



Table S37. TFA quantification for fragment 2 in NOP/DMC (8:2), protocol modifications A, B, and C.

| Entry | Fragment                       | ∫sample | ∫STD  | STD (µL) | Sample (mg) | TFA content (%) |
|-------|--------------------------------|---------|-------|----------|-------------|-----------------|
| 2     | H-(1-11)-CamFK-NH <sub>2</sub> | 2.587   | 1.000 | 200      | 3.8         | 19.11           |
Figure S43. <sup>19</sup>F-NMR spectrum of fragment 2 in DMSO/EtOAc (1:9), protocol modifications A, B, and D.



Table S38. TFA quantification for fragment 2 in DMSO/EtOAc (1:9), protocol modifications A, B, and D.

| Entry | Fragment                       | ∫sample | ∫STD  | STD (µL) | Sample (mg) | TFA content (%) |
|-------|--------------------------------|---------|-------|----------|-------------|-----------------|
| 3     | H-(1-11)-CamFK-NH <sub>2</sub> | 1.428   | 1.000 | 200      | 1.9         | 21.77           |

Figure S44. <sup>19</sup>F-NMR spectrum of fragment 2 in NBP/EtOAc (8:2).



Table S39. TFA quantification for fragment 2 in NBP/EtOAc (8:2).

| Entry | Fragment                       | ∫sample | ∫STD  | STD (µL) | Sample (mg) | TFA content (%) |
|-------|--------------------------------|---------|-------|----------|-------------|-----------------|
| 4     | H-(1-11)-CamFK-NH <sub>2</sub> | 2.779   | 1.000 | 200      | 3.0         | 26.84           |

## Figure S45. <sup>19</sup>F-NMR spectrum of fragment 2 in NBP/DMC (8:2).



Table S40. TFA quantification for fragment 2 in NBP/DMC (8:2).

| Entry | Fragment                       | ∫sample | ∫STD  | STD (µL) | Sample (mg) | TFA content (%) |
|-------|--------------------------------|---------|-------|----------|-------------|-----------------|
| 5     | H-(1-11)-CamFK-NH <sub>2</sub> | 4.705   | 1.000 | 200      | 4.4         | 30.98           |

Figure S46. <sup>19</sup>F-NMR spectrum of fragment 3 in DMF



Table S41. TFA quantification for fragment 3 in DMF.

| Entry | Fragment     | ∫sample | ∫STD  | STD (µL) | Sample (mg) | TFA content (%) |
|-------|--------------|---------|-------|----------|-------------|-----------------|
| 6     | Н-(12-31)-ОН | 1.882   | 1.000 | 200      | 3.3         | 16.52           |

Figure S47. <sup>19</sup>F-NMR spectrum of fragment **3** in NOP/DMC (8:2), protocol modifications **A** and **B**.



Table S42. TFA quantification for fragment 3 in NOP/DMC (8:2), protocol modifications A and B.

| Entry | Fragment     | ∫sample | ∫STD  | STD (µL) | Sample (mg) | TFA content (%) |
|-------|--------------|---------|-------|----------|-------------|-----------------|
| 7     | Н-(12-31)-ОН | 2.756   | 1.000 | 200      | 3.8         | 21.01           |

Figure S48. <sup>19</sup>F-NMR spectrum of fragment 3 in NBP/DMC (8:2).



Table S43. TFA quantification for fragment 3 in NBP/DMC (8:2).

| Entry | Fragment     | ∫sample | ∫STD  | STD (µL) | Sample (mg) | TFA content (%) |
|-------|--------------|---------|-------|----------|-------------|-----------------|
| 8     | Н-(12-31)-ОН | 1.292   | 1.000 | 200      | 3.0         | 12.48           |

## Figure S49. <sup>19</sup>F-NMR spectrum of fragment **3** in DMSO/EtOAc (1:9).



 Table S44. TFA quantification for fragment 3 in NBP/DMC (8:2).

| Entry | Fragment     | ∫sample | ∫STD  | STD (µL) | Sample (mg) | TFA content (%) |
|-------|--------------|---------|-------|----------|-------------|-----------------|
| 9     | Н-(12-31)-ОН | 1.097   | 1.000 | 200      | 1.7         | 18.69           |

## Assay calculation in crude peptides

The Assay of crude peptide fragments was calculated via HPLC by comparison with titrated standard samples. The standard samples were injected with several concentrations and the absolute area was plotted to yield a calibration curve. The corresponding equation was then extrapolated and employed to determine the Assay of the synthesized fragment samples. For peptide **2**, both the standard and the samples to be determined were injected with Method 2. The results are summarized below:

| Entry | Amount (mg) | Volume (mL) | Area (mAU) | Titer |
|-------|-------------|-------------|------------|-------|
| 1     | 1.1         | 1.0         | 7266.6     | 66.0  |
| 2     | 2.6         | 1.6         | 9881.0     | 66.0  |
| 3     | 1.3         | 1.0         | 8329.4     | 66.0  |
| 4     | 2.3         | 1.0         | 12778.1    | 66.0  |

Table S45. Injections of standard sample for the calibration curve of peptide 2.

Figure S50. Calibration curve of peptide 2.



Table S46. Data from injections of peptide 2 samples for Assay quantification.

| Entry | Solvent          | Protocol<br>modifications | Amount (mg) | Volume (mL) | Area (mAU) | Titer |
|-------|------------------|---------------------------|-------------|-------------|------------|-------|
| 1     | DMF              |                           | 1.8         | 1.0         | 7304.2     | 39.8  |
| 2     | NOP/DMC (8:2)    | A, B, C                   | 1.4         | 1.0         | 5573.4     | 33.2  |
| 3     | DMSO/EtOAc (1:9) | A, B, D                   | 2.1         | 1.0         | 5578.1     | 22.2  |
| 4     | NBP/EtOAc (8:2)  |                           | 2.8         | 1.0         | 7333.6     | 25.7  |

|--|

| Table S47   | Injections | of standard | sample | for the | calibration | curve of nenti | de 3          |
|-------------|------------|-------------|--------|---------|-------------|----------------|---------------|
| 1 abic 577. | injections | or standard | sample | ior une | canoration  | curve or pepti | ac <b>J</b> . |

| Entry | Amount (mg) | Volume (mL) | Area (mAU) | Titer |
|-------|-------------|-------------|------------|-------|
| 1     | 2.2         | 1.0         | 15353.7    | 76.3  |
| 2     | 1.4         | 1.0         | 9486.1     | 76.3  |
| 3     | 1.6         | 1.0         | 11540.7    | 76.3  |
| 4     | 2.5         | 1.5         | 8964.8     | 76.3  |

Figure S51. Calibration curve of peptide 3.



Table S48. Injections of samples of peptide 2 for Assay quantification.

| Entry | Solvent          | Protocol<br>modifications | Amount (mg) | Volume (mL) | Area (mAU) | Titer |
|-------|------------------|---------------------------|-------------|-------------|------------|-------|
| 1     | DMF              |                           | 1.0         | 1.0         | 2828.6     | 37.8  |
| 2     | NOP/DMC (8:2)    | A, E                      | 2.1         | 1.0         | 3876.9     | 23.2  |
| 3     | NBP/DMC (8:2)    |                           | 2.3         | 1.0         | 6249.2     | 31.9  |
| 4     | DMSO/EtOAc (1:9) |                           | 1.6         | 1.0         | 4552.2     | 34.8  |