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ABSTRACT
Population health data are becoming more and more publicly avail-
able on the Internet than ever before. Such datasets offer a great
potential for enabling a better understanding of the health of popu-
lations, and inform health professionals and policymakers for better
resource planning, disease management and prevention across dif-
ferent regions. However, due to the laborious and high-cost nature
of collecting such public health data, it is a common place to find
many missing entries on these datasets, which challenges the util-
ity of the data and hinders reliable analysis and understanding.
To tackle this problem, this paper proposes a deep-learning-based
approach, called Compressive Population Health (CPH), to infer
and recover (to complete) the missing prevalence rate entries of
multiple chronic diseases. The key insight of CPH relies on the
combined exploitation of both intra-disease and inter-disease corre-
lation opportunities. Specifically, we first propose a Convolutional
Neural Network (CNN) based approach to extract and model both
of these two types of correlations, and then adopt a Generative
Adversarial Network (GAN) based prevalence inference model to
jointly fuse them to facility the prevalence rates data recovery of
missing entries. We extensively evaluate the inference model based
on real-world public health datasets publicly available on the Web.
Results show that our inference method outperforms other base-
line methods in various settings and with a significantly improved
accuracy (from 14.8% to 9.1%).
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1 INTRODUCTION
Due to unhealthy lifestyles and a fast-growing ageing population,
many chronic and malignant diseases (e.g., heart diseases, diabetes,
and cancer) are becoming increasingly prevalent in our society.
Understanding the changes in population health patterns and trends
is crucial for the monitoring, resource planning, and evaluation of
health programs and policies. To achieve these goals, population
health surveillance, which is a typical institutionalized sensing of
information about the health status of a population, has become
a core function for a nation’s public health system. The World
Health Organization (WHO) lists population health monitoring as
the first of ten essential public health operations [29]. Profiling
spatially fine-grained prevalence rate (morbidity rate) of multiple
chronic diseases is a critical task in population health surveillance
[24], which helps public health decision-makers, health planning
administrators, pharmaceutical manufacturers, and clinicians, to
effectively treat diseases, allocate medical resources, and manage
population health.

The increasing availability of publicly available datasets for dis-
ease prevalence rates provides new opportunities for healthcare
researchers/professionals to better study and understand public
health and wellbeing from multiple perspectives (e.g., the study of
health inequality by spatial epidemiologist). However, the road to
constructing and publicly availing these population health datasets
is challenging. To appreciate the challenges we briefly describe
the processes by which data is collected. There are commonly two
ways for healthcare authorities to perform prevalence profiling,
namely clinical-record integration [20] and residents survey [22].
For healthcare authorities that adopt clinical-record integration,
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Figure 1: Basic vision of compressive population health (CPH)

they need to integrate data sourced from heterogeneous informa-
tion systems belonging to multiple medical institutions, to get an
overview of morbidity rates. However, such data integration task
is non-trivial due to the many reasons. First, data access while pre-
serving patient privacy comes at a non-trivial cost and overhead.
For example, to know the population health statistics in a city, we
need to access individual-level sensitive health data. Thus, health
organizations must take on a lot of laborious work to ensure data
anonymity (and hence patient privacy) before feeding into data
integration. Second, the data structure and database design might
be different for heterogeneous systems from multiple clinics or
hospitals, thus increasing the difficulty and cost of data linkage. For
healthcare authorities that adopt residents surveying, they need to
recruit a representative group of residents and collect data via inter-
views or self-managed questionnaires. In order to minimize the bias,
the number of samples should be large enough with appropriate de-
mographic distributions. Therefore, this process is time-consuming
and incurs high cost including labor cost for survey administrators
and incentive payments for survey participants.

As a result of the aforementioned difficulties in health data in-
tegration and prevalence profiling, the publicly released popula-
tion health datasets are often found to be incomplete, where the
prevalence rates for some regions or for some types of diseases are
missing. The data incompleteness significantly lower the quality
and power of the released data, which hinders timely data analysis
and reliable knowledge generation by epidemiologists or public
health authorities or researchers. Incompleteness also exacerbates
the uncertainty in verifying or studying health equity as noted in
[25].

To bridge this gap, this paper introduces a novel approach, named
Compressive Population Health (CPH), for completing the miss-
ing entries of prevalence rates of multiple chronic diseases thus
re-constructing a full, reliable and timely population health moni-
toring picture for the current year. The key insight of CPH is that
the missing entries of prevalence rates of the current year could be

“recovered” by leveraging both intra-disease spatial correlations as
well as inter-disease correlations (see Figure 1). For intra-disease
spatial correlations, a number of studies have highlighted the role of
neighborhood effects on health, that is, nearby regions aremore sim-
ilar in the prevalence of certain diseases than distant ones [2]. This
is because nearby regions share common environmental, socioe-
conomic, and demographic features. For inter-disease correlations,
multi-morbidity [8], commonly defined as the co-presence of two
or more diseases, demonstrates that statistics for different types of
diseases may also correlate with each other. For example, regions
with higher obesity rate are more likely to have higher rates of
ischemic heart disease and cancers [8]. We assume that both of
these two types of correlations will be learned from both historical
prevalence data and the known data entries of the current target
year.

Although the above two types of data correlations have been
demonstrated in the area of epidemiology, there are still technical
challenges to realize the vision of CPH. (1) Challenge A: how to
extract and model both intra- and inter-disease data correlations
based on incomplete training data. (2) Challenge B: how to jointly
represent and fuse these correlations to build an accurate prevalence
inference model. To the best of our knowledge, these challenges
have not been touched in the area of epidemiology. In the computer
science community, although completing missing data entries with
spatial correlations has been studied in other domains such as
environmental and traffic monitoring [10][33], they only focused
on a single task so that cannot effectively incorporate inter-disease
correlations into the data recovery tasks of multiple diseases in our
focused scenario.

The contributions of this paper are summarized as follows:
1) This paper introduce a novel approach, named Compressive

Population Health (CPH), for completing the missing prevalence
rate of multiple chronic diseases of the current year so that a timely
and full picture of public health surveillance can be re-constructed.
The missing data of the current year is recovered by leveraging
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both intra-disease spatial correlations and inter-disease correlations,
which are learned based on prevalence data from both historical
years and known entries of the current year.

2) We propose a deep-learning-based prevalence inference model
to jointly utilize both intra- and inter-disease data correlations.
Specifically, the inference model consists of two main components:
the Convolutional Neural Network (CNN) based method is designed
to extract and represent both the intra-disease spatial correlations
and inter-disease correlations (Responds to Challenge A), while a
Generative Adversarial Network (GAN) based model is utilized to
make inference by combining these two types of correlations with
high accuracy (Responds to Challenge B).

3) We extensively evaluate the inference model based on real-
world public health datasets publicly available on the Web contain-
ing three types of correlated diseases over ten years, and the results
show that our data recovery method outperforms other baselines
on various settings with an improved accuracy of 14.8% to 9.1%.

The rest of the paper is organized as follows: Section 2 formally
defines the problem. Section 3 introduces the missing data inference
methodology for CPH. Section 4 evaluates the effectiveness of CPH
based on real-world population health datasets. Section 5 reviews
related works. In Section 6, we discuss limitations of this work and
future work directions. Section 7 concludes this study. The code to
reproduce the experiment is available at 1.

2 PROBLEM FORMULATION
2.1 Motivating Example
Suppose that the public health authority of a certain region (e.g.,
Greater London) has collected and integrated the prevalence rate
of multiple diseases such as obesity, hypertension, and diabetes,
across 500+ grids (e.g., wards) for the year 2019, and now intends
to share them on the Web as part of the government data open
plan so that epidemiologist can investigate the health inequality
of this year in a timely manner. Due to the difficulties in data
collection and integration (either survey-based approach or clinic-
visit-based data integration approach described in Section 1), they
found that there are some missing data entries for certain grids
or diseases. Therefore, they first need to use CPH to complete the
missing entries before sharing them on the Web. Given the recent
years’ historical prevalence statistics provided by the public health
authority before 2019 (e.g., from 2015 to 2018) and available data
in 2019, CPH is able to extract and model both inter-disease and
intra-disease data correlations, and then re-construct the full health
surveillance map across the different grids for 2019.

2.2 Formal Problem Definition
We define a dataset X containing multiple chronic diseases, where
X = {𝑋 1,𝑋 2,. . . ,𝑋𝑆 }, and where S denotes the chronic diseases, and
𝑋 denotes disease matrix. For each disease matrix 𝑋 , where a row
stands for a region and a column denotes a timestamp. An entry
𝑋𝑖𝑡 refers to the reading of 𝑖𝑡ℎ region at 𝑡𝑡ℎ timestamp. Under the
basic idea of CPH, the disease datasets are incomplete, e.g. some
regions or some type of diseases are missing. So, in a disease matrix
𝑋 , we call the missing regions as missing entries and the regions

1https://github.com/WoodScene/Compressive-Population-Health

with available (original) values as observed entries. Then we define
a binary mask𝑀 in the following way:

𝑀𝑖𝑡 =

{
1, if 𝑋𝑖𝑡 is observed
0, if 𝑋𝑖𝑡 is missing

(1)

so that𝑀 indicates which entries of 𝑋 are observed.
We define two parameters: target year and sampling proportion

R, where target year is the year for which we need to perform the
data recovery work for missing entries, and sampling proportion
R is the proportion of observed entries. So our inference flow is as
follows: input the partial data observed in the target year, as well
as the partial missing but relatively complete historical data, and
output the results of completing the missing entries for the target
year by exploiting intra-disease and inter-disease correlations, and
minimizing the completing error.

3 PREVALENCE INFERENCE METHODOLOGY
3.1 Methodology Overview
Our approach is based on the Missing Data Imputation method
of Yoon et al. [32], which they call Generative Adversarial Impu-
tation Nets (GAIN) to be contrasted to the traditional Generative
Adversarial Network (GAN) [5].

But traditional imputation using GAIN fails to exploit inter-
disease data correlations, it can only exploit intra-disease data cor-
relations. We propose a novel approach, named CPH, to jointly fuse
both intra-disease and inter-disease data correlations, to fill in the
missing values in dataset. Fig. 2 depicts the overall architecture.

Firstly, all the disease matrices in X are taken as input, and the
missing entries are initialized at the same time. Then we input
them into CNN for feature extraction and get the feature matrix,
then we get the corresponding mask matrix 𝑀 according to the
currently selected target disease (e.g., Figure 2 is based on obesity
as the target disease, and inferences about different diseases can
be made simply by replacing the mask matrix). Finally, the mask
matrix and feature matrix are fed into the GAN model for training
to obtain the complete matrix. At this point, we can further analyze
the inferred results. Each of these components is described in detail
as follows:

3.2 CNN-based Representation
The purpose of introducing CNN is to extract intra-disease and inter-
disease data correlations. First, the missing entries of each chronic
disease matrix (e.g., obesity 𝑋 1, hypertension 𝑋 2, and diabetes 𝑋 3)
are initialized with different noise variables 𝑍 , 𝑍 ′ and 𝑍 ′′ obtained
by sampling from either a normal or a uniform distribution. Then,
we can regard the three chronic disease matrices as an image with
three channels, where the two dimensions of the image represent
time and space, and the number of channels indicates the different
types of diseases. Finally, we can put this image into CNN-based
representation, 𝐶 , as shown in figure 3, to get a feature matrix 𝑋 ′,
then we define the 𝑋 ′ by:

𝑋 ′ = 𝐶 (𝑋 1, 𝑋 2, 𝑋 3, 𝑍, 𝑍 ′, 𝑍 ′′) (2)
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Figure 2: The CPH architecture

3.3 Generator
The generator, 𝐺 , takes feature matrix 𝑋 ′,𝑀 as input and outputs
𝑋 , which is a complete matrix, where the mask matrix 𝑀 should
change according to the target disease. For example, if obesity is
chosen as the target disease, then the mask matrix should indicate
which components of the obesity disease matrix are observed. Let
𝐺 : 𝑋 ′ × {0, 1} 𝑛×𝑑 → 𝑋 be a function. Then we define the matrices
𝑋 , 𝑋 by:

𝑋 = 𝐺 (𝑋 ′, 𝑀) (3)

𝑋 = 𝑀 ⊙ 𝑋 + (1 −𝑀) ⊙ 𝑋 (4)
where ⊙ denotes element-wise multiplication.𝑋 means the original
target diseasematrix.𝑋 corresponds to thematrix of imputed values
(note that the output of 𝐺 changes the value of each entries, even

though its value is observed) and 𝑋 corresponds to the completed
data matrix, that is, the observations are obtained from the original
target disease matrix 𝑋 , and the missing values are replaced by the
corresponding values in the𝑋 matrix. This setup is very similar to a
standard GAN. Notice that the matrix 𝑋 here is what we ultimately
want to get from training.

3.4 Discriminator
The discriminator, 𝐷 , like the traditional GAN framework, will act
as an adversary to train 𝐺 . But unlike GAN, where the output of
the generator has only two choices of real or fake, under our model
the output is a composite of observed and inferred entries. And 𝐷
is also no longer to identify whether the input data is completely
real or completely fake, but to try to distinguish which entries are
observed and which are inferred, this is equivalent to predicting
the mask matrix 𝑀 . Finally, the discriminator is a function 𝐷 : 𝑋
→ [0, 1] 𝑛×𝑑 , with the 𝑖𝑡ℎ component of D(𝑋 ) corresponding to the
probability that the 𝑖𝑡ℎ component of 𝑋 is observed. The higher the
probability value, the more likely it is that the entry is observed.

3.5 Hint
We introduce a hintingmechanism, the theoretical analysis of which
can be seen in the Yoon et al. (2018) [32]. A hint mechanism is a
random variable, 𝐻 , taking values in a space H , we pass 𝐻 as an
additional input to the discriminator and so it becomes a function
𝐷 : 𝑋 × 𝐻 → [0, 1] 𝑛×𝑑 . By defining 𝐻 differently, we can control
the amount of information about 𝑀 contained in 𝐻 , especially if
we do not provide 𝐷 with "enough" information about𝑀 (e.g., we
do not have a hinting mechanism at all), then several distributions
that 𝐺 can reproduce are optimal with respect to 𝐷 . Therefore, the
introduction of the hinting mechanism is necessary.

3.6 Objective
Putting it all together, we train 𝐷 to maximize the probability of
correctly predicting𝑀 .We train𝐶 and𝐺 tominimize the probability
of 𝐷 predicting𝑀 . We define the quantity 𝑉 (𝐷,𝐶,𝐺) to be

𝑉 (𝐷,𝐶,𝐺) = E
�̂� ,𝑀,𝐻

[𝑀𝑇 log𝐷 (𝑋,𝐻 )

+(1 −𝑀)𝑇 log(1 − 𝐷 (𝑋,𝐻 ))],
(5)

where log is element-wise logarithm and dependence on 𝐶 and 𝐺
is through 𝑋 .

Then, just like the standard GAN, we define the objective to be
the minimax problem given by:

min
𝐶,𝐺

max
𝐷

𝑉 (𝐶, 𝐷,𝐺) . (6)

We define the loss function L: {0, 1} 𝑛×𝑑 × [0, 1] 𝑛×𝑑 → R by

L(𝑎, 𝑏) =
𝑛∑
𝑖=0

𝑑∑
𝑗=0

[𝑎𝑖 𝑗 log(𝑏𝑖 𝑗 ) + (1 − 𝑎𝑖 𝑗 ) log(1 − 𝑏𝑖 𝑗 )] . (7)

Writing �̂� = 𝐷 (𝑋,𝐻 ), we can then rewrite (6) as

min
𝐶,𝐺

max
𝐷
E[L(𝑀, �̂�)] . (8)

Both 𝐺 and 𝐷 are modeled as fully connected neural nets. And the
models are trained using gradient descent.
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Figure 3: The architecture of CNN-based representation

4 EXPERIMENTAL EVALUATION
This section will introduce how we extensively evaluate the effec-
tiveness of CPH based on real-world public health data. We first
describe the datasets, baselines and experimental setups (Section 4.1
and Section 4.2). Then, we compare the results of different inference
methods and discuss the significance of improvement (Section 4.3
and Section 4.4). Finally, we present some additional analysis on
the data correlations behind the success of CPH (Section 4.5).

4.1 Datasets Description
The two datasets we use can be collected from the UK government’s
website without any licences:

Dataset of Ward Boundaries of London: This dataset2 is col-
lected from Great Britain’s national mapping agency which pro-
vides the most accurate and up-to-date geographic data for govern-
ment, business and individuals. In particular, the dataset includes
names, shapes and codes of 630 wards in London.

Chronic Diseases Prevalence Dataset: It contains three dis-
eases: obesity, hypertension and diabetes, which can be downloaded
from The National Health Service (NHS) website3. The NHS pub-
lishes annual health data from 1 April to 31 March of the following
year, covering 94.8% of general practices. For each type of disease,
the morbidity rate is expressed as a ratio representing the number
of patients on each registry to the number of all patients on the
practice list. We collected the data from 2008 to 2017 of London
ward level and in the raw data, roughly 30% of the regions are miss-
ing. We use dataset “2009” to represent the annual chronic disease
prevalence from April 2008 to March 2009.

4.2 Baselines, Metrics, and Setups
We compare our methods to 10 baseline models, covering con-
ventional missing data recovery methods (e.g., stKNN, CF, Linear
Regression, NMF, TD), deep learning models (e.g., Auto-encoder
and GAIN), and new multi-task data inference approach (DME).
The detailed implementation of our method and baselines is in the
Appendix part.

2https://data.ordnancesurvey.co.uk/
3https://digital.nhs.uk/data-and-information/publications/statistical/quality-and-
outcomes-framework-achievement-prevalence-and-exceptions-data

Average: For each disease, take the temporal or spatial average
as a complementary value.

Median: For each disease, take the temporal or spatial median
as a complementary value.

stKNN: For each disease, use the average values of its k nearest
spatial and temporal regions as predictions (k = 6 is the best).

CF: For each disease, User-based collaborative filtering (UCF)
and Item-based collaborative filtering (ICF) are applied to generate
a prediction, respectively, and the final result is the average of the
two predictions.

Linear Regression: For each disease, use linear regression to
predict the missing values.

NMF: For each disease, use Non-negative Matrix Factorization
to predict the missing values.

TD: Construct a Tensor with three dimensions (year, grid, and
disease), and use tensor decomposition to predict the missing val-
ues.

Auto-encoder: For each disease, use original auto-encoder to
predict the missing values.

DME: The Deep Multimodal Encoding [13], an improved algo-
rithm on ordinary auto-encoder. Although this work does not focus
on health data, it can also simultaneously complete multiple data
inference tasks while leveraging the correlations among them.

GAIN: For each disease, apply GAIN - an adaptation of genera-
tive adversarial networks (GAN) to missing data imputation.

We also conduct two variations of CPH approach to assess
whether some of our detailed components are effective:

CPH1−: Decrease the value of the hinting mechanism in the
model to evaluate the usefulness of including a hinting mechanism.

CPH2−: The simplest CNN structure is used to determinewhether
the introduction of CNN actually extracts intra- and inter-disease
correlations.

We apply two metrics to evaluate the prediction performance:
Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)

𝑅𝑀𝑆𝐸 =

√∑
𝑖 (𝑦𝑖 − 𝑦𝑖 )2

𝑛
(9)

𝑀𝐴𝐸 =

∑
𝑖 |𝑦𝑖 − 𝑦𝑖 |

𝑛
(10)

where 𝑦𝑖 is an inference, 𝑦𝑖 is the ground truth, and 𝑛 is the number
of inferred missing value.
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We set two different experimental parameters, target year and
sampling proportion. We tested the effects of completing under a
variety of different target years, for example, when the target year
is set to 2016, it means that we fill in the missing entries for 2016
using historical data from 2008 to 2015. And when the target year
is set to 2017, it means that we fill in the missing entries for 2017
with historical data from 2008 to 2016.

The sampling proportion R refers to the selection of the corre-
sponding proportion of observation entries for the target year as
input to the model, where we assume that each disease is sampled
in the same proportion, and the remaining observed entries will
be used as a test set to validate the complementary effect of the
model. For example, R = 0.1 means that for each disease 10% of
the observed entries will be selected as the training set, and the
remaining observed entries will be used as the test set (note that
R cannot be set larger than the maximum proportion of known
entries in the target year, e.g., for a disease where the proportion
of all observed entries to the total is 0.7, where the maximum value
of R should be 0.6 and at least 10% of the entries should be left as a
test set). Specifically, we select a proportion of regions by a random
method, at the same time ensuring that the regions selected by the
different completion algorithms are the same to avoid thus affecting
the experimental results.

Based on these two experimental settings, we fix one setting at
a time to change the value of the other. For example, we fix the
sampling proportion R at 0.3 and change the target year to see the
results of each method. Similarly, we can also fix the target year
and compare the results by changing the sampling proportion.

4.3 Inference Method Comparison
The inferred quality of the three chronic diseases under different
methods is shown in Table 1, 2 and 3. From the results, we can see
that CPH is superior to other baselines in completing all diseases
on various settings of sampling proportions, achieving a higher
inference accuracy on average from 14.8% to 9.1%. Due to space
limitation, only the detailed performance on years 2016 and 2017
are presented. Then, some explanations are given to analyze the
reasons our CPH model outperforms others.

Conventional missing data recovery algorithms (e.g., Linear Re-
gression and NMF) and deep-learning-based approaches (e.g., Auto-
encoder and GAN) are used to make inferences using intra-disease
data correlations without considering inter-disease data correla-
tions. One of the key advantages of CPH is that they can extract
both of these two correlations automatically (through a CNN-based
model) and then fuse them in the inference task formultiple diseases
(through a GAN-based model), which have been experimentally
verified to bring about the improvement.

For the DME baseline, although intra-disease and inter-disease
correlations are also used simultaneously, they still perform worse
than our CNN- and GAN-based CPH models. There are two main
reasons for this, on the one hand because DME is still auto-encoder
in nature, and auto-encoder is an unsupervised learning algorithm,
so different data distributions may be learned during the model
training, while in the CPH model we force the generator to be able
to produce real data distributions by including a hinting mechanism.
On the other hand, for extracting intra-disease and inter-disease

correlations, the auto-encoder uses a fully connected neural net-
work, while the CPH method uses a CNN, which is significantly
superior to a fully connected neural network in extracting data fea-
tures. Furthermore, CPH performed better compared to CPH1− and
CPH2−, indicating that our further customization and improvement
to CNN and GAN are in fact effective.

4.4 Significance of Improvement
In this section we show that how the improvements achieved by
our CPH methods are significant for the public health with missing
data problem. From the experimental results we can see that the
value of RMSE andMAE are very small because morbidity rate itself
is very small. From the dataset, we can see that the morbidity rates
of all diseases mostly range from 0.001 to 0.1, so we normalized
the value of each disease to [0,1] at first. Although the values of
RMSE and MAE are small, the results of the experiment are quite
significant. For example, for obesity disease, with a target year of
2017 and a sampling proportion of 0.5, the worst baseline method
(CF) has a margin of error for completing 61.1%, the best baseline
method (GAIN) has a margin of error of 19.0%, and the CPHmethod
has a margin of error of only 10.5%, compared to the best baseline
method (GAIN), the error rate is reduced by 8.5%.

Similarly for hypertension disease, with a target year of 2017 and
a sampling proportion of 0.5, the worst baseline method (CF) has
a margin of error for completing 41.2%, the best baseline method
(GAIN) has a margin of error of 7.8%, and the CPH method has a
margin of error of only 2.7%, compared to the best baseline method
(GAIN), the error rate is reduced by 5.1%.

For diabetes disease, with a target year of 2016 and a sampling
proportion of 0.5, the worst baseline method (NMF) has a margin
of error for completing 51.4%, the best baseline method (DME) has
a margin of error of 25.1%, and the CPH method has a margin of
error of only 8.2%, compared to the best baseline method (GAIN),
the error rate is reduced by 16.9%.

In addition, in the testing dataset, the real morbidity rate of
obesity of the ward E05000335 in 2017 is 0.0569, the inferred value
by using GAIN method is 0.0856, the MAE of this entry is 0.0287,
but in the method CPH, the inferred value is 0.0604, the MAE of
this entry is 0.0032. In this case, although MAE is only improved by
0.0255, it is actually improved by 45% relatively, which we believe
is a significant improvement.

Now we go back to our original goal of investigating if such
performance is satisfactory for real-world population health moni-
toring tasks. For example, we assume a maximum imputation error
range of the results to be less than 15%, and then compare the mini-
mum sampling proportion that different algorithms need to achieve
this goal.

We experimentally found that CPH can sample even just 11%
of the entire region to give less than 15% completing error for
the remaining missing regions, but the best baseline algorithm
(GAIN) needs to sample 57% of the region to satisfy the requirement.
Figure 4 shows the distribution of sampling regions required to
satisfy this error rate for both methods. The figure shows that the
CPH method can use fewer sampling areas to perform the task
of inferring population health data within a certain error range,
which is important in terms of cost savings and time spent. In
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Table 1: Inference quality of obesity

Methods

2016 2017
R = 0.1 R = 0.3 R = 0.5 R = 0.1 R = 0.3 R = 0.5

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

CF 0.1661 0.1345 0.1657 0.1340 0.1640 0.1298 0.1983 0.1625 0.2010 0.1659 0.2028 0.1702
Average(spatial) 0.1478 0.1202 0.1400 0.1153 0.1401 0.1149 0.1581 0.1310 0.1525 0.1288 0.1444 0.1229
Median(spatial) 0.1518 0.1252 0.1367 0.1110 0.1355 0.1100 0.1509 0.1233 0.1435 0.1201 0.1370 0.1150

NMF 0.1518 0.1180 0.1346 0.1064 0.1412 0.1113 0.1661 0.1331 0.1513 0.1208 0.1330 0.1054
TD 0.1403 0.1045 0.1275 0.1014 0.1250 0.1002 0.1304 0.0997 0.1221 0.0970 0.1181 0.0923

Linear Regression 0.1026 0.0763 0.0947 0.0730 0.0927 0.0687 0.1132 0.0934 0.0887 0.0714 0.0853 0.0671
Auto-encoder 0.0857 0.0616 0.0817 0.0597 0.0821 0.0597 0.0772 0.0575 0.0681 0.0520 0.0654 0.0496

stKNN 0.0794 0.0557 0.0752 0.0546 0.0732 0.0528 0.0739 0.0520 0.0632 0.0472 0.0609 0.0459
Median(temporal) 0.0830 0.0564 0.0769 0.0537 0.0760 0.0525 0.0776 0.0534 0.0662 0.0475 0.0610 0.0434
Average(temporal) 0.0788 0.0547 0.0737 0.0523 0.0728 0.0512 0.0725 0.0514 0.0615 0.0455 0.0579 0.0425

DME 0.0691 0.0525 0.0619 0.0444 0.0643 0.0435 0.0694 0.0634 0.0624 0.0459 0.0614 0.0415
GAIN 0.0948 0.0597 0.0616 0.0509 0.0580 0.0464 0.0617 0.0491 0.0507 0.0415 0.0482 0.0390
CPH1− 0.0882 0.0726 0.0513 0.0393 0.0417 0.0322 0.0624 0.0498 0.0511 0.0397 0.0365 0.0288
CPH2− 0.0856 0.0678 0.0718 0.0594 0.0517 0.0371 0.0608 0.0448 0.0408 0.0324 0.0369 0.0285
CPH 0.0573 0.0427 0.0455 0.0352 0.0392 0.0295 0.0526 0.0411 0.0400 0.0316 0.0360 0.0281

Table 2: Inference quality of hpertension

Methods

2016 2017
R = 0.1 R = 0.3 R = 0.5 R = 0.1 R = 0.3 R = 0.5

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

CF 0.1227 0.0928 0.1279 0.0973 0.1359 0.1036 0.1455 0.1094 0.1355 0.1003 0.1349 0.1027
Average(spatial) 0.1132 0.0904 0.1173 0.0937 0.1213 0.0969 0.1163 0.0935 0.1113 0.0897 0.1136 0.0903
Median(spatial) 0.1130 0.0902 0.1195 0.0954 0.1237 0.0989 0.1249 0.0998 0.1139 0.0918 0.1140 0.0906

NMF 0.0919 0.0719 0.0887 0.0713 0.0896 0.0695 0.0987 0.0784 0.0795 0.0626 0.0776 0.0615
TD 0.0782 0.0593 0.0804 0.0649 0.0798 0.0642 0.0743 0.0592 0.0780 0.0635 0.0731 0.0590

Linear Regression 0.0993 0.0925 0.0948 0.0885 0.0943 0.0880 0.0702 0.0619 0.0560 0.0524 0.0517 0.0484
Auto-encoder 0.0530 0.0392 0.0524 0.0383 0.0499 0.0369 0.0498 0.0379 0.0468 0.0365 0.0462 0.0358

stKNN 0.0461 0.0344 0.0469 0.0345 0.0436 0.0326 0.0363 0.0287 0.0324 0.0255 0.0325 0.0250
Median(temporal) 0.0472 0.0332 0.0450 0.0315 0.0438 0.0300 0.0358 0.0278 0.0267 0.0212 0.0183 0.0153
Average(temporal) 0.0448 0.0327 0.0427 0.0310 0.0403 0.0290 0.0344 0.0277 0.0257 0.0211 0.0186 0.0156

DME 0.0397 0.0298 0.0352 0.0246 0.0344 0.0214 0.0402 0.0310 0.0360 0.0261 0.0341 0.0222
GAIN 0.0371 0.0283 0.0241 0.0167 0.0258 0.0166 0.0288 0.0204 0.0201 0.0142 0.0208 0.0156
CPH1− 0.0487 0.0335 0.0222 0.0170 0.0210 0.0168 0.0437 0.0362 0.0235 0.0176 0.0212 0.0157
CPH2− 0.0368 0.0295 0.0212 0.0171 0.0182 0.0139 0.0249 0.0185 0.0165 0.0129 0.0169 0.0138
CPH 0.0337 0.0263 0.0202 0.0158 0.0165 0.0132 0.0230 0.0167 0.0150 0.0115 0.0166 0.0129

summary, results indicate that on the one hand, CPH, which jointly
fuse both intra-disease and inter-disease data correlations, achieves
significant improvements over other baseline algorithms, and on the
other hand, that the idea of CPH does have an impact on advancing
population health surveillance practice, saving time and cost in the
data collection process.

4.5 Existence of Data Correlations
This section demonstrates the existence of both intra-disease and
inter-disease data correlations in population health datasets. Figure
5 shows the distribution of the prevalence of the three chronic
diseases in different wards of London in 2011. From the figure we

do observe some correlations among multiple disease morbidity.
We can see that the incidence of diseases in neighboring wards
generally reveals some similarity. This actually follows the First
Law of Geography [27], "everything is related to everything else,
but near things are more related than distant things."

To quantify the spatial similarity, we first calculate the Euclidean
distances of all ward pairs. We adopt four difference indicators, in-
cluding Arithmetic Difference (AD), Euclidean Distance (ED), Pear-
son Distance (PD) [26] and Cumulative Distance of Dynamic Time
Warping (CDDTW) [9], to quantitatively measure the spatial corre-
lation. The smaller the value of these four indicators, the stronger
the correlation of the selected ward pairs. Therefore we look at the
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Table 3: Inference quality of diabetes

Methods

2016 2017
R = 0.1 R = 0.3 R = 0.5 R = 0.1 R = 0.3 R = 0.5

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

CF 0.1555 0.1171 0.1554 0.1185 0.1516 0.1151 0.2132 0.1840 0.1857 0.1572 0.1834 0.1530
Average(spatial) 0.1418 0.1120 0.1436 0.1134 0.1504 0.1199 0.2936 0.2695 0.2439 0.2250 0.2245 0.2101
Median(spatial) 0.1407 0.1106 0.1398 0.1101 0.1468 0.1174 0.2737 0.2481 0.2345 0.2149 0.2080 0.1924

NMF 0.1715 0.1363 0.1519 0.1199 0.1594 0.1268 0.2683 0.2234 0.2109 0.1758 0.1815 0.1511
TD 0.1687 0.1225 0.1468 0.1073 0.1492 0.1103 0.1513 0.1114 0.1429 0.1054 0.1213 0.0896

Linear Regression 0.0861 0.0785 0.0830 0.0748 0.0831 0.0734 0.0536 0.0416 0.0493 0.0389 0.0532 0.0483
Auto-encoder 0.1228 0.1061 0.1189 0.1022 0.1172 0.0995 0.1139 0.0979 0.1101 0.0940 0.1024 0.0856

stKNN 0.1170 0.0997 0.1096 0.0903 0.1035 0.0835 0.0878 0.0764 0.0597 0.0508 0.0411 0.0341
Median(temporal) 0.1446 0.1268 0.1405 0.1225 0.1392 0.1200 0.1253 0.1124 0.0979 0.0889 0.0735 0.0672
Average(temporal) 0.1219 0.1069 0.1183 0.1033 0.1176 0.1016 0.0996 0.0894 0.0779 0.0707 0.0585 0.0538

DME 0.1003 0.0862 0.0790 0.0678 0.0672 0.0543 0.0971 0.0834 0.0777 0.0660 0.0663 0.0534
GAIN 0.1446 0.1201 0.1054 0.0852 0.0736 0.0560 0.1658 0.1449 0.1043 0.0838 0.0325 0.0264
CPH1− 0.0651 0.0568 0.0415 0.0359 0.0299 0.0239 0.0527 0.0452 0.0425 0.0325 0.0198 0.0141
CPH2− 0.0806 0.0740 0.0374 0.0289 0.0379 0.0245 0.0503 0.0399 0.0327 0.0209 0.0194 0.0139
CPH 0.0612 0.0237 0.0269 0.0183 0.0254 0.0181 0.0310 0.0223 0.0294 0.0202 0.0181 0.0125

(a) CPH (b) GAIN

Figure 4: Sampling area distribution for complement error less than 15% (dark color indicates the sampled area, blank part
indicates the unsampled area)

(a) Obesity (b) Hypertension (c) Diabetes

Figure 5: Morbidity rate distribution in 2011 (darker colors indicate higher morbidity rate, blank parts represent missing
entries in the original data)
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changes in these four metrics by increasing the distance between
ward pairs. We present the empirical results of hypertension in
figure 6. Then we can further make the following observations:
the spatial correlations generally exist within a certain geographi-
cal scale, they are non-linear and even disappear out of a certain
geographical scale.

From these observations, we can conclude that spatial correlation
of morbidity must exist when the distance between two wards is
not exceeding a certain threshold.

Figure 6: Morbidity difference changes as distance increases
for hypertension

In addition, if we look at the three diseases in figure 5 at the
same time, we will find that their prevalence distributions are quite
similar. Also to further prove the inter-disease data correlations,
we employ Pearson correlation analysis whose results are shown
in Figure 7.

Figure 7: Correlation between different chronic diseases

Figure 7 shows that there is a strong correlation between these
three chronic diseases. For example, the value of the Pearson coeffi-
cient between hypertension and diabetes is 0.54, indicating a corre-
lation between the both. And it is supported by relevant medical

literature, for example, the authors in [4] find that more than two-
thirds of people with type 2 diabetes have hypertension. The studies
in [11] shows that obesity is one of the main factors that leads to
developing diabetes. So we can indeed exploit this intra-disease
and inter-disease data correlations to improve the performance of
our model.

5 RELATEDWORK
In this section, we review the related research in both public health
and computer science, and then compare them to our proposed
approach to better clarify its novelty.

Spatial Epidemiology. Studies in the area of public health at-
tempt to explore the factors and their effects on geographically
differentiated health outcomes, including environmental variables
(e.g., the air quality of surroundings), socioeconomic and demo-
graphic statistics (e.g., income), or even lifestyle choices (e.g., nu-
trition, diet, mobility, and sedentary). The work in [1] confirms
that significant temporal and spatial correlations do exist between
different chronic diseases. The authors in [7] demonstrate that
the neighborhood built environment has an impact on population
health. The work in [18] assessed the relationship between fast
food and obesity using Instagram and Foursquare data. Mason et al
[17] found that there is a strong association between high density
of physical exercise facilities and reduced obesity in middle-aged
adults. These studies demonstrate the existence of data correlations
whichwe aim to leverage, and shows the feasibility of implementing
CPH. However, none of these studies how to utilize these correla-
tions to enable disease prevalence inference.

Population Health Data Inference. In recent years, an in-
creasing number of algorithms have been used to infer missing
data [15]. Recently deep learning-based models have demonstrated
state-of-the-art performance in mining the massive electronic med-
ical records data [14][16]. Multiple state-of-the-art data recovery
algorithms are developed in [1] to verify that spatiotemporal corre-
lations can be leveraged to do reliable data inference. Some studies
used the structure of social networks and patterns of human mobil-
ity to study outbreak patterns of infectious diseases [19]. Others
use users’ posts or tweets on social networks to predict large-scale
popularity patterns [6][21][28]. The authors in [30] used the popu-
lation mobility patterns of metropolitan area residents to predict
the prevalence of several chronic diseases in urban neighborhoods
by looking at local human lifestyles. In terms of population health
data inference models proposed above, although the intra-disease
spatial correlations have been studied and used in the above state-
of-the-art research, they do not jointly consider and incorporate
the power of the inter-disease correlations.

MissingData Recovery. From a technical perspective, complet-
ing missing data entries with spatial correlations has been studied
in other domains such as environmental and traffic monitoring
[10][33]. For example, the authors in [12] propose a multi-view
learning method which can consider the local and global variation
in temporal and spatial views to capture more information from
the existing data to estimate the missing values for traffic-related
time series data. The work [31] uses a similar multi-perspective
based learning approach to collectively fill missing readings on
Beijing air quality and meteorological data. While some others use
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Compressive Sensing (CS) to environmental data recovery [23].
Compared to these studies which explore neighboring correlations
for a single inference task (e.g., measurement of PM 2.5), this paper
aims to explore more complex data correlations (both intra-task
and inter-task correlations) to accomplish multiple inference tasks
(prevalence of multiple chronic diseases). Besides, the authors in
[13] propose a multimodal data fusion framework, the DME, based
on deep learning techniques for missing data imputation which
can exploit both intra-task and inter-task correlations. However,
because the DME model is a unsupervised learning approach in
nature, it cannot effectively extract correlations between multiple
diseases and and combines them with intra-disease correlations,
making its performance much worse than CPH.

6 LIMITATION AND DISCUSSION
In this section, we present limitations of this work followed by
discussions on future work directions.

Explanations for Data Correlations. Now we have demon-
strated how CPH is successful in utilizing the existence of data
correlations to complete missing entries of prevalence rats for mul-
tiple chronic diseases, it would be insightful to go a step deeper into
exploring the contribution of each individual factor in the dataset
entries to the overall correlations. For example, we need to under-
stand the contribution to correlation by age, gender, population
migration, co-morbidity, among other factors. As future work, we
aim to combine our study of CPH with state-of-the-art research
work in the area of spatial epidemiology to further move this work
to a deeper level.

Combination with Other Correlations. The basic intuition
of CPH, which is to leverage inherent data correlations to perform
inference, can be extended beyond intra-disease spatial correla-
tions and inter-disease correlations, seeking to improve inference
accuracy. Other such correlations that we aim exploit in the future
include multi-source urban big data [3] (also known as smart city
data) which is becoming increasingly available, e.g., population
density, mobility, traffic data, education and economic status, age
distribution, population participation in events and activities, air
quality measures, among others. Some of these data sources may
have an impact on the population health status. In future work,
we will explore how to use such additional correlations to further
improve the data recovery model.

Missing Prevalence Completion for All Years. In this paper,
we set our goal as to constructing a full disease prevalence map of
the current year based on the correlations learned from historical
data in previous years, so that a timely public health monitoring
map can be established before sharing them on theWeb for research.
Here, in our experimental evaluation, the prevalence rates data in
previous years, though with some missing entries, are relatively
complete, so that CPH can effectively extract the correlations and
achieve the data completion accurately for the current year even
with high data missing rates. However, in some circumstances (e.g,
in developing countries), such a relatively complete historical preva-
lence are not available, and a more complicated and meaningful
task is to build a model CPH+ to infer the missing entries for all
years (both the current and historical years). In this case, how to
effectively learn these two correlations from sparse historical data

would be a more challenging research problem. For example, we
can consider to transfer the extracted correlations in developed
countries to developing ones based on transfer learning strategies,
which is an interesting research direction to explore in the future.

Sustainability of CPH. Although the experiment shows that
CPH is capable of learning both intra- and inter-disease data cor-
relations from the historical data and then utilizing them in the
prevalence rate completion task of the current year, we have not
explore yet how to make CPH to be sustainable year after year. As
time goes by, the historical data will contain both collected and
inferred data entries, and there is a risk that the error in the inferred
entries will be propagated and accumulated when adopting CPH
on the new year. Therefore, it is an interesting and challenging
direction in the future to develop a sustainable CPH. One possible
idea is to estimate the reliability of inferred entries, which will be
regarded as weights in the prevalence inference model. The weights
will be dynamically updated before CPH will be adopted on a new
year as more ground-truth data is available. More interestingly, the
inferred data entries may be calibrated to more accurate ones.

7 CONCLUSION
This paper proposes a deep-learning-based approach, we call Com-
pressive Population Health (CPH), to infer and recover missing
entries of population health prevalence rates of multiple chronic
diseases. By reliably recovering such missing data, a full picture
of the public health surveillance can be built and used. The data
recovery is enabled by exploiting intra-disease and inter-disease
correlation opportunities. Specifically, we first proposed a Convolu-
tional Neural Network (CNN) based approach to extract and model
both of these two types of correlations, and then adopted a Genera-
tive Adversarial Network (GAN) based prevalence inference model
to jointly fuse their combined effect. We extensively evaluated the
inference model based on real-world public health datasets, and
the results demonstrated that CPH outperforms other baselines in
various settings, and with a much improved accuracy.
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A DETAILS OF EXPERIMENTAL SETTINGS
Experimental environment: the programming language is python
3.7, the code is based on Tensorflow 1.14.0.

A.1 CPH Model Implementation
Our model is an improvement on the GAIN model, where the GAN
part of the code is in paper [32]. We added CNN to their model and
also adjusted the input format of the model. The network struc-
ture of the CNN is shown in Figure 3. The two-layer convolution
and pooling operation is used, where the hyperparameters are as
follows: the parameter of the filter in the first convolution layer
operation is 1*4, number of 3, step 1, and the maximum pooling
parameter is 1*4, step 1. The parameter of the filter in the second
convolution layer operation is 1*4, number of 1, step 1, and the max-
imum pooling parameter is 1*4, step 1. The parameters in the GAN
model have been experimented with and we still use the settings
recommended in the original paper.

A.2 Baseline Implementations
Our principles for setting the hyper-parameters for each baseline
model are as follows. If the hyperparameter settings are available
in the original paper, we will use the recommended settings. Other-
wise, the hyperparameters of the baseline model will be fine-tuned
by the grid search strategy.

NMF: We set the embedding dimension as 5, the initial learn-
ing rate is 0.1, and decreases as the number of training sessions
increases, stopping training when the change in loss is less than
1e-3.

TD: We set the dimensions of the core tensor to 10, 10, 10, with an
initial learning rate of 0.1 and decreasing as the number of training
sessions increases, stopping training when the change in loss is less
than 3e-4.

Auto-encoder: We set four fully connected hidden layers, each
with 32 neurons, a learning rate of 5e-3, a regular term coefficient
of 1e-2, and a number of training rounds of 1e5.

DME: We set up four hidden layers, each with 96 neurons, a
learning rate of 5e-3, a regular term coefficient of 5e-1, and a number
of training rounds of 1e5, the network structure is as shown in paper
[13].

GAIN: We use the settings described in the code of the paper
[32].

Other baselines (e.g., linear regression, mean, and average) do
not have hyperparameter settings and their results are only related
to the data itself.
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