
RESEARCH ARTICLE

Selecting optimal software code descriptors—

The case of Java

Yegor Bugayenko1, Zamira KholmatovaID
2*, Artem Kruglov2, Witold Pedrycz3,

Giancarlo Succi4

1 Huawei, Moscow, Russia, 2 Innopolis University, Innopolis, Russia, 3 University of Alberta, Edmonton,

Canada, 4 Università di Bologna, Bologna, Italy

* z.kholmatova@innopolis.university

Abstract

Over the last 25 years, a considerable proliferation of software metrics and a plethora of

tools have emerged to extract them. While this is indeed positive concerning the previous

situations of limited data, it still leads to a significant problem arising both from a theoretical

and a practical standpoint. From a theoretical perspective, several metrics are likely to result

in collinearity, overfitting, etc. From a practical perspective, such a set of metrics is difficult

to manage and companies, especially small ones, may feel overwhelmed and unable to

select a viable subset of them. Still, so far it has not been fully understood what is a viable

subset of metrics suitable to properly manage software projects and products. In this paper,

we attempt to address this issue. We focus on the case of programs written in Java and we

consider classes and methods. We use Sammon error as a measure of the similarity of met-

rics. Utilizing both Particle Swarm Optimization and Genetic Algorithm, we adapted a

method for the identification of a viable subset of such metrics that could solve the men-

tioned problem. Furthermore, we experiment with our approach on 800 projects coming

from GitHub and validate the results on 200 projects. With the proposed method we got opti-

mal subsets of software engineering metrics. These subsets gave us low values of Sammon

error at more than 70% at class and method levels on a validation dataset.

1 Introduction and motivation

The relevance of software metrics has been perceived from the very beginning of software

engineering and already more than 50 years ago their benefits were considered multifaceted

[1]. Initially, the problem was the lack of sound tools to collect such metrics, and the limited

availability of industrially relevant metrics was considered a major impediment to the progress

of the discipline [2]. Computing metrics was a complex task involving tools that were expen-

sive and/or required advanced knowledge of programming language semantics such as the

pioneering tools/configuration languages by Müller [3, 4] or Devanbu (Gen++ and Genoa)

[5]. Nowadays, thanks to the intensive research and development effort in this area led by the

work of international research groups, such as ISERN centered on the research of Basili [6, 7]

and Rombach [8], and by the tools that have been developed in the last 25 years [9, 10]

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0310840 November 1, 2024 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Bugayenko Y, Kholmatova Z, Kruglov A,

Pedrycz W, Succi G (2024) Selecting optimal

software code descriptors—The case of Java.

PLoS ONE 19(11): e0310840. https://doi.org/

10.1371/journal.pone.0310840

Editor: Vijayalakshmi Kakulapati, Sreenidhi Institute

of Science and Technology, INDIA

Received: May 9, 2024

Accepted: August 27, 2024

Published: November 1, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0310840

Copyright: © 2024 Bugayenko et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: https://github.com/

ZamiraKholmatova/ReducingNumberofMetrics/.

Funding: This research has been financially

supported by The Analytical Center for the

Government of the Russian Federation (Agreement

https://orcid.org/0000-0003-1688-1183
https://doi.org/10.1371/journal.pone.0310840
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0310840&domain=pdf&date_stamp=2024-11-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0310840&domain=pdf&date_stamp=2024-11-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0310840&domain=pdf&date_stamp=2024-11-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0310840&domain=pdf&date_stamp=2024-11-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0310840&domain=pdf&date_stamp=2024-11-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0310840&domain=pdf&date_stamp=2024-11-01
https://doi.org/10.1371/journal.pone.0310840
https://doi.org/10.1371/journal.pone.0310840
https://doi.org/10.1371/journal.pone.0310840
http://creativecommons.org/licenses/by/4.0/
https://github.com/ZamiraKholmatova/ReducingNumberofMetrics/
https://github.com/ZamiraKholmatova/ReducingNumberofMetrics/

(including open source tools [11]), we are in a completely different situation. It became possi-

ble to calculate the huge range of metrics such as the amount of contribution of each devel-

oper, the number of changes to the files, and many many more.

However, the possibility of considering a huge number of software metrics gave rise to the

following problems:

1. Using too many metrics exposes the users to the problem of the validity of statistical analy-

sis. For example, collinearity between metrics increases the variance among them, and,

thus, leads to the wrong identification of dominant predictors in regression analysis [12].

Mathematically, we can write the regression problem (model) as Y = XA + b, where Y is a

response variable, X—a set of predictors (in our case, metrics), A—parameter estimates,

and b—residual vector. We can estimate A as follows: A = (XTX)−1XTY. If X is nearly line-

arly dependent, then XTX is nearly singular [12]. Therefore, the estimation of A will be

unstable meaning that small changes in X will cause huge fluctuations in A.

2. The huge volumes of data can hide the noise which may lead to incorrect results while

working with statistical models. Without a feature selection mechanism, machine learning

methods add small noise for every noisy variable to the result [13]. Having many noisy vari-

ables, the small noisy contributions are summed up and lead to high prediction errors.

3. Ineffective data management, including storage, preprocessing, and increasing computa-

tional complexity of operations over data [14].

Besides that, according to the parsimony principle, if we have two hierarchical structures

(meaning that one of them can be obtained through another) and a statistically efficient esti-

mation method, the simpler structure is asymptotically better [15–17].

To solve the problems of many metrics researchers have already suggested the following

solutions: heuristic algorithms, chi-squared and Kolmogorov-Smirnov tests, Relief, and fuzzy-

based methodology [18–20]. However, most of the experiments were conducted using super-

vised machine learning: the researchers used experts’ opinions or pre-defined labels to evaluate

the obtained results. This indeed introduces a potential threat to the soundness of the results,

since there is an intrinsic potential [21, 22], and automatic labeling is problematic with metrics

data [23].

The widely applied techniques like principal component analysis (PCA) are not adequate

for our goals because they produce a linear combination of initial metrics most likely without a

clear meaning assigned to them [24]. We are interested in methods that will help us to select

the appropriate metrics without changing them.

Considering all of the above, our goals are therefore to:

G1: Propose an approach that can identify a minimal subset of metrics that explain the “struc-

ture” of a software repository, given a set of metrics that describe it; here, the term “struc-

ture” refers to the geometrical relations between the classes or methods of a repository,

represented by a set of metrics. Each class or method is described by a point in a space

where each axis reflects a different metric. Therefore, if the points are close, it indicates that

the classes or methods share the same properties (for example, the same number of vari-

ables, and lines of code), and vice versa. From a software engineering perspective, maintain-

ing a consistent “structure” within a reduced set of metrics can enhance the efficiency of

software analysis in terms of its quality attributes, such as fault-proneness, maintainability,

recoverability, etc [25, 26]. These attributes can be found by grouping classes or methods

based on the distances between them that we are aiming to save. Our goal is to reduce the

dimensionality of the metrics while preserving these relations;

PLOS ONE Selecting optimal software code descriptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0310840 November 1, 2024 2 / 23

No. 70-2021-00143 01.11.2021, IGK

000000D730324P540002).

Competing interests: One of the authors

(Giancarlo Succi) is a Board member of PLOS ONE

journal.

https://doi.org/10.1371/journal.pone.0310840

G2: Validate this approach by applying it to a large set of open-source Java repositories;

G3: On the base of G2, focusing on Java code, define a minimal set of class metrics and method

metrics.

To achieve our goals we analyzed 1000 open-source GitHub repositories. Our work is

focused on repositories containing code written in Java: Java is mostly used by GitHub con-

tributors in projects of different sizes and ages [27]. This allows us to consider the variety of

repositories while collecting the data. We calculated 30 metrics at the class level and 28 metrics

at the method level based on the code obtained from these repositories. After that, we started

with the identification of a method that can help us to obtain the minimal sets of class and

method metrics.

Even without labels, we still need an auxiliary objective, which helps us to understand how

well the subset of metrics fits the whole set [28]. To quantify the goodness of our approxima-

tion we took Sammon error [29, 30] function, and, since the problem of calculating the error

for all possible subsets became combinatorial, we employed particle swarm optimization

(PSO) and genetic algorithm (GA). These two methods helped us to minimize the Sammon

error without referring to an exhaustive search. Despite that GA is a well-established and very

popular optimization strategy used in both academia and industry, PSO can yield almost the

same results but with less computational expenses [31]. This fact leads us to the investigation

of both techniques. Moreover, the usage of several techniques allows us to validate the obtained

results by comparison and give the final answer. Thus, our contribution is in adapting the PSO

and GA with Sammon error as a fitness function to the problem of metrics selection. Further-

more, we suggested the optimal sets of metrics at class and method levels and described the

way of selecting them.

The theoretical implication of our research is presented by a feature selection method that

can be combined with any of the machine learning models. The practical outcomes of our

work are reflected by a minimal set of code metrics that can help software engineering practi-

tioners to answer the question: what metrics does one have to select to preserve as much of the

required information as possible? It is a key question in a situation where the number of met-

rics is not known in advance. This problem is present in systems requiring selecting features

before the construction of the inference model [32]. As an example, we can consider the prob-

lem of code recommendation. Suppose, we have a set of developers’ projects X and a set of

code fragments Y. Using metric m from the developer’s x projects we can predict the complex-

ity level of the developer’s projects. In turn, code fragment y can give us a feature from which

we can infer the style of the code. We may not know in advance the metrics we will use and

features about which we want to make an inference.

The paper is organized as follows. Section 1 presents the work done in the area of metrics

selection. Section 3 contains a description of the methods used in this paper. The structure of

experimentation, as well as the results, are included in Section 4. The discussion of the

obtained results is presented in Section 5. The validation of our findings is described in Section

6. Section 7 explains the limitations of the conducted study. The discussion on whether we met

our research goals is in Section 8. Section 9 summarizes the conclusion and presents the ideas

for future work.

2 State of the art

The role of metrics in software engineering cannot be overstated: they help development

teams to understand the interdependencies within the code, estimate the resources, prioritize

slices for debugging, or identify data flow paths [33, 34]. However, the ability to compute vast

PLOS ONE Selecting optimal software code descriptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0310840 November 1, 2024 3 / 23

https://doi.org/10.1371/journal.pone.0310840

amounts of metrics may lead to a waste of effort, time consumption, or difficulty in focusing

on important parts of data. As said, our first goal is to identify the smallest possible set of met-

rics that can still describe adequately a repository. This problem has already been approached

in the past and sometimes, especially in machine learning, takes the name of “feature selection”

[35]. The quality of selected features crucially affects the effectiveness of the constructed mod-

els [36]. We can overall divide the current approaches into two groups: a) studies requiring

labeled data; b) studies not requiring labeled data.

Labeled data means that data has been tagged with descriptive information or classified by

an expert (human or machine learning algorithm). Therefore, the studies of the first group

require data to be “labeled”. They try to remove some of the metrics from an initial set by

assessing the performance of supervised machine learning algorithms before and after the

removal, indeed aiming at minimizing the difference between the two [18, 37–45]. For exam-

ple, Gao et al. [18] using the Chi-squared test, Gini index, Kolmogorov-Smirnov test, and

Relief method reduced the set of 42 metrics to the set of 6 ones which improved the perfor-

mance of the defect prediction model. The most important metrics were the number of dis-

tinct files, the number of different designers making changes, the deployment percentage of

the module, and cyclomatic complexity. Shivaji et al. [42] also thoroughly studied the various

types of feature selection methods and found that even 1 percent of the original number of

metrics can achieve strong performance in bug identification in code changes.

The main disadvantage of the studies from the first group is that they require labeled data.

Labeling is prone to subjectivity and variability and typically context-dependent, while we are

aiming at an objective versatile approach.

The studies of the second group involve methods that reduce the number of metrics with-

out access to labels. In such studies, the researchers compared the results of unsupervised algo-

rithms like clustering or tried to extract topics and create knowledge graphs [46]. For example,

Turan and Çataltepe [47] checked the changes in clusters before and after the application of

PCA. Similarly to this, Ni et al. [48] ranked the features according to their influence on den-

sity-based clusters.

The limitation of the methods from the second group is that different performances of

unsupervised learning algorithms applied to the initial and reduced sets of metrics do not

mean that the reduction technique performs poorly. For example, the k-means algorithm can

fail when clustering data with outliers or redundant metrics and then correctly cluster the

reduced dataset. Therefore, the conclusions on the most important metrics can be inconsistent

and unreliable. If we are talking about density-based clustering, there are also difficulties with

the choice of appropriate density levels: the density level chosen for clustering the entire set of

metrics may not fit the clustering of the reduced one [49]. For instance, we can find several

clusters on a 3d swiss roll depending on a density level. Using the Isomap algorithm we can get

the roll’s 2d representation—a rectangle shape. Density-based methods find the only cluster

for such a distribution of points in space. Moreover, clustering the sparse data can be even

impossible: since most of the techniques rely on distances, the researchers face computational

complexity while finding the distances between all the points in high-dimensional space.

Other techniques described in these studies like PCA are also not in the scope of our problem

since PCA-based techniques produce linear combinations of metrics as observations of a

lower-dimensional space. In most cases, such linear combinations are difficult to interpret.

In turn, we are considering a very restricted case: we analyze a huge number of repositories,

and each of them can be represented by a large set of metrics. Here, we should pay attention of

the readers, that we are examining the scenario where metrics are computed for every reposi-

tory individually at different levels (class, method, etc.). Therefore, the dimensionality reduc-

tion process will be executed independently for each repository.

PLOS ONE Selecting optimal software code descriptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0310840 November 1, 2024 4 / 23

https://doi.org/10.1371/journal.pone.0310840

Our goal is to determine how to reduce the dimensionality of vectors representing the

repository, while still preserving all the meaning of the original data. There exist methods that

try to nonlinearly preserve the distances or similarities between points [50]. Examples of such

techniques are multidimensional scaling (MDS) [51], Isometric mapping (Isomap) [52], Sam-

mon mapping [30]. Moreover, all the mentioned approaches can be adapted to the feature

selection problem: Kruskal’s stress and Sammon error—the objective functions from these

algorithms are used to measure how well the selected set of features fits the whole one [53–56].

The researchers quantify the distances between samples in two distinct spaces: one formed by

the complete set of features, and the other by a selected subset of features. The resulting dis-

tances are substituted into the objective function. A value near zero for this function indicates

that the chosen subset of features is capable of preserving the original dataset’s topology.

However, to identify the subset that produces the minimum value, an exhaustive calculation

of the objective functions is necessary for all potential subsets. Calculating Kruskal’s stress or

Sammon error for all possible subsets of given metrics is a combinatorial problem. The most

popular optimization technique—genetic algorithm showed good performance in solving

combinatorial problems [57]. Also, another approach called particle Swarm optimization

(PSO) was observed as an efficient technique for solving optimization problems in discrete

space [58, 59]—the same task we are trying to solve. However, the findings of different

researchers are ambiguous: PSO was proven to be more computationally efficient [58, 59]

while GA demonstrates significantly better results in terms of convergence [57].

Both PSO and GA have been already employed in feature selection algorithms for software

engineering problems, such as defect prediction [60–63], effort estimation [64], test paths

identification [36], and refactoring detection [65]. However, in our work, instead of minimiz-

ing the prediction error we aim to preserve the structure of the initial data. Comparing the two

selected optimization strategies, PSO is simpler to implement and faster in terms of computa-

tion time [66], while GA shows less tendency to premature convergence [67, 68]. PSO pro-

duces solutions much closer to each other thus often tending to local extremum [67, 68]. In

genetic algorithms, the solutions usually cluster near several “good” points. This trade-off

between computational efficiency and performance led us to study both strategies in our work.

3 Methodology

We represented each repository as a vector of reals:

X ¼ ðx1; x2; � � � ; xnÞ
T
;

where xn = (xn1, xn2, . . ., xnk) is a set of metrics for a particular class or method nk of a reposi-

tory X.

Our goal is to select such a set of metrics that will still preserve the geometrical distances

between points (classes or methods). In the previous section, we observed that as an objective

function of our proposed approach can be considered objective functions of existing tech-

niques like MDS, Isomap, or Sammon mapping. MDS and Isomap have the same objective

function named Kruskal’s stress:

S ¼

ffi
ðdij � d∗ijÞ

2

d2
ij

s

; ð1Þ

where dij is the distance between i-th and j-th points (classes or methods) in the higher dimen-

sional space (represented by the whole set of metrics), d∗ij is the distance between the same

PLOS ONE Selecting optimal software code descriptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0310840 November 1, 2024 5 / 23

https://doi.org/10.1371/journal.pone.0310840

points in the lower dimensional space (represented by some subset of metrics). The lower the

value of the function, the more the subset of metrics corresponds to the initial set.

The difference between MDS and Isomap is that MDS uses the Euclidean distance while the

Isomap—geodesic.

The objective function of Sammon mapping is a weighted version of Kruskal’s stress (more

details are in the subsection below) [52]. Therefore, we have selected only this function to be

minimized in our experiments.

However, since the calculation of Sammon error for all the possible subsets is a combinato-

rial problem, to find the minima of this function we need to refer to the optimization tech-

niques. From the analysis of the literature, we discovered that PSO and GA were utilized to

address this problem [69, 70]. Therefore, we also employed these techniques.

Overall the proposed methodological pipeline consists of the following parts:

1. data collection (selection of repositories and calculation of metrics);

2. finding subsets of metrics with the lowest Sammon error using PSO;

3. aggregation of the results obtained by PSO with Sammon error;

4. finding subsets of metrics with the lowest Sammon error using GA;

5. aggregation of the results obtained by GA with Sammon error.

The presented pipeline is also depicted in Fig 1.

We conducted steps 2–5 separately for metrics at class and method levels. Additionally, we

performed these steps with varying sizes of metrics subsets, thus, analyzing the ability of sub-

sets containing very few number metrics to preserve the geometrical structure.

More details on the algorithms applied in our research are given in the following

subsections.

3.1 Data collection

We wanted to focus on the repositories that are used by many people. First of all, as a source of

our data, we considered Github—the largest service for software development. As a language

for our analysis, we consider Java—one of the most popular languages on GitHub [27]. More-

over, Java was the main language for the biggest projects that brought us widely used products

like IntelliJ IDEA [71], and Apache Hadoop [72]. Also, to ensure that the repository is popular

and still developing, we set the threshold for the number of stars and commits it should have.

Overall we elaborated on the following criteria:

• code in this repository is written in Java;

• the repository contains no less than 10 commits;

• the repository has at least 100 stars;

• the project includes only open-source libraries.

Using the criteria, we have collected 1000 repositories (the list of these repositories is avail-

able through the link), which is 4.5% of the open and unarchived repositories with at least 100

stars [73]. The collected set covered the most popular GitHub topics like “java”, “spring-boot”,

“redis”, “docker”, “machine-learning”.

To calculate code metrics we employed SourceMeter [74]. This tool supports the calculation

of more than 60 code metrics related to size, objects, and complexity. Using the taxonomy pro-

posed by Fenton and Pfleeger [75] we were interested in internal product metrics describing

PLOS ONE Selecting optimal software code descriptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0310840 November 1, 2024 6 / 23

https://docs.google.com/spreadsheets/d/150TmF2DgtEJiy2KPnFPXg3LqPzHgOJGBp2pe2mxHnKw/edit?usp=sharing
https://doi.org/10.1371/journal.pone.0310840

the structure of a code at class and method levels. These metrics give us an understanding of

the cohesion, complexity, coupling, documentation, inheritance, and size of a code (Tables

1 and 2).

3.2 Dimensionality reduction

3.2.1 Sammon error function. The straightforward linear projection, such as PCA [47],

tries to keep the same amount of the original variance, but not the behavior of complex pat-

terns over data. Sammon [30] proposed an algorithm that is aimed at preserving the structure

presented by n points in k-dimensional space by finding the same number of points in l-
dimensional space [76].

For example, X is a set of input vectors from space of dimensionality k and Y = (y1, y2, . . .,

yn)T, where yn = (yn1, yn2, . . ., ynl)
T, is a set of vectors we need to find in l-dimensional space.

Fig 1. Scheme of the proposed methodological pipeline. The diagram shows the main stages of the presented methodology. The pipeline starts

with the data collection process and then proceeds to the application of PSO and GA for identifying subsets of metrics that minimize Sammon

error, followed by the aggregation of the obtained results.

https://doi.org/10.1371/journal.pone.0310840.g001

PLOS ONE Selecting optimal software code descriptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0310840 November 1, 2024 7 / 23

https://doi.org/10.1371/journal.pone.0310840.g001
https://doi.org/10.1371/journal.pone.0310840

To find Y, Sammon proposed to minimize the following expression called Sammon error:

E ¼
1

X

i<j

dij

X

i<j

ðdij � d∗ijÞ
2

dij
; ð2Þ

where dij is the distance between xi and xj, d∗ij is the distance between yi and yj.

In our case, we want to approximate the interpoint distances between classes or methods by

selecting a smaller set of metrics. So we select l, Â (l<< k), columns (metrics) from matrix X
and calculate the Sammon error between X and the matrix with a reduced number of metrics.

Since we do not have prior knowledge of the data we have collected, we will use Euclidean dis-

tance in the Sammon function [30].

3.2.2 Interpreting the numeric values of Sammon error function. As we mentioned,

every class or method of a repository is described by a set of k metrics, thus, allowing us to rep-

resent it as a point in k-dimensional space. The distances between points reflect the relation-

ships between them: if two points are close to each other, they share almost the same

Table 1. Class metrics and their abbreviations.

Metric name Abbreviation Category

Lack of Cohesion in Methods LCOM Cohesion

Nesting Level NL Complexity

Nesting Level Else-If NLE Complexity

Weighted Methods per Class WMC Complexity

Coupling Between Object classes CBO Coupling

Coupling Between Object classes Inverse CBOI Coupling

Number of Incoming Invocations NII Coupling

Number of Outgoing Invocations NOI Coupling

Response set For Class RFC Coupling

Comment Density CD Documentation

Comment Lines of Code CLOC Documentation

Depth of Inheritance Tree DIT Inheritance

Number of Ancestors NOA Inheritance

Number of Children NOC Inheritance

Number of Descendants NOD Inheritance

Number of Parents NOP Inheritance

Lines of Code LOC Size

Logical Lines of Code LLOC Size

Number of Attributes NA Size

Number of Methods NM Size

Number of Public Attributes NPA Size

Number of Public Methods NPM Size

Number of Statements NOS Size

Total Lines of Code TLOC Size

Total Logical Lines of Code TLLOC Size

Total Number of Attributes TNA Size

Total Number of Methods TNM Size

Total Number of Public Attributes TNPA Size

Total Number of Public Methods TNPM Size

Total Number of Statements TNOS Size

https://doi.org/10.1371/journal.pone.0310840.t001

PLOS ONE Selecting optimal software code descriptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0310840 November 1, 2024 8 / 23

https://doi.org/10.1371/journal.pone.0310840.t001
https://doi.org/10.1371/journal.pone.0310840

properties (e.g. two classes have the same number of methods), and vice versa. We are aiming

at reducing the number of metrics by preserving the relationship between methods or classes.

Sammon error quantifies such preservation. If we consider the classes c1 = (4, 6, 3) and c2 = (4,

18, 9) represented by three metrics, the removal of the first metric will not significantly affect

the Euclidean distance between c1 and c2 since it is the same for both classes. Therefore, to

minimize Sammon error we will keep metrics 2 and 3 meaning that various metrics (having

different values for different classes) provide us with more information while describing a soft-

ware repository.

3.3 Optimization strategies

3.3.1 Particle swarm optimization. PSO is one of the optimization algorithms used in the

proposed approach [69]. In this algorithm, the particle represents the set of features. Each fea-

ture is encoded with a number. For example, we use the floating-point encoding to control the

number of features in a subset. During each iteration, each particle moves to its previous best

position pbesti and to the global best position gbest. This movement occurs due to the updating

Table 2. Method metrics and their abbreviations.

Metric name Abbreviation Category

Lines of Duplicated Code LDC Size

Logical Lines of Duplicated Code LLDC Size

Halstead Calculated Program Length HCPL Complexity

Halstead Difficulty HDIF Complexity

Halstead Effort HEFF Complexity

Halstead Number of Delivered Bugs HNDB Complexity

Halstead Program Length HPL Complexity

Halstead Program Vocabulary HPV Complexity

Halstead Time Required to Program HTRP Complexity

Halstead Volume HVOL Complexity

Maintainability Index MI Complexity

McCabe’s Cyclomatic Complexity McCC Complexity

Nesting Level NL Complexity

Nesting Level Else-If NLE Complexity

Number of Incoming Invocations NII Coupling

Number of Outgoing Invocations NOI Coupling

Comment Density CD Documentation

Comment Lines of Code CLOC Documentation

Documentation Lines of Code DLOC Documentation

Total Comment Density TCD Documentation

Total Comment Lines of Code TCLOC Documentation

Logical Lines of Code LLOC Size

Lines of Code LOC Size

Number of Statements NOS Size

Number of Parameters NUMPAR Size

Total Logical Lines of Code TLLOC Size

Total Lines of Code TLOC Size

Total Number of Statements TNOS Size

https://doi.org/10.1371/journal.pone.0310840.t002

PLOS ONE Selecting optimal software code descriptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0310840 November 1, 2024 9 / 23

https://doi.org/10.1371/journal.pone.0310840.t002
https://doi.org/10.1371/journal.pone.0310840

of the velocity vi and position ei of each particle [69]:

vi ¼ wvi þ c1r1ðpbesti � eiÞþ

c2r2ðpbesti½gbest� � eiÞ;

ei ¼ ðei þ viÞ;

ð3Þ

where i is the particle’s number, w—an inertia weight, r1 and r2—two independent random

vectors in (0, 1), c1 and c2—positive constants called cognitive and social learning features.

3.3.2 Genetic algorithm. The second algorithm that can be used to minimize the Sam-

mon error is GA. GA creates the initial population and then tries to improve it through evolu-

tion [70]. The evolution is usually done via parent selection, crossover, and mutation. Each

member of a population represents a set of features. Similar to PSO, one should consider float-

ing-point encoding of features in each member of a population to control the number of fea-

tures included in the finite subset [77]. Float encoding allows ranking features and then

selecting the required number of them to calculate the fitness function. In each iteration, we

have conducted a one-point crossover of parents with probability pc to obtain two children

and a mutation with a probability p on every child.

3.4 Aggregation of the results

To aggregate the results, we applied a technique similar to vote-counting in meta-analysis

[78, 79]. Vote-counting implies the comparison of the number of studies with significant posi-

tive results and significant negative results; in simple words, if most of the studies that exam-

ined the same effect yielded positive significant results, then this effect is considered to have a

positive effect, and vice versa. In our case, we identified optimal subsets of different sizes as

those comprising the most frequently occurring metrics.

4 Results of experiments

For the selected with our criteria 1000 projects we have calculated 30 metrics at a class and 28

ones at a method levels. Then we divided the collected data into train and validation sets in the

proportion of 80/20. The descriptive statistics of both sets are provided in Table 3.

We used a train set to conduct all the steps of our methodological pipeline to find optimal

subsets of metrics at class and method levels. To understand whether the obtained subsets give

the same results we employed the validation set.

The values of the hyperparameters of PSO and GA used in the experiments are summarized

in Table 4.

Firstly, we applied PSO to minimize Sammon error (Eq (2)) separately for metrics at class

and method levels using the train set. We conducted experiments on each repository, vary-

ing the number of metrics at both class (ranging from 2 to 29) and method (ranging from 2

to 27) levels. Each experiment was repeated 3 times. The final result in every repository for

each number of metrics was determined by selecting the smallest recorded value. The mini-

mum, average, and maximum values of Sammon errors for each number of metrics across

the train set of repositories at both levels are presented in Figs 2 and 3. Tables A1 and A3 in

Table 3. Train and validation set description.

Dataset Total # of repositories Total # of classes Total # of methods

Train 800 155240 720107

Validation 200 43045 205948

https://doi.org/10.1371/journal.pone.0310840.t003

PLOS ONE Selecting optimal software code descriptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0310840 November 1, 2024 10 / 23

https://doi.org/10.1371/journal.pone.0310840.t003
https://doi.org/10.1371/journal.pone.0310840

S1 Appendix show the number of occurrences of each metric in subsets of 2 to 20 metrics at

the class and method levels, respectively.

We also applied GA to find the minimum value of Sammon error (Eq (2)). During each

iteration, we randomly selected pairs to produce a new generation. Each pair passed a single-

point crossover and their children underwent a mutation. Then the population was replaced

with children. Similar to the PSO approach, we conducted experiments for each repository

across different numbers of metrics at both class and method levels, repeating the process

three times. The outcome was determined by selecting the smallest Sammon error value

obtained. The results are presented in Fig 4, Table A2 in S1 Appendix (the number of appear-

ance of each metric in subsets of 2 to 20 class metrics), Fig 5, and Table A4 in S1 Appendix

(the number of appearance of each metric in subsets of 2 to 20 method metrics).

The statistics of time spent to find the optimal subset in every experiment with the parame-

ters above are provided in Table 5.

Table 4. PSO and GA hyperparameters.

Parameter name PSO GA

Population size 20 20

Number of iterations 20 20

Inertia weight 0.6 -

First cognitive vector 2 -

Second cognitive vector 2 -

First social vector 2 -

Second social vector 2 -

Probability of a crossover - 0.6

Probability of a mutation - 0.6

https://doi.org/10.1371/journal.pone.0310840.t004

Fig 2. Sammon error obtained using PSO for metrics at the class level. The figure shows the minimal, mean, and

maximum values of Sammon error obtained from the PSO optimization runs. The X-axis indicates the number of

metrics in the potential optimal subsets at the class level, while the Y-axis represents the corresponding values of

Sammon error.

https://doi.org/10.1371/journal.pone.0310840.g002

PLOS ONE Selecting optimal software code descriptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0310840 November 1, 2024 11 / 23

https://doi.org/10.1371/journal.pone.0310840.t004
https://doi.org/10.1371/journal.pone.0310840.g002
https://doi.org/10.1371/journal.pone.0310840

All the experiments were conducted on a hardware with the central processing unit AMD

RYZEN Socket AM4 X8 R7–5800X with 32 Gb of RAM and graphical processing unit

TUF-RTX3080TI-12G-GAMING with 12 Gb of VRAM.

5 Discussion

Comparing Fig 2 with Fig 4 and Fig 3 with Fig 5, one can notice that PSO and GA give almost

the same values of Sammon error. However, we compared distributions of values obtained

Fig 3. Sammon error obtained using PSO for metrics at the method level. The figure shows the minimal, mean, and

maximum values of Sammon error obtained from the PSO optimization runs. The X-axis indicates the number of

metrics in the potential optimal subsets at the method level, while the Y-axis represents the corresponding values of

Sammon error.

https://doi.org/10.1371/journal.pone.0310840.g003

Fig 4. Sammon error obtained using GA for metrics at the class level. The figure shows the minimal, mean, and

maximum values of Sammon error obtained from the GA optimization runs. The X-axis indicates the number of

metrics in the potential optimal subsets at the class level, while the Y-axis represents the corresponding values of

Sammon error.

https://doi.org/10.1371/journal.pone.0310840.g004

PLOS ONE Selecting optimal software code descriptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0310840 November 1, 2024 12 / 23

https://doi.org/10.1371/journal.pone.0310840.g003
https://doi.org/10.1371/journal.pone.0310840.g004
https://doi.org/10.1371/journal.pone.0310840

through these two techniques for the same number of features using the Mann-Whitney test

(the non-parametric counterpart of the independent t-test) [80, 81]. The null hypothesis posits

that the distributions of Sammon errors derived from PSO and GA are identical, whereas the

alternative hypothesis asserts that the distribution of values obtained through PSO is lower

than those obtained through GA. At a class level, the was no difference in usage of PSO and

GA when the number of metrics was equal to 2, 3, 26, 27, 27. For other numbers of metrics,

the test showed that the distribution underlying errors obtained by employing PSO is less than

the one obtained by employing GA. No difference in usage PSO and GA was also observed for

optimal sets of 2, 3, 24, 25, and 26 metrics at a method level. In other cases, the test showed the

same trend as in a class level.

Nevertheless, remains the question about the identification of Sammon error values that

characterize a chosen subset of metrics as “good”. Sammon errors below 25% have been

deemed low in visualization tasks [82]. Having no other information at hand, we also defined

the subset as optimal when it yielded an error value of less than 0.25.

In our experiments with the Sammon error function on the train set, both PSO and GA

gave values less than 0.25 starting from 7 metrics at the class and 6 metrics at the method levels

(see S1 Appendix).

The subset of 7 metrics (CD, NOP, NLE, DIT, CBO, NL, NA) demonstrates the lower Sam-

mon error: 537 repositories from a train set showed a value less than 0.25.

Fig 5. Sammon error obtained using GA for metrics at the method level. The figure shows the minimal, mean, and

maximum values of Sammon error obtained from the GA optimization runs. The X-axis indicates the number of

metrics in the potential optimal subsets at the method level, while the Y-axis represents the corresponding values of

Sammon error.

https://doi.org/10.1371/journal.pone.0310840.g005

Table 5. Time spent for experimentation.

Approach Level Mean (s) Min (s) Max (s)

PSO Class 0.04040 0.00396 2.04671

GA Class 0.04193 0.00495 2.04767

PSO Method 0.21032 0.00402 4.88547

GA Method 0.21171 0.00505 4.85664

https://doi.org/10.1371/journal.pone.0310840.t005

PLOS ONE Selecting optimal software code descriptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0310840 November 1, 2024 13 / 23

https://doi.org/10.1371/journal.pone.0310840.g005
https://doi.org/10.1371/journal.pone.0310840.t005
https://doi.org/10.1371/journal.pone.0310840

At the method level, in Tables A3 and A4 in S1 Appendix subsets of 6 metrics (NUMPAR,

CD, TCD, NLE, NOI, NL) give us the Sammon error less than 0.25 on average (513 reposito-

ries from a train set showed such values).

The median, mean, and standard deviation of Sammon error calculated for the optimal set

of metrics at a class level and method levels in all train repositories are presented in Table 6.

However, looking at Figs 2–5, it is also noticeable that the bottom lines in all these figures

are not smooth: this can be explained by convergence to local minima of both methods. We

cannot guarantee that all the values obtained in our experiments are the optimal ones.

Nevertheless, we have established that PSO provides better performance and spends a bit

less time at class (Table 7) and method (Table 8) levels in comparison with GA.

6 Validity

To ensure the internal validity of our study, we employed two optimization strategies—PSO

and GA, and compared the results obtained from both methods. The fact that the two methods

produced similar results in terms of optimal subsets of metrics indicates the high degree of

convergent validity in our study.

To verify whether the found subsets of metrics would still give us a Sammon error of less

than 0.25, we measured the Sammon error for these subsets on the validation set of 200 reposi-

tories. For 148 repositories at a class and 146 at a method levels we got the Sammon errors less

than 0.25. The median, mean, and standard deviation of the results we obtained are presented

in Table 9. The results are independent of each other, implying that the calculation of error for

one repository does not impact the calculations for others.

Table 6. Mean and standard deviation of Sammon error obtained for the optimal sets of metrics.

Level Median Mean Std

Class (7 metrics) 0.22 0.22 0.07

Method (6 metrics) 0.22 0.22 0.09

https://doi.org/10.1371/journal.pone.0310840.t006

Table 7. Execution time of PSO and GA using Sammon error at a class level.

Statistic PSO (s) GA (s)

Mean 0.0403 0.0418

Median 0.0069 0.0085

Standard deviation 0.1108 0.1102

Minimum 0.004 0.0049

Maximum 2.044 2.0869

https://doi.org/10.1371/journal.pone.0310840.t007

Table 8. Execution time of PSO and GA using Sammon error at a method level.

Statistic PSO (s) GA (s)

Mean 0.2102 0.2116

Median 0.0181 0.0196

Standard deviation 0.4787 0.4779

Minimum 0.004 0.0051

Maximum 4.881 4.8566

https://doi.org/10.1371/journal.pone.0310840.t008

PLOS ONE Selecting optimal software code descriptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0310840 November 1, 2024 14 / 23

https://doi.org/10.1371/journal.pone.0310840.t006
https://doi.org/10.1371/journal.pone.0310840.t007
https://doi.org/10.1371/journal.pone.0310840.t008
https://doi.org/10.1371/journal.pone.0310840

Therefore, to verify that the Sammon errors computed for the 200 validation repositories

were lower than those computed for the 800 training repositories, we conducted two addi-

tional hypothesis tests. At the class level, we tested the null hypothesis that the distribution of

errors for the optimal subset during the train and validation are identical, again the one-sided

alternative that the validation set gives lower values. Using the Mann-Whitney test, we rejected

the null hypothesis with a p-value of 0.0241. Similarly, at the method level, we tested the same

null hypothesis against the same one-sided alternative and also rejected the null hypothesis in

favor of the alternative with a p-value of 0.0027.

The proposed approach performed well as the optimal set of metrics at both levels had a

Sammon error of less than 0.25. However, the sets contained potentially correlated metrics

such as NL and NLE, CD, and TCD. It is important to note that Sammon error does not

account for collinearity between vectors. Overall, the validation results support both the inter-

nal and external validity of our findings.

The external validity of our research is also supported by the implication of randomization

when selecting the data sample. The projects present in both the training and validation sets

vary in terms of their size, allowing us to claim high representativeness of the selected sample

(Figs 6–9).

7 Limitations

Even after considering the different types of validity our study still has some limitations that

have to be acknowledged:

Table 9. Mean and standard deviation of Sammon error obtained during validation.

Level Median Mean Std

Class (7 metrics) 0.20 0.21 0.07

Method (6 metrics) 0.20 0.21 0.09

https://doi.org/10.1371/journal.pone.0310840.t009

Fig 6. Distribution of repositories in the train set by the number of classes. The pie chart shows the distribution of

repositories in the training set, categorized by the number of classes: repositories with 500 or fewer classes, those with

between 501 and 1000 classes, and repositories with more than 1000 classes.

https://doi.org/10.1371/journal.pone.0310840.g006

PLOS ONE Selecting optimal software code descriptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0310840 November 1, 2024 15 / 23

https://doi.org/10.1371/journal.pone.0310840.t009
https://doi.org/10.1371/journal.pone.0310840.g006
https://doi.org/10.1371/journal.pone.0310840

• choice of the language. Our study is restricted to the case of Java meaning that we need addi-

tional research to generalize our findings;

• potential collinearity of metrics. Although we have identified the optimal sets of software

engineering metrics, some of these metrics seem to be collinear;

• sampling technique. Even though we tried to ensure the sample variability in terms of the

size, domain, and popularity, we still cannot guarantee the extent to which the obtained sam-

ple captures the real-world scenario;

• threshold of Sammon error. The considered threshold was appropriate for our study without

an implication of being suitable to other datasets;

Fig 7. Distribution of repositories in the train set by the number of methods. The pie chart shows the distribution

of repositories in the training set, categorized by the number of methods: repositories with 500 or fewer methods, those

with between 501 and 1000 methods, and repositories with more than 1000 methods.

https://doi.org/10.1371/journal.pone.0310840.g007

Fig 8. Distribution of repositories in the validation set by the number of classes. The pie chart shows the

distribution of repositories in the validation set, categorized by the number of classes: repositories with 500 or fewer

classes, those with between 501 and 1000 classes, and repositories with more than 1000 classes.

https://doi.org/10.1371/journal.pone.0310840.g008

PLOS ONE Selecting optimal software code descriptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0310840 November 1, 2024 16 / 23

https://doi.org/10.1371/journal.pone.0310840.g007
https://doi.org/10.1371/journal.pone.0310840.g008
https://doi.org/10.1371/journal.pone.0310840

• choice of metrics. Our work analyzes only a limited set of metrics. There exist other metrics

that could be relevant to our analysis and not included in the scope of this study.

8 Review of the goals of the research

8.1 Review of the G1

The first goal of the research dealt with identifying a minimal set of metrics describing the

“structure” of a repository.

Analyzing the results from the conducted experiments, we propose the following approach

that for a given set of metrics identifies the minimal subset of them—PSO with Sammon error.

The main idea of this approach is to preserve the Euclidean distances between classes or meth-

ods presented by metrics. Sammon error quantifies such preservation. Minimizing Sammon

error using optimization strategies helps us to avoid consideration of all possible subsets. Dur-

ing our experiments, we have found that PSO shows good performance while minimizing

Sammon error and consumes less time than GA.

8.2 Review of G2

The second goal of the research aimed at validating the approach defined in G1 on a large set

of open-source Java repositories. During answering G1, we run the approach for 800 open-

source Java repositories at a class and method levels. The initial number of class metrics is 30,

and the method metrics—28.

8.3 Review of G3

The third goal of the research was to find, based on the result of G2 and focusing on Java code,

a minimal set of class metrics and method metrics properly describing in general a Java reposi-

tory. The main obstacle we have faced during this research is the aggregation of the results

obtained from each repository: how we can combine about 30 subsets from 800 projects and

give a unified answer. Software engineering lacks the methods for aggregation or

Fig 9. Distribution of repositories in the validation set by the number of methods. The pie chart shows the

distribution of repositories in the validation set, categorized by the number of methods: repositories with 500 or fewer

methods, those with between 501 and 1000 methods, and repositories with more than 1000 methods.

https://doi.org/10.1371/journal.pone.0310840.g009

PLOS ONE Selecting optimal software code descriptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0310840 November 1, 2024 17 / 23

https://doi.org/10.1371/journal.pone.0310840.g009
https://doi.org/10.1371/journal.pone.0310840

generalization of the results from multiple experiments. There already exist different methods

like meta-analysis or vote-counting [79, 83]. Meta-analysis is mostly used to combine correla-

tion coefficients or mean differences which is not the scope of our work. Vote-counting is the

least powerful aggregation technique that should be avoided whenever possible. Nevertheless,

we tried to aggregate our results by repeating the experiments (3 times for each number of

metrics in every repository) and comparing the results obtained from PSO with Sammon

Error with those obtained with the help of GA. We define an optimal set of metrics for each

metric count as a subset comprising the most frequently occurring metrics. This approach

helped us to observe patterns in the appearance of metrics in different subsets (Tables A1–A4

in S1 Appendix) and give a common answer. Overall, as optimal sets of metrics, we can con-

sider the following ones:

• at the class level: Comment Density, Number of Parents, Nesting Level Else-If, Depth of

Inheritance Tree, Coupling Between Object classes, Nesting Level, Number of Attributes;

• at the method level: Number of Parameters, Comment Density, Total Comment Density,

Nesting Level Else-If, Number of Outgoing Invocations, Nesting Level.

These subsets are obtained by analyzing classes and methods in every repository as the

points in high dimensional spaces and considering the Euclidean distances between them.

Exclusion of an expert’s opinion or focus on the “name” of the metric prevents us from bias

while running our experiments.

9 Conclusion

In this research, we were aimed to adapt a method for finding optimal subset of software engi-

neering metrics. For this purpose, we have employed Sammon error as a fitness function with

PSO and GA as optimizers. To run the experiments, we collected a dataset with 30 class and 28

method metrics for 1000 open-source Java repositories.

In our experiments, both PSO and GA gave almost the same results in terms of Sammon

error. It could be due to the medium population size and the number of iterations in GA. This

observation prompted us to compare the execution time of these methods. The results show us

that PSO can be a bit faster than GA (Tables 7 and 8). Considering both the performance and

the execution time, we suggest using PSO with Sammon error to select the appropriate metrics.

Found by this method the optimal subsets gave us low values of Sammon error at 74% of vali-

dation repositories at a class and 73% at a method level. Moreover, the obtained subsets have

intersected metrics with the subsets found in the other works. For example, Zivkovic et al. [84]

suggested a software defect prediction approach based on a reptile search algorithm for opti-

mization. The analysis of their results confirmed that nesting level, depth of inheritance tree,

and the number of dependencies that the observed class owns—the metrics that also appeared

in our optimal subsets, are significant for the defect prediction.

As previously noted, the Sammon error function does not account for collinearity among

metrics. Consequently, we aim to address this issue in our future research by mitigating collin-

earity while selecting the most suitable set of metrics. Despite these limitations, our study pro-

vides valuable insights into the selection of metrics when the number of features is unknown a

priori. Moreover, our findings demonstrated the potential of PSO with Sammon error to

define the smaller subsets of metrics faster than GA with Sammon error.

As a future work, we intend to explore other optimization strategies and fitness func-

tions and search for optimal parameters for these methods. We also plan to explore novel

techniques to preserve maximal information from the complete set of metrics while main-

taining the interpretability of selected features. Additionally, we aim to expand our study to

PLOS ONE Selecting optimal software code descriptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0310840 November 1, 2024 18 / 23

https://doi.org/10.1371/journal.pone.0310840

include more programming languages and different software engineering tasks to general-

ize our findings. We assume that other languages similar to Java (for example, C#) will work

similarly, but at the moment we have no supporting evidence. Therefore to understand the

effect of the choice of programming languages on the results we want to proceed with experi-

ments on other languages—similar to Java, different from it (like Rust), or the most popular in

Github (like Python). By considering these aspects, we believe that we can enhance the meth-

odology for selecting software engineering metrics, ultimately improving the quality of soft-

ware development.

Supporting information

S1 Appendix.

(PDF)

Author Contributions

Conceptualization: Yegor Bugayenko, Giancarlo Succi.

Data curation: Zamira Kholmatova.

Formal analysis: Yegor Bugayenko.

Funding acquisition: Giancarlo Succi.

Investigation: Zamira Kholmatova.

Methodology: Yegor Bugayenko, Zamira Kholmatova, Witold Pedrycz, Giancarlo Succi.

Project administration: Giancarlo Succi.

Software: Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov, Giancarlo Succi.

Supervision: Artem Kruglov, Witold Pedrycz, Giancarlo Succi.

Writing – original draft: Zamira Kholmatova, Artem Kruglov.

Writing – review & editing: Witold Pedrycz, Giancarlo Succi.

References
1. Fenton Norman E and Neil Martin. Software metrics: successes, failures and new directions. Journal of

Systems and Software, 47(2-3):149–157, 1999. https://doi.org/10.1016/S0164-1212(99)00035-7

2. Norman E Fenton and Martin Neil. Software metrics: roadmap. In Proceedings of the Conference on

the Future of Software Engineering, pages 357–370, 2000.

3. Hausi A. Müller and K. Klashinsky. Rigi—A system for programming-in-the-large. In Tan Chin Nam,

Larry E. Druffel, and Bertrand Meyer, editors, Proceedings, 10th International Conference on Software

Engineering, Singapore, Singapore, April 11-15, 1988, pages 80–87. IEEE Computer Society, 1988.

4. Tarja Systä, Ping Yu, and Hausi A. Müller. Analyzing java software by combining metrics and program

visualization. In 4th European Conference on Software Maintenance and Reengineering, CSMR 2000,

Zurich, Switzerland, February 29—March 3, 2000, pages 199–208. IEEE Computer Society, 2000.

5. Premkumar T. Devanbu. Genoa: A customizable language- and front-end independent code analyzer.

In Proceedings of the 14th International Conference on Software Engineering, ICSE’92, page 307–317,

New York, NY, USA, 1992. Association for Computing Machinery.

6. Victor R. Basili. The role of experimentation in software engineering: Past, current, and futuretama2015-

combination. In H. Dieter Rombach, T. S. E. Maibaum, and Marvin V. Zelkowitz, editors, 18th Interna-

tional Conference on Software Engineering, Berlin, Germany, March 25-29, 1996, Proceedings, pages

442–449. IEEE Computer Society, 1996.

7. Basili Victor R. and Briand Lionel C. Reflections on the empirical software engineering journal. Empir.

Softw. Eng., 27(1):6, 2022. https://doi.org/10.1007/s10664-021-10055-9

PLOS ONE Selecting optimal software code descriptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0310840 November 1, 2024 19 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0310840.s001
https://doi.org/10.1016/S0164-1212(99)00035-7
https://doi.org/10.1007/s10664-021-10055-9
https://doi.org/10.1371/journal.pone.0310840

8. H. Dieter Rombach. The role of measurement in isees. In Carlo Ghezzi and John Alexander McDermid,

editors, ESEC ‘89, 2nd European Software Engineering Conference, University of Warwick, Coventry,

UK, September 11-15, 1989, Proceedings, volume 387 of Lecture Notes in Computer Science, pages

65–85. Springer, 1989.

9. Rüdiger Lincke, Jonas Lundberg, and Welf Löwe. Comparing software metrics tools. In Proceedings of

the 2008 international symposium on Software testing and analysis. ACM, July 2008.

10. Yusuf U. Mshelia, Simon T. Apeh, and Olaye Edoghogho. A comparative assessment of software met-

rics tools. In 2017 International Conference on Computing Networking and Informatics (ICCNI). IEEE,

October 2017.

11. Kaur Sandeep and. Software metrics and metric tools a review. International Journal on Recent and

Innovation Trends in Computing and Communication, 3(4):2076–2079, 2015. https://doi.org/10.17762/

ijritcc2321-8169.150468

12. Dormann Carsten F, Elith Jane, Bacher Sven, Buchmann Carsten, Carl Gudrun, Gabriel Carré, et al.

Collinearity: a review of methods to deal with it and a simulation study evaluating their performance.

Ecography, 36(1):27–46, 2013. https://doi.org/10.1111/j.1600-0587.2012.07348.x

13. Ul Haq Anwar, Zhang Defu, Peng He, and Ur Rahman Sami. Combining multiple feature-ranking tech-

niques and clustering of variables for feature selection. Ieee Access, 7:151482–151492, 2019. https://

doi.org/10.1109/ACCESS.2019.2947701

14. Tang Jiliang, Alelyani Salem, and Liu Huan. Feature selection for classification: A review. Data classifi-

cation: Algorithms and applications, page 37, 2014.

15. Gustavsson Ivar, Ljung Lennart, and Söderström Torsten. Identification of processes in closed loop—

identifiability and accuracy aspects. Automatica, 13(1):59–75, 1977. https://doi.org/10.1016/0005-1098

(77)90009-7

16. Stoica Petre and Söderström Torsten. On the parsimony principle. International Journal of Control, 36

(3):409–418, 1982. https://doi.org/10.1080/00207178208932904

17. Yang Zebin, Zhang Aijun, and Sudjianto Agus. Gami-net: An explainable neural network based on gen-

eralized additive models with structured interactions. Pattern Recognition, 120:108192, 2021. https://

doi.org/10.1016/j.patcog.2021.108192

18. Gao Kehan, Khoshgoftaar Taghi M, Wang Huanjing, and Seliya Naeem. Choosing software metrics for

defect prediction: an investigation on feature selection techniques. Software: Practice and Experience,

41(5):579–606, 2011.

19. Garg Ramesh Kumar, Sharma Kapil, Nagpal CK, Garg Rakesh, Garg Rajpal, and Kumar Rajive. Rank-

ing of software engineering metrics by fuzzy-based matrix methodology. Software Testing, Verification

and Reliability, 23(2):149–168, 2013. https://doi.org/10.1002/stvr.459

20. Stuckman Jeffrey, Walden James, and Scandariato Riccardo. The effect of dimensionality reduction on

software vulnerability prediction models. IEEE Transactions on Reliability, 66(1):17–37, 2016. https://

doi.org/10.1109/TR.2016.2630503

21. Audhkhasi Kartik and Narayanan Shrikanth. A globally-variant locally-constant model for fusion of labels

from multiple diverse experts without using reference labels. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 35(4):769–783, 2013. https://doi.org/10.1109/TPAMI.2012.139 PMID:

22732663

22. Huang Jun, Li Guorong, Huang Qingming, and Wu Xindong. Learning label-specific features and class-

dependent labels for multi-label classification. IEEE Transactions on Knowledge and Data Engineering,

28(12):3309–3323, 2016. https://doi.org/10.1109/TKDE.2016.2608339

23. Tu Huy, Yu Zhe, and Menzies Tim. Better data labelling with emblem (and how that impacts defect pre-

diction). IEEE Transactions on Software Engineering, 48(1):278–294, 2022. https://doi.org/10.1109/

TSE.2020.2986415

24. Wold Svante, Esbensen Kim, and Geladi Paul. Principal component analysis. Chemometrics and intelli-

gent laboratory systems, 2(1-3):37–52, 1987. https://doi.org/10.1016/0169-7439(87)80084-9

25. Shtern Mark and Tzerpos Vassilios. Clustering methodologies for software engineering. Advances in

Software Engineering, 2012, 2012. https://doi.org/10.1155/2012/792024

26. Zhong Shi, Khoshgoftaar Taghi M, and Seliya Naeem. Analyzing software measurement data with clus-

tering techniques. IEEE Intelligent Systems, 19(2):20–27, 2004. https://doi.org/10.1109/MIS.2004.

1274907

27. Github Language Stats. https://madnight.github.io/githut/#/pull_requests/2024/1. Accessed: 2024-04-10.

28. Joshua Ka-Wing Lee. Maximal Correlation Feature Selection and Suppression With Applications. PhD

thesis, Massachusetts Institute of Technology, 2021.

29. O’Grady Kevin E. Measures of explained variance: Cautions and limitations. Psychological Bulletin, 92

(3):766, 1982. https://doi.org/10.1037/0033-2909.92.3.766

PLOS ONE Selecting optimal software code descriptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0310840 November 1, 2024 20 / 23

https://doi.org/10.17762/ijritcc2321-8169.150468
https://doi.org/10.17762/ijritcc2321-8169.150468
https://doi.org/10.1111/j.1600-0587.2012.07348.x
https://doi.org/10.1109/ACCESS.2019.2947701
https://doi.org/10.1109/ACCESS.2019.2947701
https://doi.org/10.1016/0005-1098(77)90009-7
https://doi.org/10.1016/0005-1098(77)90009-7
https://doi.org/10.1080/00207178208932904
https://doi.org/10.1016/j.patcog.2021.108192
https://doi.org/10.1016/j.patcog.2021.108192
https://doi.org/10.1002/stvr.459
https://doi.org/10.1109/TR.2016.2630503
https://doi.org/10.1109/TR.2016.2630503
https://doi.org/10.1109/TPAMI.2012.139
http://www.ncbi.nlm.nih.gov/pubmed/22732663
https://doi.org/10.1109/TKDE.2016.2608339
https://doi.org/10.1109/TSE.2020.2986415
https://doi.org/10.1109/TSE.2020.2986415
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1155/2012/792024
https://doi.org/10.1109/MIS.2004.1274907
https://doi.org/10.1109/MIS.2004.1274907
https://madnight.github.io/githut/#/pull_requests/2024/1
https://doi.org/10.1037/0033-2909.92.3.766
https://doi.org/10.1371/journal.pone.0310840

30. Sammon John W. A nonlinear mapping for data structure analysis. IEEE Transactions on computers,

100(5):401–409, 1969. https://doi.org/10.1109/T-C.1969.222678

31. Rania Hassan, Babak Cohanim, Olivier De Weck, and Gerhard Venter. A comparison of particle swarm

optimization and the genetic algorithm. In 46th AIAA/ASME/ASCE/AHS/ASC structures, structural

dynamics and materials conference, page 1897, 2005.

32. Shao-Lun Huang, Anuran Makur, Lizhong Zheng, and Gregory W Wornell. An information-theoretic

approach to universal feature selection in high-dimensional inference. In 2017 IEEE International Sym-

posium on Information Theory (ISIT), pages 1336–1340. IEEE, 2017.

33. Girgis Moheb, Elnashar Alaa, El-Hafeez Tarek Abd, and Mohammed Marwa. An asp.net web applica-

tions data flow testing approach. International Journal of Computer Applications, 153:6–18, 11 2016.

https://doi.org/10.5120/ijca2016912117

34. Moheb Girgis, Ahmed Radwan, and Tarek Abd El-Hafeez. An approach to slicing object-oriented pro-

grams. In 37th annual conference on statistics, computer sciences, and operation research., 12

2002.

35. Farghaly Heba Mamdouh and El-Hafeez Tarek Abd. A new feature selection method based on frequent

and associated itemsets for text classification. Concurrency and Computation: Practice and Experi-

ence, 34(25):e7258, 2022. https://doi.org/10.1002/cpe.7258

36. Ghiduk Ahmed S, Girgis Moheb R, Hassan Eman, and Aljahdali Sultan. Automatic pso based path gen-

eration technique for data flow coverage. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 29

(1):147–164, 2021. https://doi.org/10.32604/iasc.2021.015708

37. Wilker Altidor, Taghi M Khoshgoftaar, and Amri Napolitano. Wrapper-based feature ranking for software

engineering metrics. In 2009 International Conference on Machine Learning and Applications, pages

241–246. IEEE, 2009.

38. Ilona Bluemke and Anna Stepień. Selection of metrics for the defect prediction. In International Confer-

ence on Dependability and Complex Systems, pages 39–50. Springer, 2016.

39. Heba Mamdouh Farghaly, Abdelmgeid A Ali, and Tarek Abd El-Hafeez. Developing an efficient method

for automatic threshold detection based on hybrid feature selection approach. In Artificial Intelligence

and Bioinspired Computational Methods: Proceedings of the 9th Computer Science On-line Conference

2020, Vol. 2 9, pages 56–72. Springer, 2020.

40. N Gayatri, S Nickolas, AV Reddy, S Reddy, and AV Nickolas. Feature selection using decision tree

induction in class level metrics dataset for software defect predictions. In Proceedings of the world con-

gress on engineering and computer science, volume 1, pages 124–129. Citeseer, 2010.

41. Marian Jureczko and Lech Madeyski. Towards identifying software project clusters with regard to defect

prediction. In Proceedings of the 6th international conference on predictive models in software engi-

neering, pages 1–10, 2010.

42. Shivaji Shivkumar, James Whitehead E., Akella Ram, and Kim Sunghun. Reducing features to improve

code change-based bug prediction. IEEE Transactions on Software Engineering, 39(4):552–569,

2013. https://doi.org/10.1109/TSE.2012.43

43. Huanjing Wang, Taghi M Khoshgoftaar, and Amri Napolitano. An empirical study of software metrics

selection using support vector machine. In SEKE, pages 83–88, 2011.

44. Ye Xia, Guoying Yan, and Qianran Si. A study on the significance of software metrics in defect predic-

tion. In 2013 Sixth International Symposium on Computational Intelligence and Design, volume 2,

pages 343–346. IEEE, 2013.

45. Luo Yunfeng and Ben Kerong. Metrics selection for fault-proneness prediction of software modules. In

2010 International Conference On Computer Design and Applications, volume 2, pages V2–191. IEEE,

2010.

46. Badawy Ahmed, Fisteus Jesus A, Mahmoud Tarek M, and El-Hafeez Tarek Abd. Topic extraction and

interactive knowledge graphs for learning resources. Sustainability, 14(1):226, 2021. https://doi.org/10.

3390/su14010226

47. Metin Turan and Zehra Çataltepe. Clustering and dimensionality reduction to determine important soft-

ware quality metrics. In 2007 22nd international symposium on computer and information sciences,

pages 1–6. IEEE, 2007.

48. Ni Chao, Liu Wang-Shu, Chen Xiang, Gu Qing, Chen Dao-Xu, and Huang Qi-Guo. A cluster based fea-

ture selection method for cross-project software defect prediction. Journal of Computer Science and

Technology, 32(6):1090–1107, 2017. https://doi.org/10.1007/s11390-017-1785-0

49. Kriegel Hans-Peter, Kröger Peer, Sander Jörg, and Zimek Arthur. Density-based clustering. Wiley inter-

disciplinary reviews: data mining and knowledge discovery, 1(3):231–240, 2011.

50. Bardia Yousefi, Mélina Khansari, Ryan Trask, Patrick Tallon, Carina Carino, Arman Afrasiyabi, et al.

Density-based isometric mapping. arXiv preprint arXiv:2403.02531, 2024.

PLOS ONE Selecting optimal software code descriptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0310840 November 1, 2024 21 / 23

https://doi.org/10.1109/T-C.1969.222678
https://doi.org/10.5120/ijca2016912117
https://doi.org/10.1002/cpe.7258
https://doi.org/10.32604/iasc.2021.015708
https://doi.org/10.1109/TSE.2012.43
https://doi.org/10.3390/su14010226
https://doi.org/10.3390/su14010226
https://doi.org/10.1007/s11390-017-1785-0
https://doi.org/10.1371/journal.pone.0310840

51. Steyvers Mark. Multidimensional scaling. Encyclopedia of cognitive science, 1, 2002.

52. Ghojogh Benyamin, Crowley Mark, Karray Fakhri, and Ghodsi Ali. Multidimensional scaling, sammon

mapping, and isomap. In Elements of Dimensionality Reduction and Manifold Learning, pages 185–

205. Springer, 2023.

53. Banerjee Monami and Pal Nikhil R. Unsupervised feature selection with controlled redundancy (ufes-

cor). IEEE Transactions on Knowledge and data engineering, 27(12):3390–3403, 2015. https://doi.org/

10.1109/TKDE.2015.2455509

54. Cai Jie, Luo Jiawei, Wang Shulin, and Yang Sheng. Feature selection in machine learning: A new per-

spective. Neurocomputing, 300:70–79, 2018. https://doi.org/10.1016/j.neucom.2017.11.077

55. Sukumar Chakraborty and Nikhil R Pal. Selection of structure preserving features with neural networks.

In The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ’03., volume 2, pages 822–

827. IEEE, 2003.

56. Saxena Amit, Pal Nikhil R, and Vora Megha. Evolutionary methods for unsupervised feature selection

using sammon’s stress function. Fuzzy Information and Engineering, 2(3):229–247, 2010. https://doi.

org/10.1007/s12543-010-0047-4

57. Chen Hao-Wei and Liang Chiu-Kuo. Genetic algorithm versus discrete particle swarm optimization

algorithm for energy-efficient moving object coverage using mobile sensors. Applied Sciences, 12

(7):3340, 2022. https://doi.org/10.3390/app12073340

58. Akhand MAH, Rahman Md Masudur, and Siddique Nazmul. Advances on particle swarm optimization

in solving discrete optimization problems. In Advances in Swarm Intelligence: Variations and Adapta-

tions for Optimization Problems, pages 59–88. Springer, 2022.

59. Kwakye Benjamin Danso, Li Yongjun, Mohamed Halima Habuba, Baidoo Evans, and Asenso Theophi-

lus Quachie. Particle guided metaheuristic algorithm for global optimization and feature selection prob-

lems. Expert Systems with Applications, 248:123362, 2024. https://doi.org/10.1016/j.eswa.2024.

123362

60. Moukhafi Mehdi, El Yassini Khalid, and Bri Seddik. A novel hybrid ga and svm with pso feature selection

for intrusion detection system. Int. J. Adv. Sci. Res. Eng, 4(5):129–134, 2018.

61. Tama Bayu Adhi and Rhee Kyung Hyune. A combination of pso-based feature selection and tree-

based classifiers ensemble for intrusion detection systems. In Advances in Computer Science and

Ubiquitous Computing, pages 489–495. Springer, 2015.

62. Wahono Romi Satria and Suryana Nanna. Combining particle swarm optimization based feature selec-

tion and bagging technique for software defect prediction. International Journal of Software Engineering

and Its Applications, 7(5):153–166, 2013. https://doi.org/10.14257/ijseia.2013.7.5.16

63. Bing Xue, Mengjie Zhang, and Will N Browne. Multi-objective particle swarm optimisation (pso) for fea-

ture selection. In Proceedings of the 14th annual conference on Genetic and evolutionary computation,

pages 81–88, 2012.

64. Oliveira Adriano LI, Braga Petronio L, Lima Ricardo MF, and Cornélio Márcio L. Ga-based method for

feature selection and parameters optimization for machine learning regression applied to software effort

estimation. information and Software Technology, 52(11):1155–1166, 2010. https://doi.org/10.1016/j.

infsof.2010.05.009

65. Rim Mahouachi, Marouane Kessentini, and Mel Ó Cinnéide. Search-based refactoring detection using

software metrics variation. In International symposium on search based software engineering, pages

126–140. Springer, 2013.

66. Ahmad Iftikhar. Feature selection using particle swarm optimization in intrusion detection. International

Journal of Distributed Sensor Networks, 11(10):806954, 2015.

67. Kachitvichyanukul Voratas. Comparison of three evolutionary algorithms: Ga, pso, and de. Industrial

Engineering and Management Systems, 11(3):215–223, 2012. https://doi.org/10.7232/iems.2012.11.

3.215

68. Li Zhijie, Liu Xiangdong, Duan Xiaodong, and Huang Feixue. Comparative research on particle swarm

optimization and genetic algorithm. Comput. Inf. Sci., 3(1):120–127, 2010.

69. James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings of ICNN’95-interna-

tional conference on neural networks, volume 4, pages 1942–1948. IEEE, 1995.

70. Mirjalili Seyedali. Genetic algorithm. In Evolutionary algorithms and neural networks, pages 43–55.

Springer, 2019.

71. IntelliJ IDEA. https://www.jetbrains.com/help/idea/github.html. Accessed: 2024-04-10.

72. Apache Hadoop. https://hadoop.apache.org/. Accessed: 2024-04-10.

73. Repositories with at least 100 stars. https://github.com/search?q=stars%3A%3E%3D100+is%3Apublic

+archived%3Afalse+language%3Ajava&type=repositories. Accessed: 2024-07-26.

PLOS ONE Selecting optimal software code descriptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0310840 November 1, 2024 22 / 23

https://doi.org/10.1109/TKDE.2015.2455509
https://doi.org/10.1109/TKDE.2015.2455509
https://doi.org/10.1016/j.neucom.2017.11.077
https://doi.org/10.1007/s12543-010-0047-4
https://doi.org/10.1007/s12543-010-0047-4
https://doi.org/10.3390/app12073340
https://doi.org/10.1016/j.eswa.2024.123362
https://doi.org/10.1016/j.eswa.2024.123362
https://doi.org/10.14257/ijseia.2013.7.5.16
https://doi.org/10.1016/j.infsof.2010.05.009
https://doi.org/10.1016/j.infsof.2010.05.009
https://doi.org/10.7232/iems.2012.11.3.215
https://doi.org/10.7232/iems.2012.11.3.215
https://www.jetbrains.com/help/idea/github.html
https://hadoop.apache.org/
https://github.com/search?q=stars%3A%3E%3D100+is%3Apublic+archived%3Afalse+language%3Ajava&type=repositories
https://github.com/search?q=stars%3A%3E%3D100+is%3Apublic+archived%3Afalse+language%3Ajava&type=repositories
https://doi.org/10.1371/journal.pone.0310840

74. Rudolf Ferenc, László Langó, István Siket, Tibor Gyimóthy, and Tibor Bakota. Source meter sonar

qube plug-in. In 2014 IEEE 14th International Working Conference on Source Code Analysis and

Manipulation, pages 77–82. IEEE, 2014.

75. Norman E. Fenton and Shari Lawrence Pfleeger. Software metrics—a practical and rigorous approach

(2. ed.). International Thomson, 1996.

76. Pal Nikhil R, Eluri Vijay K, and Mandal Gautam K. Fuzzy logic approaches to structure preserving

dimensionality reduction. IEEE Transactions on Fuzzy Systems, 10(3):277–286, 2002. https://doi.org/

10.1109/TFUZZ.2002.1006431

77. Zhang Hongwei, Lennox Barry, Goulding Peter R, and Leung Andrew YT. A float-encoded genetic algo-

rithm technique for integrated optimization of piezoelectric actuator and sensor placement and feedback

gains. Smart Materials and Structures, 9(4):552, 2000. https://doi.org/10.1088/0964-1726/9/4/319

78. Parastoo Mohagheghi and Reidar Conradi. Vote-counting for combining quantitative evidence from

empirical studies-an example. In Proceedings of the International Symposium on Empirical Software

Engineering (ISESE’04). Citeseer, 2004.

79. Pickard Lesley M, Kitchenham Barbara A, and Jones Peter W. Combining empirical results in software

engineering. Information and software technology, 40(14):811–821, 1998. https://doi.org/10.1016/

S0950-5849(98)00101-3

80. Fay Michael P and Proschan Michael A. Wilcoxon-mann-whitney or t-test? on assumptions for hypothe-

sis tests and multiple interpretations of decision rules. Statistics surveys, 4:1, 2010. https://doi.org/10.

1214/09-SS051 PMID: 20414472

81. Mann Henry B and Whitney Donald R. On a test of whether one of two random variables is stochasti-

cally larger than the other. The annals of mathematical statistics, pages 50–60, 1947. https://doi.org/10.

1214/aoms/1177730491

82. Andreas Maier, Julian Exner, Stefan Steidl, Anton Batliner, Tino Haderlein, and Elmar Nöth. An exten-

sion to the sammon mapping for the robust visualization of speaker dependencies. In International Con-

ference on Text, Speech and Dialogue, pages 381–388. Springer, 2008.

83. Letizia Jaccheri, Zamira Kholmatova, and Giancarlo Succi. Systematizing the meta-analytical process

in software engineering. In 2021 2nd European Symposium on Software Engineering, pages 1–5, 2021.

84. Zivkovic Tamara, Nikolic Bosko, Simic Vladimir, Pamucar Dragan, and Bacanin Nebojsa. Software

defects prediction by metaheuristics tuned extreme gradient boosting and analysis based on shapley

additive explanations. Applied Soft Computing, 146:110659, 2023. https://doi.org/10.1016/j.asoc.2023.

110659

PLOS ONE Selecting optimal software code descriptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0310840 November 1, 2024 23 / 23

https://doi.org/10.1109/TFUZZ.2002.1006431
https://doi.org/10.1109/TFUZZ.2002.1006431
https://doi.org/10.1088/0964-1726/9/4/319
https://doi.org/10.1016/S0950-5849(98)00101-3
https://doi.org/10.1016/S0950-5849(98)00101-3
https://doi.org/10.1214/09-SS051
https://doi.org/10.1214/09-SS051
http://www.ncbi.nlm.nih.gov/pubmed/20414472
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1016/j.asoc.2023.110659
https://doi.org/10.1016/j.asoc.2023.110659
https://doi.org/10.1371/journal.pone.0310840

