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ABSTRACT
Broad- spectrum genetic tests often lead to the identification of variants of uncertain significance (VUS), a major issue in modern 
clinical genetics. A fair proportion of VUS may alter the splicing processes, but their interpretation is challenging. This study 
aimed at providing a classification approach for VUS potentially- affecting splicing by integrating transcript analysis from periph-
eral blood mRNA into routine diagnostics. VUS in DICER1, MSH2, MLH1, DYNC1H1, RPS6KA3, and SCN9A, found in patients 
with phenotypes compatible with the related syndromes, altered splicing, leading to their re- classification as Pathogenic/Likely 
Pathogenic. This had a significant clinical impact for different diseases, from hereditary tumor predisposition to neurological 
and congenital syndromic disorders. Transcript analysis is valuable in VUS clinical evaluation, and its incorporation into routine 
diagnostic workflows facilitates timely and accurate clinical decision- making.

1   |   Short Report

The ever- growing use of broad- spectrum genetic tests for rare 
disease diagnosis increase the detection of variants of uncertain 
significance (VUS), with consequent challenges for counseling 
and patient management [1]. Although some authors hypothe-
sized that the majority of genomic variants will be classified in 
the near future [2], to date VUS remain one of the major issues in 
clinical genetics. Among pathogenic genomic variants, up to 60% 
alters gene splicing, that is, the process of intron removal from 
pre- mRNA transcripts  [3]. The identification of such variants is 
still challenging, because bioinformatic predictors do not yet reach 
absolute sensitivity and specificity [4], and the evaluation of their 
actual effect through functional assays remains time- consuming 

and demanding for many diagnostic laboratories, therefore it is 
not systematically carried out in clinical practice.

In this work, we show our pipeline used to clarify the role of 
VUS predicted to alter splicing in patients with suspected ge-
netic diseases.

Patients underwent genetic counseling sessions following stan-
dard care protocol. The variants herein reported were detected 
through diagnostic next generation sequencing (NGS) analy-
ses, including single- gene analysis, target gene panels or whole 
exome sequencing, as detailed in Supporting Information. 
Variants were classified using the ACMG/AMP guidelines [5] 
and ClinGen variant curation expert panels with gene- specific 
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criteria. VUS emerging from diagnostic NGS tests were selected 
for transcript analysis if they met the following criteria:

• Variant in a gene where alterations are associated with phe-
notypes compatible with the ones of patients;

• Variant predicted to alter splicing according to MaxEntScan 
(Figures  S1 and S2), Human Splice Finder v3.0, SpliceAI 
and/or SPiP [6];

• Absence of Pathogenic/Likely Pathogenic variants in other 
regions analyzed for diagnostic purposes that could explain 
patients' phenotype;

• Variant mapping to the canonical gene transcripts and ex-
pressed in peripheral blood (according to Genotype- Tissue 
Expression portal, GTEx, Figure 1A–E). We performed this 
analysis also for a particularly credible variant in a gene de-
spite the very low expression in peripheral blood, that is, 
SCN9A (Figure 1F).

According to these criteria, a new blood draw for transcript 
analysis was proposed to the patients.

The analyzed variants are reported in Table 1; clinical descriptions 
and transcript analyses are detailed in Supporting Information.

1.1   |   Case 1—DICER1

A male proband with clinical suspicion of DICER1 syndrome [7] 
carried the heterozygous variant c.2468G>T (p.Gly823Val) in 

exon 16, absent in gnomAD, subsequently found in the mother 
and older brother, who both shared the patient's phenotype. This 
variant, classified VUS according to ACMG/AMP (PM2, PP3, 
PP2), maps close to an acceptor splice site and in silico splicing 
predictions (Table  1, Figure  S1A, panels i, ii) indicated that it 
might unmask an exonic internal splice site. RT- PCR amplifi-
cation from patient's peripheral blood- derived cDNA (exons 
14–18) resulted in a wild- type fragment (365 bp) and a smaller 
fragment, with a 34 base pair deletion in exon 16, as detected 
by Sanger sequencing (Figure 2A, panels i–ii, respectively), due 
to the use of the cryptic acceptor splice site inside exon 16, un-
masked by the variant. The deletion induces a frameshift, with a 
premature stop codon at aminoacid 818. The PS3 criterion could 
be added to classify the variant Likely Pathogenic, according to 
DICER1- specified ACMG/AMP criteria. The proband and other 
family members carrying the germline variant were therefore 
included in DICER1 syndrome surveillance program [8].

1.2   |   Case 2—MSH2

A male proband with clinical suspicion of Lynch syndrome 
[9], likely derived from the paternal branch of the family, 
carried the heterozygous synonymous MSH2 c.1275A>G 
(p.Glu425=) variant, classified VUS according to ACMG/
AMP guidelines (PM2, PP3, BP6), VUS in InSiGHT, the ref-
erence database for variant classification in Lynch syndrome, 
and Likely Benign/ VUS in ClinVar (Variation ID: 90589, 
Accession: VCV000090589.67). In silico predictions (Table 1, 
Figure S1B, panels i- ii) and previous studies [10] suggested an 

FIGURE 1    |    GTEx portal expression data for the analyzed genes. (A–F) Bulk RNAseq data (TPM, transcript per million) in human normal tissues. 
Accession June 2024. [Colour figure can be viewed at wileyonlinelibrary.com]
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impact on splicing. RT- PCR amplification from patient's pe-
ripheral blood- derived cDNA (spanning exons 6–8) resulted 
in a wild- type fragment (288 bp) and a smaller fragment with a 
48- bp deletion in exon 7, confirmed by Sanger sequencing, due 
to the use of a cryptic splice site as reported [10] (Figure 2B). 
AlphaFold prediction suggested that the 16- aminoacids loss 
would severely affect the folding of an alpha- helix portion. 
Western blot showed lower MSH2 protein levels in the lysate of 
white blood cells (WBC) from the patient versus three healthy 
controls (Figure  2C). Variant segregation in the mother re-
sulted negative, suggesting paternal inheritance. These re-
sults, concordant with immunohistochemical data on the 
patient's tumor tissue, strongly support variant pathogenicity. 

Although it was not possible to extend targeted genetic testing 
to first- degree relatives, it was suggested to them to undergo 
an initial colonoscopy and annual gynecological check- ups 
(for females).

1.3   |   Case 3—MLH1

A male proband with clinical suspicion of Lynch syndrome [9] 
carried the heterozygous MLH1 c.453 + 1G>A variant, classi-
fied Pathogenic/Likely pathogenic according to ACMG/AMP 
(PS4, PVS1, PM2) and ClinVar (single submission), but reported 
as VUS in InSiGHT. Its location in the first base of a canonical 

FIGURE 2    |    Transcript analyses from blood RNA. (A) cDNA of patient carrying the constitutive DICER1 variant in exon 16 was amplified by RT- 
PCR. Representative electropherograms of (i) wild- type fragment, and (ii) smaller band with a 34- bp deletion in exon 16 (yellow boxed area in wild- 
type fragment (i)). (B) cDNA of patient carrying the heterozygous MSH2 silent variant was amplified by RT- PCR. Representative elecropherograms 
of wild- type and mutant fragments are reported, indicating the 48- bp deletion in exon 7. Right panel: The deleted sequence in highlighted in red. (C) 
Representative western blot analysis for MSH2 in lysates derived from WBC of controls (CNT#1–3) and MSH2- mutant patient. γ- tubulin was used 
as endogenous control. MSH2 quantity is severely reduced in patient versus controls. (D) cDNA of patient carrying the heterozygous MLH1 variant 
was amplified by RT- PCR. Representative elecropherograms of wild- type and mutant fragments are shown, indicating exon 5 skipping in the mutant 
fragment. (E) The cDNA of patient carrying the heterozygous variant in DYNC1H1 was amplified by RT- PCR, resulting in a wild- type fragment and 
a smaller one with exon 41 skipping, as shown by direct sequencing. (F) cDNA of patient with the hemizygous variant in RPS6KA3 and of his moth-
er was amplified by RT- PCR. Sanger sequencing of the maternal wild- type fragment showed the correct splicing pattern (upper electropherogram). 
Representative electropherogram of the small fragment (the only one in the patient, and present also in the heterozygous carrier mother) showed the 
aberrant exon 16 skipping. (G) cDNA of patient with the homozygous SCN9A variant was amplified by RT- PCR. Sanger sequencing of the RT- PCR 
product revealed a shortened exon 12 included in the final transcript (dashed line). [Colour figure can be viewed at wileyonlinelibrary.com]
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donor splice site is predicted to impair splicing (Table 1). RT- PCR 
of the cDNA derived from patient's peripheral blood showed a 
wild- type band (222 bp) and a smaller band with the expected 
exon 5 skipping, as confirmed by Sanger sequencing (Figure 2D), 
inducing a frameshift and a premature stop codon at aminoacid 
134. This allowed to extend targeted genetic test to the four 
daughters. After the clinical management of this case, the vari-
ant was formally classified Pathogenic also in InSiGHT.

1.4   |   Case 4—DYNC1H1

A male proband with peripheral neuropathy carried the hetero-
zygous DYNC1H1 c.8343 + 5G>A variant, classified VUS accord-
ing to ACMG/AMP (PM2) and ClinVar. Since its location within 
the consensus splice site of intron 41, and considering in silico 
predictions results (Table  1, Figure  S2A, panels i- ii), transcript 
analysis was performed. RT- PCR amplification from patient- 
derived peripheral blood cDNA (exons 40–43) resulted in a wild- 
type fragment (299 bp) and a smaller fragment, confirming the 
exon 41 skipping, as shown via Sanger sequencing (Figure 2E). 
This result led to add the PS3 criterion and classify the vari-
ant Likely Pathogenic, confirming the diagnosis of DYNC1H1- 
related disorder [11].

1.5   |   Case 5—RPS6KA3

A male proband with a syndromic clinical picture carried the 
hemizygous RPS6KA3 c.1354- 12 T>G variant, absent in gno-
mAD and dbSNP and classified VUS according to ACMG/AMP 
(PM2, PP3). The variant was found to be inherited from the 
mother, in whom it was present in heterozygosis in blood- 
derived DNA, with no indication of mosaicism. Given the in 
silico predictions results (Table 1, Figure S2B, panels i- ii), tran-
script analysis was performed on both proband and his mother. 
RT- PCR amplification from peripheral blood- derived cDNA of 
the region spanning exons 14–18 revealed in the mother both 
the band corresponding to the wild- type allele (Figure  2F, 
panel i) and a shorter isoform, which was the only one pres-
ent in the patient, as expected for a X- linked inheritance. 
Sanger sequencing of the short band confirmed the altered 
spliced form with exon 16 skipping (Figure 2F, panel ii). This 
result led to add the PS3 criterion and classify the RPS6KA3 
c.1354- 12 T>G variant as Likely Pathogenic, confirming the di-
agnosis of Coffin- Lowry syndrome [12]. Segregation analysis 
in the maternal grandparents proved the de novo origin of the 
variant in the mother. Notably, the mother presented a very 
mild phenotype, with the hand conformation as the only clin-
ical sign present, in accordance with the nuanced phenotypes 
sometimes observed in female carriers. The splicing data led to 
integrate patient's follow- up with evaluations and exams based 
on the genetic diagnosis, and offered the possibility of carry-
ing out a prenatal diagnosis for the ongoing pregnancy in the 
mother.

1.6   |   Case 6—SCN9A

A male proband, born of consanguineous parents and present-
ing with neurologic issues, carried the homozygous SCN9A 

variant c.1952A>G in NM_001365536.1 (p.Asp651Gly) (intronic 
in transcript NM_002977.3:c.1941 + 11A>G), located within a 
run of homozygosity of 9.5 Mb (total patient homozygosity of 
65.8 Mb) and classified VUS according to ACMG/AMP (PM2, 
PP3). Since its location near the canonical splice site, and con-
sidering in silico prediction results (Table 1, Figure S2C, panels 
i, ii), transcript analysis was performed.

RT- PCR amplification (region spanning exons 11–13) of the 
cDNA derived from patient's peripheral blood showed a single 
fragment, and Sanger sequencing revealed that the homozygous 
variant generated a premature alternative donor splice site in 
exon 12, resulting in a shortened exon 12 (−23 bp), leading to a 
frameshift and a premature stop codon in exon 13 (Figure 2G). 
The PS3 and PP4 criteria could therefore be added to clas-
sify the variant Likely Pathogenic, confirming the diagnosis 
of Hereditary Sensory and Autonomic Neuropathy type IID 
(HSAN2D) [13] and reassuring the patient for the recurrence 
risk of the ongoing pregnancy of the spouse.

2   |   Discussion

In the precision medicine era, identification and proper in-
terpretation of disease variants play a pivotal role in clinical 
diagnosis and patient management. In this perspective, our 
work confirmed how transcript analysis, whenever variants 
potentially affecting splicing are identified, can represent an 
efficient support for standard diagnostic procedures [14, 15]. 
Transcript analysis offers a rapid and cost- effective approach 
to validate variant pathogenicity, providing evidence of their 
impact for clinical decision- making and patient management. 
Moreover, it can uncover splicing events missed by in silico 
predictions alone, particularly relevant for variants located in 
non- canonical splice sites or regulatory regions where com-
putational algorithms may lack accuracy, providing a more 
comprehensive understanding of variant effect [4]. Several 
challenges remain, including protocol standardization, inter-
pretation of complex splicing patterns, and differential tissue 
expression. Future efforts are needed to address these issues. 
However, this approach has had a significant clinical impact 
in patients with different types of disease, ranging from hered-
itary tumor predisposition syndromes to congenital syndromic 
disorders [6, 16–18], allowing to resolve a diagnostic process 
that for several affected individuals lasted years (the longest 
period in this case- study was 4 years for Case 3). In the present 
study, in Cases 1–3 confirmation of the variant effects on splic-
ing and the consistency with other features made it possible to 
support a clinical diagnosis, set up adequate surveillance and 
offer predictive tests to relatives. In Case 5, the quick result of 
transcript study, leading to a specific diagnosis in the proband, 
made it possible to promptly offer a prenatal diagnosis in the 
parents' new pregnancy. This case is also notable, because it is 
the third report of restrictive cardiomyopathy to date associated 
with a RPS6KA3- related disorder [12], highlighting the impor-
tance of cardiological surveillance in these patients.

Even when transcript analysis did not support a splicing effect 
for a variant in patient- derived fibroblasts (CACNA1G gene, 
transcript ENST00000359106.5 c.2454- 4G>A, data not shown), 
there was an impact for the patient, since the functional results 
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allowed to rule out those gene variants and therefore evaluate 
differential diagnoses for the patient's condition.

In conclusion, transcript analysis represents a valuable tool in 
the clinical evaluation of VUS potentially affecting splicing, and 
by incorporating this approach into routine diagnostic work-
flows, clinical geneticists can improve variant interpretation, 
advancing patient care and outcomes.
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