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A B S T R A C T

We analyze some properties of the measures in the dual of the space 𝐵 𝑉 , by considering (signed)
Radon measures satisfying a perimeter bound condition, which means that the absolute value
of the measure of a set is controlled by the perimeter of the set itself, and whose total variations
also belong to the dual of 𝐵 𝑉 . We exploit and refine the results of Cong Phuc and Torres (2017),
in particular exploring the relation with divergence-measure fields and proving the stability of
the perimeter bound from sets to 𝐵 𝑉 functions under a suitable approximation of the given
measure. As an important tool, we obtain a refinement of Anzellotti-Giaquinta approximation
for 𝐵 𝑉 functions, which is of separate interest in itself and, in the context of Anzellotti’s pairing
theory for divergence-measure fields, implies a new way of approximating 𝜆-pairings, as well
as new bounds for their total variation. These results are also relevant due to their application
in the study of weak solutions to the non-parametric prescribed mean curvature equation with
measure data, which is explored in a subsequent work.

. Introduction

Given the ubiquitous presence of the space of functions of bounded variation 𝐵 𝑉 in the Calculus of Variation, it is natural to try
nd characterize its dual space. An integral representation of the elements of 𝐵 𝑉 (𝛺)∗, for any open set 𝛺 ⊂ R𝑛, was obtained in [1],
nder the Continuum Hypothesis (we refer to the introduction of [1] for a detailed account of the previous research related to 𝐵 𝑉 ∗).
f particular interest is the subspace of 𝐵 𝑉 (𝛺)∗ of those linear continuous functionals T𝜇 whose action on 𝑢 ∈ 𝐵 𝑉 (𝛺) ∩𝐿∞(𝛺) can
e represented as

T𝜇(𝑢) = ∫𝛺
𝑢∗ 𝑑 𝜇 , (1.1)

here 𝑢∗ is the precise representative of 𝑢 and 𝜇 is a suitable finite Radon measure: these functionals are often called Radon measures
n the dual of 𝐵 𝑉 [2–4]. Given that 𝑢∗ is well defined up to a set with zero (𝑛− 1)-dimensional Hausdorff measure 𝑛−1, an immediate
roperty of the measures 𝜇 in the dual of 𝐵 𝑉 is that |𝜇|(𝐵) = 0 for every Borel set with 𝑛−1(𝐵) = 0. As explored in [3,4], under mild
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assumptions on the regularity of 𝛺 we have that a finite Radon measure 𝜇 belongs to 𝐵 𝑉 (𝛺)∗ in this sense if and only if 𝜇 = div𝐹
or some vector field 𝐹 ∈ 𝐿∞(𝛺;R𝑛). This shows a natural connection between the Radon measures in the dual of the space 𝐵 𝑉

and the divergence-measure fields.
Given 𝑝 ∈ [1,+∞], a 𝑝-summable divergence-measure field on an open set 𝛺 is a vector field 𝐹 ∈ 𝐿𝑝(𝛺;R𝑛) such that its

distributional divergence div𝐹 is a finite Radon measure on 𝛺. We denote the space of such fields as 𝑝(𝛺). Initially introduced
by Anzellotti in [5], the divergence-measure fields have been extensively studied, among other motivations, because of their
natural applications in relation with generalized Gauss–Green formulas and weak formulations of some families of PDEs (see for
instance [3,4,6–21]). Under this respect, it is important to note that, when 𝑝 ∈ [1,+∞), these fields can be naturally paired with
scalar functions 𝑢 ∈ 𝑊 1,𝑝′ (𝛺), where 𝑝′ is the conjugate exponent of 𝑝, since the scalar product 𝐹 ⋅∇𝑢 belongs to 𝐿1(𝛺). On the other
hand, the case 𝑝 = +∞ is more complex and interesting to study, since 𝑝′ = 1, which includes the case of 𝑢 ∈ 𝐵 𝑉 (𝛺). Following
the approach of [13], for a given Borel function 𝜆 ∶ 𝛺 → [0, 1], we can define the 𝜆-pairing distribution between a vector field
𝐹 ∈ ∞(𝛺) and a scalar function 𝑢 ∈ 𝐵 𝑉 (𝛺) as follows:

(𝐹 , 𝐷 𝑢)𝜆 ∶= div(𝑢𝐹 ) − 𝑢𝜆 div𝐹 ,
assuming 𝑢𝜆 ∈ 𝐿1(𝛺; |div𝐹 |), where 𝑢𝜆 is defined 𝑛−1-almost everywhere as the convex combination of 𝑢+ and 𝑢− (the upper and
lower approximate limits of 𝑢) using the coefficients 𝜆 and 1 − 𝜆, respectively. We point out that this expression is well posed, since
sets with zero 𝑛−1-measure are also |div𝐹 |-negligible. As proved in [13], the 𝜆-pairing is a distribution of order zero, i.e., it is a
finite) Radon measure. Moreover, the classical pairing introduced by Anzellotti in [5] corresponds to 𝜆 ≡ 1

2 , and in this case 𝑢𝜆

coincides 𝑛−1-almost everywhere with 𝑢∗, the precise representative of 𝑢. For this reason, we set (𝐹 , 𝐷 𝑢)∗ ∶= (𝐹 , 𝐷 𝑢) 1
2
. It is also clear

hat (𝐹 , 𝐷 𝑢)∗ = (𝐹 , 𝐷 𝑢)𝜆 for all 𝑢 ∈ 𝐵 𝑉 (𝛺) such that 𝑢∗ ∈ 𝐿1(𝛺; |div𝐹 |) as long as the Borel function 𝜆 ∶ 𝛺 → [0, 1] satisfies 𝜆(𝑥) = 1
2

or |div𝐹 |-a.e. 𝑥 ∈ 𝛺.
Interestingly, every 𝜆-pairing enjoys the same absolute continuity property with respect to the weak gradient of 𝑢:

|(𝐹 , 𝐷 𝑢)𝜆| ≤ ‖𝐹‖𝐿∞(𝛺;R𝑛)|𝐷 𝑢| on 𝛺 . (1.2)

This implies that the mapping

𝐵 𝑉 (𝛺) ∩ 𝐿∞(𝛺) ∋ 𝑢 ↦ (𝐹 , 𝐷 𝑢)𝜆(𝛺)

defines a functional which is continuous with respect to the 𝐵 𝑉 -(semi)norm. As noted in [13, Remark 4.6], the 𝜆-pairing is linear
ith respect to 𝑢 if and only if it coincides with the classical one (𝐹 , 𝐷 𝑢)∗; that is, if 𝜆 ≡ 1

2 up to |div𝐹 |-negligible sets. Therefore,
the mapping

𝐵 𝑉 (𝛺) ∩ 𝐿∞(𝛺) ∋ 𝑢 ↦ (𝐹 , 𝐷 𝑢)∗(𝛺) (1.3)

is a linear functional, continuous with respect to the 𝐵 𝑉 -norm. These observations suggest a relation between the pairings and the
functionals in the dual of 𝐵 𝑉 .

In addition, in [4] it was proved that, in the case 𝛺 is an open bounded set with Lipschitz boundary, a finite Radon measure 𝜇
belongs to 𝐵 𝑉 (𝛺)∗ – that is, the functional T𝜇 ∶ 𝐵 𝑉 (𝛺) ∩ 𝐿∞(𝛺) → R is continuous with respect to the 𝐵 𝑉 -norm – if and only if
here exists 𝐶 > 0 such that

|𝜇(𝑈 ∩𝛺)| ≤ 𝐶 𝑃 (𝑈 ) for all open bounded sets 𝑈 ⊂ R𝑛 with smooth boundary, (1.4)

where 𝑃 (𝑈 ) is the perimeter of the set 𝑈 , which coincides with the surface measure of its boundary, 𝑛−1(𝜕 𝑈 ), for smooth sets.
herefore, 𝜇 ∈ 𝐵 𝑉 (𝛺)∗ if and only if the measure 𝜇 enjoys this bound for its absolute value on open smooth sets in terms of their
erimeter.

Finally, given 𝜇 ∈ 𝐵 𝑉 (𝛺)∗ there is the non-trivial question of whether T𝜇(𝑢) can be represented as the integral in (1.1) even for
𝑢 ∈ 𝐵 𝑉 (𝛺)⧵𝐿∞(𝛺). Indeed, it can happen that 𝑢∗ ∉ 𝐿1(𝛺; |𝜇|) (as we show in Remark 4.12 below), so that the integral representation

ould not be well-posed.
In this paper, we explore all these known connections recalled so far, in particular integrating and refining some of the results

of [4].
More precisely, we consider the natural generalization of the condition (1.4): we say that a finite Radon measure 𝜇 ∈ (𝛺)

atisfies a perimeter bound condition if there exists 𝐿 > 0 such that

|𝜇(𝐸1 ∩𝛺)| ≤ 𝐿 𝑃 (𝐸) for all measurable sets 𝐸 ⊂ 𝛺 , (1.5)

where 𝐸1 is the set of points where the Lebesgue density of 𝐸 is 1, also called the measure theoretic interior of 𝐸. In this case, we
write 𝜇 ∈  𝐿(𝛺), and we also set  (𝛺) ∶= ⋃

𝐿>0  𝐿(𝛺). We notice that in this definition we are testing the perimeter bound
condition on the entire family of sets with finite perimeter. We actually prove that, if 𝛺 is weakly regular (that is, it is a bounded
open set such that 𝑛−1(𝜕 𝛺) = 𝑃 (𝛺) < +∞) then (1.4) and (1.5) are equivalent (see Lemma 4.4 and Proposition 4.10(2)). However,
our apparently stronger definition is motivated by the fact that the divergence measure of any 𝐹 ∈ ∞(𝛺) satisfies (1.5) for
𝐿 = ‖𝐹‖𝐿∞(𝛺;R𝑛), due to the generalized Gauss–Green formula: if 𝐸 ⊆ 𝛺 is a set of finite perimeter in R𝑛 such that either 𝐸 ⊂⊂ 𝛺
or 𝛺 is weakly regular, then

div𝐹 (𝐸1 ∩𝛺) = − Tr𝑖(𝐹 , 𝜕∗𝐸) 𝑑𝑛−1, (1.6)
∫𝜕∗𝐸

2 



G.E. Comi and G.P. Leonardi

a

m

k

L

Nonlinear Analysis 251 (2025) 113686 
where Tr𝑖(𝐹 , 𝜕∗𝐸) is the interior normal trace of 𝐹 and satisfies

‖Tr𝑖(𝐹 , 𝜕∗𝐸)‖𝐿∞(𝜕∗𝐸;𝑛−1) ≤ ‖𝐹‖𝐿∞(𝐸;R𝑛).

This and similar formulas have been widely studied in the literature [7,11–14,16,19,20], but we present in Section 2.2 some
refinements which are suitable for our purposes.

Overall, we obtain the following refinement of [4, Theorem 8.2]: if 𝛺 is a bounded open set with Lipschitz boundary, then

𝜇 ∈  (𝛺) ⟺ 𝜇 ∈ 𝐵 𝑉 (𝛺)∗ ⟺ 𝜇 = div𝐹 for some 𝐹 ∈ ∞(𝛺).

Thanks to the Gauss–Green formula (1.6), it is indeed intuitively clear that, if 𝜇 = div𝐹 for some 𝐹 ∈ ∞(𝛺), then 𝜇 ∈  𝐿(𝛺) for
𝐿 = ‖𝐹‖𝐿∞(𝛺;R𝑛). However, it is interesting to ask whether some kind of opposite implication holds true; that is, if, given 𝜇 ∈  𝐿(𝛺),
we can find 𝐹 ∈ ∞(𝛺) such that 𝜇 = div𝐹 and ‖𝐹‖𝐿∞(𝛺;R𝑛) ≤ 𝐿. Such result would be the natural extension of [4, Lemma 7.3],
which states that, if 𝛺 is a bounded open set with Lipschitz boundary and T ∈ 𝑊 1,1

0 (𝛺)∗, then there exists 𝐹 ∈ ∞(𝛺) such that

T(𝑢) = ∫𝛺
𝑢∗ 𝑑div𝐹 for all 𝑢 ∈ 𝑊 1,1

0 (𝛺) ∩ 𝐿∞(𝛺) (1.7)

and we have

‖T‖𝑊 1,1
0 (𝛺)∗ = min

{

‖𝐺‖𝐿∞(𝛺;R𝑛) ∶ 𝐺 ∈ ∞(𝛺) satisfying (1.7)
}

.

Therefore, we need to show that, if 𝜇 ∈  𝐿(𝛺), then the related functional T𝜇 is well defined on the whole 𝑊 1,1
0 (𝛺) and it satisfies

 bound for Sobolev functions similar to the perimeter bound; that is,
|

|

|

|

∫𝛺
𝑢∗ 𝑑 𝜇||

|

|

≤ 𝐿∫𝛺
|∇𝑢| 𝑑 𝑥 for all 𝑢 ∈ 𝑊 1,1

0 (𝛺),

so that we get

‖T𝜇‖𝑊 1,1
0 (𝛺)∗ = sup

{

∫𝛺
𝑢∗ 𝑑 𝜇 ∶ 𝑢 ∈ 𝑊 1,1

0 (𝛺), ‖∇𝑢‖𝐿1(𝛺;R𝑛) ≤ 1
}

≤ 𝐿.

However, as already noted, it is in general not true that, if 𝜇 ∈  (𝛺), then 𝑢∗ ∈ 𝐿1(𝛺; |𝜇|) for unbounded 𝐵 𝑉 or even Sobolev
functions (we give an example of such case in Remark 4.12). Therefore, it turns out that we need a stronger assumption on the

easure 𝜇: we say that 𝜇 is admissible, if |𝜇| ∈ 𝐵 𝑉 (𝛺)∗, see Definition 4.6. While it might be challenging to verify the admissibility
assumption in general, we notice that, if 𝛺 is an open bounded set with Lipschitz boundary, a relevant subclass of admissible
measures consists of those that can be written as 𝜇 = ℎ𝑛 + 𝛾𝑛−1 𝛤 , where ℎ ∈ 𝐿𝑞(𝛺) for some 𝑞 > 𝑛, 𝛾 ∈ 𝐿∞(𝛤 ;𝑛−1) and
𝛤 ⊂⊂ 𝛺 is a compact set with finite 𝑛−1 measure and suitable decay properties on balls (see Example 4.14). If 𝜇 ∈ (𝛺) is
admissible, it is indeed true that 𝑢𝜆 ∈ 𝐿1(𝛺; |𝜇|) for all 𝑢 ∈ 𝐵 𝑉 (𝛺) and 𝜆 ∶ 𝛺 → [0, 1] Borel, thus including also the case 𝜆 ≡ 1

2 . A
ey step in the proof is Theorem 3.2, which is a refined version of the Anzellotti-Giaquinta approximation for functions 𝑢 ∈ 𝐵 𝑉 (𝛺),

since it additionally guarantees pointwise 𝑛−1-a.e. convergence to any given 𝜆-representative 𝑢𝜆. It is also worth mentioning that
such a result is of interest in itself, particularly concerning the theory of 𝜆-pairings mentioned earlier, since it provides a new way
of deriving (1.2) and it allows obtaining a new bound for the pairings in terms of the area functional, see Theorem 3.4; moreover,
it plays a fundamental role in several other proofs along the paper. All in all, we can show that, if 𝛺 is an open bounded set with
ipschitz boundary, 𝐿 > 0 and 𝜇 ∈  𝐿(𝛺) is admissible, then 𝜇 = div𝐹 for some 𝐹 ∈ ∞(𝛺) with ‖𝐹‖𝐿∞(𝛺;R𝑛) ≤ 𝐿 and

|

|

|

|

∫𝛺
𝑢𝜆 𝑑 𝜇||

|

|

≤ 𝐿
(

|𝐷 𝑢|(𝛺) + ∫𝜕 𝛺
|Tr𝜕 𝛺(𝑢)| 𝑑𝑛−1

)

for all 𝑢 ∈ 𝐵 𝑉 (𝛺) and 𝜆 ∶ 𝛺 → [0, 1] Borel, (1.8)

see Proposition 4.19 and Lemma 4.21. This means that the constant 𝐿 remains unchanged from the perimeter bound for sets to
the estimate involving functions of bounded variations, and in this way it refines the results of [4]. It is also interesting to notice
that, if 𝜇 ∈ (𝛺) is admissible, then, for any vector field 𝐹 such that div𝐹 = 𝜇, the 𝜆-pairing (𝐹 , 𝐷 𝑢)𝜆 is well-defined for all 𝐵 𝑉
function 𝑢 and all Borel functions 𝜆 with values in [0, 1] (see Remark 4.8). In addition, if 𝛺 is an open bounded set with Lipschitz
boundary, the action of the functional represented by an admissible measure 𝜇 can be expressed in terms of the pairing between
𝐹 ∈ ∞(𝛺), such that 𝜇 = div𝐹 , and functions in 𝐵 𝑉 (𝛺); that is,

T𝜇(𝑢) = ∫𝛺
𝑢∗ 𝑑 𝜇 = −(𝐹 , 𝐷 𝑢)∗(𝛺) − ∫𝜕 𝛺

Tr𝜕 𝛺(𝑢)Tr𝑖(𝐹 , 𝜕 𝛺) 𝑑𝑛−1 for all 𝑢 ∈ 𝐵 𝑉 (𝛺)

where Tr𝜕 𝛺(𝑢) ∈ 𝐿1(𝜕 𝛺;𝑛−1) and Tr𝑖(𝐹 , 𝜕 𝛺) ∈ 𝐿∞(𝜕 𝛺;𝑛−1) are the interior trace of 𝑢 and the interior normal trace of 𝐹 on the
boundary of 𝛺, respectively. This fact relates to the previous observations on the pairing functional (1.3), since, if 𝜇 = div𝐹 for
some 𝐹 ∈ ∞(𝛺), then

T𝜇(𝑢) = −(𝐹 , 𝐷 𝑢)∗(𝛺) for all 𝑢 ∈ 𝐵 𝑉0(𝛺);

that is, 𝑢 ∈ 𝐵 𝑉 (𝛺) with Tr𝜕 𝛺(𝑢) = 0.
Finally, we prove that the perimeter bound and the admissibility conditions combined ensure enough stability under a suitable

type of smooth approximation procedure (Proposition 4.23). More precisely, if 𝛺 is an open bounded set with Lipschitz boundary
and 𝜇 ∈  𝐿(𝛺) is an admissible measure, then 𝜇 = div𝐹 for some 𝐹 ∈ ∞(𝛺) with ‖𝐹‖𝐿∞(𝛺;R𝑛) ≤ 𝐿 and so, relying on the
fact that the Anzellotti-Giaquinta–type regularization of a vector field almost preserves its 𝐿∞ norm, we can approximate 𝜇 in the
weak–∗ sense by a sequence of absolutely continuous measures 𝜇𝑗𝑛 ∈  𝐿𝑗

(𝛺) with smooth density functions, where 𝐿𝑗 → 𝐿 as
𝑗 → +∞.
3 
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All these facts are of great relevance in their application to the study of the prescribed mean curvature measure equation

div

⎛

⎜

⎜

⎜

⎝

∇𝑢
√

1 + |∇𝑢|2

⎞

⎟

⎟

⎟

⎠

= 𝜇 on 𝛺 , (1.9)

for an admissible measure 𝜇 ∈  𝐿(𝛺) for some 𝐿 ∈ (0, 1), which is the core of our subsequent work [22]. Following the approach
of [17], we consider the following weak formulation of Eq. (1.9).

Definition 1.1. We say that 𝑢 ∈ 𝐵 𝑉 (𝛺) is a weak solution to the prescribed mean curvature measure equation if there exist
𝑇 ∈ 𝐿∞(𝛺;R𝑛) and a Borel function 𝜆 ∶ 𝛺 → [0, 1] such that

‖𝑇 ‖𝐿∞(𝛺;R𝑛) ≤ 1,

div𝑇 = 𝜇 on 𝛺 ,

(𝑇 , 𝐷 𝑢)𝜆 =
√

1 + |𝐷 𝑢|2 −
√

1 − |𝑇 |2𝑛 on 𝛺 ,
where the last two identities involve scalar Radon measures in (𝛺) and 𝜆 = 𝜆𝜇 is the characteristic function of a Borel set satisfying
(1 − 𝜆)𝜇 = 𝜇+, where 𝜇± are the positive and negative parts of 𝜇.

The existence of weak solutions of (1.9) is obtained via the direct method of Calculus of Variations, which involves proving
coercivity and lower semicontinuity for the functional

J𝜇[𝑢] ∶=
√

1 + |𝐷 𝑢|2(𝐵) + ∫𝛺
𝑢− 𝑑 𝜇+ − ∫𝛺

𝑢+ 𝑑 𝜇− ,

In particular, (1.8) directly implies that J𝜇 is coercive, and the stability of the admissibility and perimeter bound conditions are
xploited in order to prove a Gamma-convergence result for a sequence of functionals J𝜇𝑗 (see [22, Theorem 6.2]).

2. Preliminaries

Through the rest of the paper, we work in an open set 𝛺 ⊂ R𝑛. We denote by 𝑛 the Lebesgue measure, and by 𝑚 the 𝑚-
imensional Hausdorff measure, for 𝑚 ∈ [0, 𝑛], although we shall focus on the case 𝑚 = 𝑛− 1. We denote by (𝛺) the space of finite
adon measures on 𝛺, and by  (𝛺) the space of measures in (𝛺) that are absolutely continuous with respect to 𝑛−1; that is,

 (𝛺) ∶= {𝜇 ∈ (𝛺) ∶ |𝜇|(𝐵) = 0 for all Borel sets 𝐵 ⊂ 𝛺 such that 𝑛−1(𝐵) = 0}. (2.1)

Given two measures 𝜇1, 𝜇2 ∈ (𝛺), we say that 𝜇1 ≤ 𝜇2 on 𝛺 if 𝜇1(𝐵) ≤ 𝜇2(𝐵) for all Borel sets 𝐵 ⊆ 𝛺. If 𝜇 ∈ (𝛺) satisfies 𝜇 ≥ 0
on 𝛺, then we say that 𝜇 is nonnegative. Thanks to the Hahn’s decomposition theorem, we know that for any 𝜇 ∈ (𝛺) there
exist two nonnegative measures 𝜇+ and 𝜇− (the positive and negative part of 𝜇, respectively), which satisfy 𝜇 = 𝜇+ − 𝜇− and are
concentrated on mutually disjoint Borel sets 𝛺+, 𝛺− such that 𝛺 = 𝛺+ ∪ 𝛺−. In particular, we have 𝜇+ = 𝜇 𝛺+, 𝜇− = −𝜇 𝛺−,
and |𝜇| = 𝜇+ + 𝜇−. In addition, by Lebesgue-Besicovitch differentiation theorem, for |𝜇|-a.e. 𝑥 ∈ 𝛺 we have

𝑑 𝜇±

𝑑|𝜇|
(𝑥) =

{

1 if 𝑥 ∈ 𝛺±

0 if 𝑥 ∈ 𝛺∓.
(2.2)

Given 𝜇 ∈ (𝛺), Radon–Nikodym theorem and Lebesgue’s decomposition theorem ensure that we can decompose it as

𝜇 = 𝜇𝑎𝑐 + 𝜇𝑠

where 𝜇𝑎𝑐 = 𝑔𝑛, for some 𝑔 ∈ 𝐿1(𝛺), is the absolutely continuous part and 𝜇𝑠 is the singular part.

2.1. Functions of bounded variation

We say that 𝑢 ∈ 𝐿1(𝛺) is a function of bounded variation, and we write 𝑢 ∈ 𝐵 𝑉 (𝛺), if its distributional gradient 𝐷 𝑢 is a vector
alued Radon measure whose total variation |𝐷 𝑢| is a finite measure on 𝛺. 𝐵 𝑉 (𝛺) is a Banach space once equipped with the norm

‖𝑢‖𝐵 𝑉 (𝛺) = ‖𝑢‖𝐿1(𝛺) + |𝐷 𝑢|(𝛺).

However, the convergence induced by this norm is too strong, and hence it is customary to consider a weaker type of convergence
for sequences of 𝐵 𝑉 functions, the strict convergence: given 𝑢 ∈ 𝐵 𝑉 (𝛺), we say that a sequence (𝑢𝑗 )𝑗∈N converges to 𝑢 in 𝐵 𝑉 (𝛺)-strict
if

lim
𝑗→+∞

‖𝑢 − 𝑢𝑗‖𝐿1(𝛺) +
|

|

|

|𝐷 𝑢|(𝛺) − |𝐷 𝑢𝑗 |(𝛺)||
|

= 0.

As customary, we denote by 𝐵 𝑉loc(𝛺) the local version of the space 𝐵 𝑉 (𝛺).
Following the notation of [23, Section 3.6], we say that a function 𝑢 ∈ 𝐿1

loc(𝛺) has approximate limit at 𝑥 ∈ 𝛺 if there exists
𝑧 ∈ R such that

lim − |𝑢(𝑦) − 𝑧| 𝑑 𝑦 = 0 , (2.3)

𝑟→0∫𝐵𝑟(𝑥)

4 
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and we denote by �̃�(𝑥) the value, 𝑧, of the approximate limit of 𝑢 at 𝑥. In this case, we say that 𝑥 is a Lebesgue point of 𝑢. For a
iven measurable set 𝐸 ⊂ R𝑛, we define the measure theoretic interior of 𝐸 as

𝐸1 ∶=
{

𝑥 ∈ R𝑛 ∶ lim
𝑟→0

|𝐸 ∩ 𝐵𝑟(𝑥)|
|𝐵𝑟(𝑥)|

= 1
}

=
{

𝑥 ∈ R𝑛 ∶ 𝜒𝐸 (𝑥) = 1} .

As customary, the approximate discontinuity set 𝑆𝑢 is defined as the set of points where the approximate limit does not exist. In
addition, we say that 𝑥 belongs to 𝐽𝑢 (the set of approximate jump points of 𝑢) if there exists 𝑎, 𝑏 ∈ R, 𝑎 ≠ 𝑏, and 𝜈 ∈ S𝑛−1 such that

lim
𝑟→0

−∫𝐵+
𝑟 (𝑥,𝜈)

|𝑢(𝑦) − 𝑎| 𝑑 𝑦 = 0 and lim
𝑟→0

−∫𝐵−
𝑟 (𝑥,𝜈)

|𝑢(𝑦) − 𝑏| 𝑑 𝑦 = 0, (2.4)

where 𝐵±
𝑟 (𝑥, 𝜈) ∶= {𝑦 ∈ 𝐵𝑟(𝑥) ∶ ±(𝑦− 𝑥) ⋅ 𝜈 ≥ 0}. The triplet (𝑎, 𝑏, 𝜈) is uniquely determined by (2.4) up to a permutation of (𝑎, 𝑏) and

 change of sign of 𝜈, and we denote it by (𝑢+(𝑥), 𝑢−(𝑥), 𝜈𝑢(𝑥)). For the approximate traces 𝑢±(𝑥), we adopt the convention of having
𝑢+(𝑥) > 𝑢−(𝑥). We can actually extend the approximate traces also for 𝑥 ∈ 𝛺 ⧵ 𝑆𝑢, by setting 𝑢+(𝑥) = 𝑢−(𝑥) = �̃�(𝑥).

Given 𝑢 ∈ 𝐵 𝑉loc(𝛺), following [23, Corollary 3.80] we define its precise representative

𝑢∗ ∶ 𝛺 ⧵ (𝑆𝑢 ⧵ 𝐽𝑢) → R

by setting

𝑢∗(𝑥) =
⎧

⎪

⎨

⎪

⎩

�̃�(𝑥) if 𝑥 ∈ 𝛺 ⧵ 𝑆𝑢,
𝑢+(𝑥) + 𝑢−(𝑥)

2
if 𝑥 ∈ 𝐽𝑢.

Since 𝑛−1(𝑆𝑢 ⧵ 𝐽𝑢) = 0 by [23, Theorem 3.78], 𝑢∗(𝑥) is well defined for 𝑛−1-a.e. 𝑥 ∈ 𝛺 and satisfies

𝑢∗(𝑥) = lim
𝑟→0

−∫𝐵𝑟(𝑥)
𝑢(𝑦) 𝑑 𝑦 for 𝑛−1-a.e. 𝑥 ∈ 𝛺 . (2.5)

In addition, if we consider the extensions of the approximate traces, we also get

𝑢∗(𝑥) = 𝑢+(𝑥) + 𝑢−(𝑥)
2

for 𝑛−1-a.e. 𝑥 ∈ 𝛺 . (2.6)

In this way, we can see 𝑢∗ as the average between 𝑢+ and 𝑢−. Therefore, it seems natural to generalize 𝑢∗ by taking any convex
ombination of the approximate traces. More precisely, for a fixed a Borel function 𝜆 ∶ 𝛺 → [0, 1] we define the 𝜆-representative of
as

𝑢𝜆 = 𝜆𝑢+ + (1 − 𝜆)𝑢− on 𝛺 ⧵ (𝑆𝑢 ⧵ 𝐽𝑢),

which is well-defined for 𝑛−1-a.e. 𝑥 ∈ 𝛺. Clearly, such representative could be defined for any 𝜆 ∈ 𝑏(𝛺), that is, any bounded
orel function 𝜆 ∶ 𝛺 → R, but only convex combinations of 𝑢± have relevant properties in relation with generalized notions of
airings between divergence-measure fields and scalar functions of bounded variation.

We recall the standard decomposition of the distributional gradient of a function 𝑢 ∈ 𝐵 𝑉 (𝛺): we have

𝐷 𝑢 = ∇𝑢𝑛 +𝐷𝑐𝑢 +𝐷𝑗𝑢,

where ∇𝑢 ∈ 𝐿1(𝛺;R𝑛) is the density of the absolutely continuous part of 𝐷 𝑢, 𝐷𝑗𝑢 is the jump part, that is,
𝐷𝑗𝑢 = (𝑢+ − 𝑢−)𝜈𝑢 𝑛−1 𝐽𝑢,

and 𝐷𝑐𝑢 is the Cantor part. In addition, we define the diffuse and singular parts of 𝐷 𝑢 as

𝐷𝑑𝑢 = ∇𝑢𝑛 +𝐷𝑐𝑢 and 𝐷𝑠𝑢 = 𝐷𝑐𝑢 +𝐷𝑗𝑢.

Let 𝑁 > 0 and 𝑇𝑁 be the truncation operator, that is, the 1-Lipschitz map defined as

𝑇𝑁 (𝑡) =
⎧

⎪

⎨

⎪

⎩

𝑁 if 𝑡 > 𝑁 ,
𝑡 if |𝑡| ≤ 𝑁 ,
−𝑁 if 𝑡 < −𝑁 ,

then extended to functions by setting 𝑇𝑁 (𝑢)(𝑥) = 𝑇𝑁 (𝑢(𝑥)). We recall the statement of [23, Proposition 3.69 (c)]: if 𝑢 ∈ 𝐿1
loc(𝛺) and

𝑥 ∈ 𝐽𝑢, then 𝑥 ∈ 𝐽𝑇𝑁 (𝑢) if and only if 𝑇𝑁 (𝑢+)(𝑥) ≠ 𝑇𝑁 (𝑢−)(𝑥), and in this case we have 𝑇𝑁 (𝑢)±(𝑥) = 𝑇𝑁 (𝑢±)(𝑥). Otherwise, 𝑥 ∉ 𝑆𝑇𝑁 (𝑢)
nd

𝑇𝑁 (𝑢)(𝑥) = 𝑇𝑁 (�̃�)(𝑥) = 𝑇𝑁 (𝑢+)(𝑥) = 𝑇𝑁 (𝑢−)(𝑥).

Hence, if we extend the approximate traces of 𝑇𝑁 (𝑢) as above, we get

𝑇𝑁 (𝑢)±(𝑥) = 𝑇𝑁 (𝑢±)(𝑥) for all 𝑥 ∈ 𝛺 ⧵ (𝑆𝑢 ⧵ 𝐽𝑢).

By exploiting the fact that
5 
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|

|

|

|

𝑇𝑁 (𝛼) + 𝑇𝑁 (𝛽)
2

|

|

|

|

≤
|

|

|

|

|

𝑇𝑁

(

𝛼 + 𝛽
2

)

|

|

|

|

|

≤
|

|

|

|

𝛼 + 𝛽
2

|

|

|

|

for all 𝛼 , 𝛽 ∈ R,

we prove that

|𝑇𝑁 (𝑢)∗| ≤ |𝑢∗| on 𝛺 ⧵ (𝑆𝑢 ⧵ 𝐽𝑢).

Given 𝑢 ∈ 𝐵 𝑉 (𝛺), we have that 𝑇𝑁 (𝑢) ∈ 𝐵 𝑉 (𝛺) for all 𝑁 > 0. In particular, we deduce the following well-known estimate on
the precise representative of the truncation of 𝑢:

|𝑇𝑁 (𝑢)∗(𝑥)| ≤ |𝑢∗(𝑥)| for 𝑛−1-a.e. 𝑥 ∈ 𝛺 . (2.7)

In addition, the 𝜆-representative of 𝑇𝑁 (𝑢) is well-defined, and we can get convergence properties and bounds for 𝑇𝑁 (𝑢)𝜆 that are
niform in 𝑁 (see Proposition 2.1 below). However, we notice that we cannot obtain an analogous estimate |𝑇𝑁 (𝑢)𝜆(𝑥)| ≤ |𝑢𝜆(𝑥)|
or 𝑛−1-a.e. 𝑥 ∈ 𝛺, unless 𝜆 ∈ {0, 12 , 1}. As an example, let 𝑁 > 0, 𝜆 ≡ 1

3 and

𝑢(𝑥) =
{

2𝑁 if 𝑥 ∈ 𝐵(0, 1),
− 5

4𝑁 if 𝑥 ∉ 𝐵(0, 1).

Then, for all 𝑥 ∈ 𝜕 𝐵(0, 1), we have 𝑢+(𝑥) = 2𝑁 and 𝑢−(𝑥) = − 5
4𝑁 , so that

𝑢𝜆(𝑥) = 1
3
𝑢+(𝑥) + 2

3
𝑢−(𝑥) = 2

3
𝑁

(

1 − 5
4

)

= −𝑁
6

for all 𝑥 ∈ 𝜕 𝐵(0, 1).
On the other hand, notice that

𝑇𝑁 (𝑢)𝜆(𝑥) = 1
3
𝑇𝑁 (𝑢)+(𝑥) + 2

3
𝑇𝑁 (𝑢)−(𝑥) = 𝑁

3
− 2𝑁

3
= −𝑁

3
for all 𝑥 ∈ 𝜕 𝐵(0, 1),

so that we do not have |𝑇𝑁 (𝑢)𝜆| ≤ |𝑢𝜆| on 𝜕 𝐵(0, 1). Nevertheless, we are able to obtain the following result (which is a somewhat
odified version of [13, Proposition 3.4]).

Proposition 2.1. Let 𝑢 ∈ 𝐵 𝑉loc(𝛺), 𝜆 ∶ 𝛺 → [0, 1] be a Borel function and 𝑁 > 0. For all 𝑥 ∈ 𝛺 ⧵ (𝑆𝑢 ⧵ 𝐽𝑢) we set
𝑀[𝑢, 𝜆](𝑥) ∶= min

{

𝜆(𝑥)|𝑢+(𝑥)| + (1 − 𝜆(𝑥))|𝑢−(𝑥)| ,

|𝑢∗(𝑥)| +
|

|

|

|

𝜆(𝑥) − 1
2
|

|

|

|

(

|𝑢+(𝑥)| + |𝑢−(𝑥)|
)

}

. (2.8)

Then 𝑀[𝑢, 𝜆](𝑥) is well defined for 𝑛−1-a.e. 𝑥 ∈ 𝛺, and it satisfies
|𝑇𝑁 (𝑢)𝜆(𝑥)| ≤ 𝑀[𝑢, 𝜆](𝑥) and |𝑢𝜆(𝑥)| ≤ 𝑀[𝑢, 𝜆](𝑥) for 𝑛−1-a.e. 𝑥 ∈ 𝛺. (2.9)

Moreover, we have
𝑇𝑁 (𝑢)𝜆(𝑥) = 𝑢𝜆(𝑥) (2.10)

for all 𝑥 ∈ 𝛺 such that −𝑁 ≤ 𝑢−(𝑥) ≤ 𝑢+(𝑥) ≤ 𝑁 , which in turn implies 𝑇𝑁 (𝑢)𝜆(𝑥) → 𝑢𝜆(𝑥) for 𝑛−1-a.e. 𝑥 ∈ 𝛺, as 𝑁 → +∞.

Proof. Assuming 𝑥 ∈ 𝛺 is such that −𝑁 ≤ 𝑢−(𝑥) ≤ 𝑢+(𝑥) ≤ 𝑁 , we have 𝑇𝑁 (𝑢)±(𝑥) = 𝑢±(𝑥). This immediately implies that

𝑇𝑁 (𝑢)𝜆(𝑥) = 𝜆(𝑥)𝑇𝑁 (𝑢)+(𝑥) + (1 − 𝜆(𝑥))𝑇𝑁 (𝑢)−(𝑥) = 𝜆(𝑥)𝑢+(𝑥) + (1 − 𝜆(𝑥))𝑢−(𝑥) = 𝑢𝜆(𝑥)

and this shows (2.10). Since 𝑢+(𝑥) and 𝑢−(𝑥) are well-defined and finite for 𝑛−1-a.e. 𝑥 ∈ 𝛺, we notice that (2.10) easily implies
𝑇𝑁 (𝑢)𝜆(𝑥) → 𝑢𝜆(𝑥) as 𝑁 → +∞ for 𝑛−1-a.e. 𝑥 ∈ 𝛺.

Given that 𝑛−1(𝑆𝑢 ⧵ 𝐽𝑢) = 0, it is clear that 𝑀[𝑢, 𝜆](𝑥) is well defined for 𝑛−1-a.e. 𝑥 ∈ 𝛺. Now, in order to prove the first
inequality in (2.9), we must show two separate inequalities. The first inequality directly follows from the definition of 𝑇𝑁 :

|𝑇𝑁 (𝑢)𝜆(𝑥)| ≤ 𝜆(𝑥)|𝑇𝑁 (𝑢)+(𝑥)| + (1 − 𝜆(𝑥))|𝑇𝑁 (𝑢)−(𝑥)|

≤ 𝜆(𝑥)|𝑢+(𝑥)| + (1 − 𝜆(𝑥))|𝑢−(𝑥)| .

The second inequality is obtained by adding and subtracting 𝑇𝑁 (𝑢)∗ and by using (2.7), that is, for 𝑛−1-a.e. 𝑥 ∈ 𝛺 we have

|𝑇𝑁 (𝑢)𝜆(𝑥)| ≤ |𝑇𝑁 (𝑢)∗(𝑥)| + |𝑇𝑁 (𝑢)𝜆(𝑥) − 𝑇𝑁 (𝑢)∗(𝑥)|

≤ |𝑢∗(𝑥)| + |(𝜆(𝑥) − 1∕2)𝑇𝑁 (𝑢)+(𝑥) + (1∕2 − 𝜆(𝑥))𝑇𝑁 (𝑢)−(𝑥)|

≤ |𝑢∗(𝑥)| + |𝜆(𝑥) − 1∕2|(|𝑢+(𝑥)| + |𝑢−(𝑥)|
)

.

By combining the two previous estimates, we get (2.9) as wanted. Finally, we argue in a similar way with |𝑢𝜆| to conclude. □

Remark 2.2. We observe that (2.9) gives a finer upper bound for 𝑇𝑁 (𝑢)𝜆 than the one given in [13, Proposition 3.4]. In addition,
we notice that, if 𝜆 ≡ 1

2 , then (2.9) reduces to the standard estimate (2.7). If we consider instead the cases 𝜆 ≡ 1 and 𝜆 ≡ 0, then we
ave 𝑀[𝑢, 1] = |𝑢+| and 𝑀[𝑢, 0] = |𝑢−|.
6 
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Given a function 𝑢 ∈ 𝐵 𝑉 (𝛺) we define
√

1 + |𝐷 𝑢|2 as the distributional area factor of the graph {(𝑥, 𝑡) ∶ 𝑢(𝑥) = 𝑡} ⊂ 𝛺 × R, as
one in [24]. While the expression makes sense for 𝑛-a.e. 𝑥 ∈ 𝛺 for a function 𝑢 ∈ 𝑊 1,1

loc (𝛺), when 𝑢 ∈ 𝐵 𝑉 (𝛺) we more generally
define

∫𝑈

√

1 + |𝐷 𝑢|2 ∶= sup
{

∫𝛺
𝜂 + 𝑢div𝜙 𝑑 𝑥 ∶ (𝜙, 𝜂) ∈ 𝐶1

𝑐 (𝑈 ;R𝑛 × R), |(𝜙, 𝜂)| ≤ 1
}

,

for any open set 𝑈 ⊂ 𝛺. It is then easy to see that we have
√

1 + |𝐷 𝑢|2 =
√

1 + |∇𝑢|2𝑛 + |𝐷𝑠𝑢|. (2.11)

Given a measurable set 𝐸, we say that 𝐸 is a set of finite perimeter in 𝛺 if |𝐷 𝜒𝐸 |(𝛺) < +∞, and we set 𝑃 (𝐸;𝛺) = |𝐷 𝜒𝐸 |(𝛺) to
e the perimeter of 𝐸 in 𝛺. When 𝛺 = R𝑛 we simply write 𝑃 (𝐸). We refer to [23,25] for the definition and properties of 𝜕∗𝐸, the
reduced boundary of 𝐸, for which one has 𝑃 (𝐸;𝛺) = 𝑛−1(𝜕∗𝐸 ∩ 𝛺). In particular, we recall that 𝜒+

𝐸 = 𝜒𝐸1∪𝜕∗𝐸 and 𝜒−
𝐸 = 𝜒𝐸1 , so

that we deduce the following explicit formulas for the precise and 𝜆-representatives of 𝜒𝐸 :

𝜒∗
𝐸 = 𝜒𝐸1 + 1

2
𝜒𝜕∗𝐸 and 𝜒𝜆

𝐸 = 𝜒𝐸1 + 𝜆𝜒𝜕∗𝐸 𝑛−1-a.e. in 𝛺 . (2.12)

If 𝑛 ≥ 2, a remarkable property of sets of finite perimeter 𝐸 in R𝑛 is the isoperimetric inequality [23, Theorem 3.46]: there exists a
constant 𝑐𝑛 > 0 such that

min{|𝐸|, |R𝑛 ⧵ 𝐸|}1−
1
𝑛 ≤ 𝑐𝑛𝑃 (𝐸).

As a consequence, as long as |𝛺| < +∞, for all sets 𝐸 ⊂ 𝛺 of finite perimeter in R𝑛 we have

|𝐸 ∩𝛺| ≤ |𝛺|

1
𝑛
|𝐸|

1− 1
𝑛 ≤ 𝑐𝑛|𝛺|

1
𝑛 𝑃 (𝐸),

which immediately implies

‖𝜒𝐸‖𝐵 𝑉 (𝛺) = |𝐸 ∩𝛺| + 𝑃 (𝐸 , 𝛺) ≤ (𝑐𝑛|𝛺|

1
𝑛 + 1)𝑃 (𝐸). (2.13)

If 𝛺 has bounded Lipschitz boundary, we denote by Tr𝜕 𝛺(𝑢) the trace of 𝑢 over 𝜕 𝛺 and recall that the trace operator Tr𝜕 𝛺 ∶
𝐵 𝑉 (𝛺) → 𝐿1(𝜕 𝛺;𝑛−1) is linear, surjective and continuous with respect to the topology induced by the strict convergence (see for
instance [23, Theorem 3.88]). For the ease of the reader, we prove a useful result concerning a Cavalieri-type inequality involving
he trace operator for 𝐵 𝑉 functions.

Lemma 2.3. Let 𝛺 be an open, bounded set with Lipschitz boundary. Let 𝑓 ∈ 𝐵 𝑉 (𝛺) be a nonnegative function, and set 𝐸𝑡 = {𝑥 ∶ 𝑓 (𝑥) > 𝑡}
for 𝑡 > 0. Then

∫

+∞

0 ∫𝜕 𝛺
Tr𝜕 𝛺(𝜒𝐸𝑡

) 𝑑𝑛−1 𝑑 𝑡 ≤ ∫𝜕 𝛺
Tr𝜕 𝛺(𝑓 ) 𝑑𝑛−1 .

Proof. By [23, Theorem 3.87], we have

∫𝜕 𝛺
Tr𝜕 𝛺(𝑓 )(𝑥) 𝑑𝑛−1(𝑥) = ∫𝜕 𝛺

lim
𝑟→0

1
|𝛺 ∩ 𝐵𝑟(𝑥)| ∫𝛺∩𝐵𝑟(𝑥)

𝑓 (𝑦) 𝑑 𝑦 𝑑𝑛−1(𝑥)

= ∫𝜕 𝛺
lim
𝑟→0

1
|𝛺 ∩ 𝐵𝑟(𝑥)| ∫𝛺∩𝐵𝑟(𝑥)

∫

+∞

0
𝜒𝐸𝑡

(𝑦) 𝑑 𝑡 𝑑 𝑦 𝑑𝑛−1(𝑥)

= ∫𝜕 𝛺
lim
𝑟→0∫

+∞

0

1
|𝛺 ∩ 𝐵𝑟(𝑥)| ∫𝛺∩𝐵𝑟(𝑥)

𝜒𝐸𝑡
(𝑦) 𝑑 𝑦 𝑑 𝑡 𝑑𝑛−1(𝑥)

≥ ∫𝜕 𝛺 ∫

+∞

0
lim inf
𝑟→0

1
|𝛺 ∩ 𝐵𝑟(𝑥)| ∫𝛺∩𝐵𝑟(𝑥)

𝜒𝐸𝑡
(𝑦) 𝑑 𝑦 𝑑 𝑡 𝑑𝑛−1(𝑥)

= ∫𝜕 𝛺 ∫

+∞

0
Tr𝜕 𝛺(𝜒𝐸𝑡

)(𝑥) 𝑑 𝑡 𝑑𝑛−1(𝑥)

= ∫

+∞

0 ∫𝜕 𝛺
Tr𝜕 𝛺(𝜒𝐸𝑡

)(𝑥) 𝑑𝑛−1(𝑥) 𝑑 𝑡 ,

where the inequality in the fourth line follows from Fatou’s lemma, while the exchange of the integration orders is a consequence
f Tonelli’s theorem. □

2.2. Divergence-measure fields and 𝜆-pairings

We recall the notions of (essentially bounded) divergence-measure field and of pairing between a function of bounded variation
and one such field.
7 
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Definition 2.4. A vector field 𝐹 ∈ 𝐿∞(𝛺;R𝑛) is called an essentially bounded divergence-measure field, and we write 𝐹 ∈ ∞(𝛺),
if div𝐹 ∈ (𝛺). A vector field 𝐹 ∈ 𝐿∞

loc(𝛺;R𝑛) is called a locally essentially bounded divergence-measure field, and we write
𝐹 ∈ ∞

loc(𝛺), if 𝐹 ∈ ∞(𝑈 ) for any open set 𝑈 ⊂⊂ 𝛺.

It has been proved by Chen and Frid [8] (see also [26], for an improved proof), that, if 𝐹 ∈ ∞(𝛺) and 𝑢 ∈ 𝐵 𝑉 (𝛺) ∩ 𝐿∞(𝛺),
then the product 𝑢𝐹 belongs to ∞(𝛺); and an analogous result holds also locally. Furthermore, we recall the fact that, if
𝐹 ∈ ∞

loc(𝛺), then |div𝐹 | ≪ 𝑛−1, for which we refer to [8,19]. Hence, if 𝑢∗ is the precise representative of 𝑢, the measure
𝑢∗div𝐹 is well defined, 𝑢∗ being defined 𝑛−1-a.e. on 𝛺.

Actually, the 𝐿∞-assumption on 𝑢 is not strictly necessary, as one can see by following the approach of [13] in defining the
notion of 𝜆-pairing.

Definition 2.5. Given a vector field 𝐹 ∈ ∞
loc(𝛺), a scalar function 𝑢 ∈ 𝐵 𝑉loc(𝛺) and a Borel function 𝜆 ∶ 𝛺 → [0, 1] such that

𝑢𝜆 ∈ 𝐿1
loc(𝛺; |div𝐹 |), we define the 𝜆-pairing between 𝐹 and 𝐷 𝑢 as the distribution (𝐹 , 𝐷 𝑢)𝜆 given by

(𝐹 , 𝐷 𝑢)𝜆 ∶= div(𝑢𝐹 ) − 𝑢𝜆div𝐹 . (2.14)

Roughly speaking, the notion of 𝜆-pairing extends the classical dot product between 𝐹 and 𝐷 𝑢. We also remark that in the case
𝜆 ≡ 1

2 one recovers the classical pairing first considered by Anzellotti in [5], which we denote by (𝐹 , 𝐷 𝑢)∗. As proved in [13],
the 𝜆-pairing is indeed a Radon measure. For the ease of the reader, we recall its main properties in the following statement, that
summarizes [13, Proposition 4.4] (see also [14, Remark 3.6]).

Theorem 2.6. Let 𝐹 ∈ ∞(𝛺), 𝑢 ∈ 𝐵 𝑉 (𝛺) and 𝜆 ∶ 𝛺 → [0, 1] be a Borel function. If 𝑢𝜆 ∈ 𝐿1(𝛺; |div𝐹 |), then we have
div(𝑢𝐹 ), (𝐹 , 𝐷 𝑢)𝜆 ∈ (𝛺), with

div(𝑢𝐹 ) = 𝑢𝜆div𝐹 + (𝐹 , 𝐷 𝑢)𝜆 on 𝛺 , (2.15)

and

|(𝐹 , 𝐷 𝑢)𝜆| ≤ ‖𝐹‖𝐿∞(𝛺;R𝑛)|𝐷 𝑢| on 𝛺 . (2.16)

The assumption 𝑢𝜆 ∈ 𝐿1(𝛺; |div𝐹 |) in Theorem 2.6 is equivalent to the summability of any 𝜆-representative of 𝑢 with respect to
the measure |div𝐹 |, as showed in [13, Lemma 3.2]. In particular, it is also equivalent to the summability of the majorant function
𝑀[𝑢, 𝜆] given by (2.8). We collect this results in the proposition below.

Proposition 2.7. Let 𝐹 ∈ ∞(𝛺) and 𝑢 ∈ 𝐵 𝑉 (𝛺). Let 𝜆1, 𝜆2 ∶ 𝛺 → [0, 1] be Borel functions. Then we have 𝑢𝜆1 ∈ 𝐿1(𝛺; |div𝐹 |) if and
only if 𝑢𝜆2 ∈ 𝐿1(𝛺; |div𝐹 |). In addition, if 𝜆 ∶ 𝛺 → [0, 1] is a Borel function, then 𝑢𝜆 ∈ 𝐿1(𝛺; |div𝐹 |) if and only if𝑀[𝑢, 𝜆] ∈ 𝐿1(𝛺; |div𝐹 |).

Proof. The first equivalence is given by [13, Lemma 3.2]. Then, if we assume 𝑢𝜆 ∈ 𝐿1(𝛺; |div𝐹 |) for some 𝜆 ∶ 𝛺 → [0, 1], by the
first part of the statement, we have 𝑢+, 𝑢− ∈ 𝐿1(𝛺; |div𝐹 |), since they correspond to the choices 𝜆 ≡ 1 and 𝜆 ≡ 0, respectively. Hence,

e see that 𝑀[𝑢, 𝜆] ∈ 𝐿1(𝛺; |div𝐹 |), in the light of (2.8) and the fact that |div𝐹 | ≪ 𝑛−1. Finally, the second estimate in (2.9)
immediately gives the opposite implication. □

One of the main applications of the theory of divergence-measure fields has consisted in generalizing integration by parts formulas
for rough domains and weakly differentiable functions. For the ease of the reader we collect in the following statements some versions
f these results, suitably refined for the purposes of this paper. The first one is simply [11, Lemma 3.1].

Lemma 2.8. Let 𝐹 ∈ ∞(𝛺) be such that supp(𝐹 ) ⊂⊂ 𝛺. Then we have div𝐹 (𝛺) = 0.
Now we deal with the integration on sets with finite perimeter. Such Gauss–Green formulas have been widely studied in the

iterature [7,11–14,16,19,20]. However, we provide here a general result, allowing for sets which can touch the boundary of the
definition domain 𝛺, under minimal regularity assumptions. To this purpose, we recall that an open set 𝛺 is said to be weakly regular
if it is a bounded set with finite perimeter in R𝑛 such that 𝑛−1(𝜕 𝛺) = 𝑛−1(𝜕∗𝛺), or, equivalently, 𝑛−1(𝜕 𝛺 ⧵ 𝜕∗𝛺) = 0.

Theorem 2.9. Let 𝐹 ∈ ∞(𝛺) and let 𝐸 ⊆ 𝛺 be of finite perimeter in R𝑛. Assume that either 𝐸 ⊂⊂ 𝛺 or 𝛺 is weakly regular. Then,
here exist the interior and exterior normal traces of 𝐹 on 𝜕∗𝐸; that is, the functions

Tr𝑖(𝐹 , 𝜕∗𝐸),Tr𝑒(𝐹 , 𝜕∗𝐸) ∈ 𝐿∞(𝜕∗𝐸;𝑛−1),

which satisfy
⎧

⎪

⎨

⎪

div𝐹 (𝐸1 ∩𝛺) = −∫𝜕∗𝐸
Tr𝑖(𝐹 , 𝜕∗𝐸) 𝑑𝑛−1

‖Tr𝑖(𝐹 , 𝜕∗𝐸)‖ ≤ ‖𝐹‖ ,
(2.17)
⎩

𝐿∞(𝜕∗𝐸;𝑛−1) 𝐿∞(𝐸;R𝑛)
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and
⎧

⎪

⎪

⎨

⎪

⎪

⎩

div𝐹 ((𝐸1 ∪ 𝜕∗𝐸) ∩𝛺) = −∫𝜕∗𝐸
Tr𝑒(𝐹 , 𝜕∗𝐸) 𝑑𝑛−1

‖Tr𝑒(𝐹 , 𝜕∗𝐸)‖𝐿∞(𝜕∗𝐸;𝑛−1) ≤

{

‖𝐹‖𝐿∞(𝛺⧵𝐸;R𝑛) if 𝐸 ⊂⊂ 𝛺
‖𝐹‖𝐿∞(𝛺;R𝑛) otherwise.

(2.18)

In particular, if 𝛺 is weakly regular, then there exists Tr𝑖(𝐹 , 𝜕 𝛺) ∈ 𝐿∞(𝜕 𝛺;𝑛−1) satisfying

div𝐹 (𝛺) = −∫𝜕 𝛺
Tr𝑖(𝐹 , 𝜕 𝛺) 𝑑𝑛−1 and ‖Tr𝑖(𝐹 , 𝜕 𝛺)‖𝐿∞(𝜕 𝛺;𝑛−1) ≤ ‖𝐹‖𝐿∞(𝛺;R𝑛). (2.19)

Proof. For the proof of (2.17) and (2.18) in the case 𝐸 ⊂⊂ 𝛺 we refer to [11, Theorem 3.2 and Corollary 3.6]. Then, if 𝛺 is weakly
egular, by [11, Corollary 5.5 and Remark 5.6] we have that the zero extension of 𝐹 to R𝑛, defined as

𝐹 (𝑥) ∶=
{

𝐹 (𝑥) if 𝑥 ∈ 𝛺
0 if 𝑥 ∈ R𝑛 ⧵𝛺 ,

satisfies 𝐹 ∈ ∞(R𝑛), and there exist Tr𝑖(𝐹 , 𝜕 𝛺),Tr𝑒(𝐹 , 𝜕 𝛺) ∈ 𝐿∞(𝜕 𝛺;𝑛−1) such that

div𝐹 = div𝐹 𝛺 + Tr𝑖(𝐹 , 𝜕 𝛺)𝑛−1 𝜕 𝛺 and Tr𝑒(𝐹 , 𝜕 𝛺) = 0. (2.20)

Hence, if 𝐸 ⊂ 𝛺 is a set of finite perimeter in R𝑛, we can apply (2.17) and (2.18) to 𝐹 and obtain

div𝐹 (𝐸1) = −∫𝜕∗𝐸
Tr𝑖(𝐹 , 𝜕∗𝐸) 𝑑𝑛−1,

div𝐹 (𝐸1 ∪ 𝜕∗𝐸) = −∫𝜕∗𝐸
Tr𝑒(𝐹 , 𝜕∗𝐸) 𝑑𝑛−1. (2.21)

Then, we notice that it must be 𝑛−1(𝐸1 ⧵𝛺) = 0, since 𝑛−1(𝛺1 ⧵𝛺) = 0 (see [11, Corollary 5.5]) and 𝐸1 ⊂ 𝛺1. Therefore, we have

div𝐹 (𝐸1) = div𝐹 (𝐸1 ∩𝛺) + div𝐹 (𝐸1 ⧵𝛺) = div𝐹 (𝐸1 ∩𝛺),

since |div𝐹 | ≪ 𝑛−1. Hence, given that

‖Tr𝑖(𝐹 , 𝜕∗𝐸)‖𝐿∞(𝜕∗𝐸;𝑛−1) ≤ ‖𝐹‖𝐿∞(𝐸;R𝑛) = ‖𝐹‖𝐿∞(𝐸;R𝑛),

we can set Tr𝑖(𝐹 , 𝜕∗𝐸) ∶= Tr𝑖(𝐹 , 𝜕∗𝐸) to include the case 𝑛−1(𝜕∗𝐸 ∩ 𝜕 𝛺) > 0, with a little abuse of notation, thus obtaining (2.17).
As for (2.18), we exploit (2.20) and the fact that 𝑛−1(𝐸1 ⧵𝛺) = 0 to get

div𝐹 (𝐸1 ∪ 𝜕∗𝐸) = div𝐹 ((𝐸1 ∪ 𝜕∗𝐸) ∩𝛺) + ∫𝜕∗𝐸∩𝜕 𝛺
Tr𝑖(𝐹 , 𝜕 𝛺) 𝑑𝑛−1.

In addition, we notice that 𝜈𝐸 (𝑥) = 𝜈𝛺(𝑥) for 𝑛−1-a.e. 𝑥 ∈ 𝜕∗𝐸 ∩ 𝜕 𝛺, since 𝐸 ⊂ 𝛺, so that, by [11, Proposition 4.10], we have

Tr𝑖(𝐹 , 𝜕∗𝐸) = Tr𝑖(𝐹 , 𝜕 𝛺) and Tr𝑒(𝐹 , 𝜕∗𝐸) = Tr𝑒(𝐹 , 𝜕 𝛺) = 0 𝑛−1-a.e. on 𝜕∗𝐸 ∩ 𝜕 𝛺 ,
due to (2.20). Hence, exploiting (2.21) we get

div𝐹 ((𝐸1 ∪ 𝜕∗𝐸) ∩𝛺) = −∫𝜕∗𝐸
Tr𝑒(𝐹 , 𝜕∗𝐸) 𝑑𝑛−1 − ∫𝜕∗𝐸∩𝜕 𝛺

Tr𝑖(𝐹 , 𝜕 𝛺) 𝑑𝑛−1

= −∫𝜕∗𝐸⧵𝜕 𝛺
Tr𝑒(𝐹 , 𝜕∗𝐸) 𝑑𝑛−1 − ∫𝜕∗𝐸∩𝜕 𝛺

Tr𝑖(𝐹 , 𝜕∗𝐸) 𝑑𝑛−1.

Hence, we obtain (2.18) by setting

Tr𝑒(𝐹 , 𝜕∗𝐸) ∶=
{

Tr𝑒(𝐹 , 𝜕∗𝐸) on 𝜕∗𝐸 ⧵ 𝜕 𝛺
Tr𝑖(𝐹 , 𝜕∗𝐸) on 𝜕∗𝐸 ∩ 𝜕 𝛺 ,

which clearly satisfies

‖Tr𝑒(𝐹 , 𝜕∗𝐸)‖𝐿∞(𝜕∗𝐸;𝑛−1) ≤ max{‖𝐹‖𝐿∞(R𝑛⧵𝐸;R𝑛), ‖𝐹‖𝐿∞(𝐸;R𝑛)} = ‖𝐹‖𝐿∞(R𝑛;R𝑛)

= ‖𝐹‖𝐿∞(𝛺;R𝑛)

Finally, we obtain (2.19) if we choose 𝐸 = 𝛺 in (2.17). □

Remark 2.10. We point out that in Theorem 2.9 we can equivalently assume that 𝐸 has finite perimeter only in 𝛺. Indeed, if
𝐸 ⊂⊂ 𝛺, then 𝑃 (𝐸) = 𝑃 (𝐸 , 𝛺). If instead 𝛺 is weakly regular, then there exists a family of bounded open sets with smooth boundary
𝛺𝑘)𝑘∈N such that

𝛺𝑘 ⊂ 𝛺𝑘+1,
+∞
⋃

𝛺𝑘 = 𝛺 and 𝑃 (𝛺𝑘) → 𝑃 (𝛺)

𝑘=0
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(see [27, Theorem 1.1] and the subsequent discussion). Hence, given 𝐸 ⊂ 𝛺 with 𝑃 (𝐸 , 𝛺) < +∞, it is clear that

𝑃 (𝐸 ∩𝛺𝑘) = 𝑃 (𝐸 ∩𝛺𝑘, 𝛺) ≤ 𝑃 (𝐸 , 𝛺) + 𝑃 (𝛺𝑘, 𝛺) = 𝑃 (𝐸 , 𝛺) + 𝑃 (𝛺𝑘)

Thus, by the lower semicontinuity of the perimeter we get

𝑃 (𝐸) ≤ lim inf
𝑘→+∞

𝑃 (𝐸 ∩𝛺𝑘) ≤ 𝑃 (𝐸 , 𝛺) + lim
𝑘→+∞

𝑃 (𝛺𝑘) = 𝑃 (𝐸 , 𝛺) + 𝑃 (𝛺).

Since clearly 𝑃 (𝐸) ≥ 𝑃 (𝐸 , 𝛺), we conclude that 𝐸 ⊂ 𝛺 has finite perimeter in 𝛺 if and only if it has finite perimeter in R𝑛.
Exploiting the Leibniz rule given by Theorem 2.6, we are able to provide an integration by parts formula up to the boundary of

a Lipschitz domain for the divergence of a product between a divergence-measure field and a suitable scalar function of bounded
ariation. Although similar results are already present in the literature (see for instance [5,7,8,10,11,14,26]), to the best of our

knowledge it has never been formulated with this level of generality before.

Theorem 2.11. Let 𝛺 be an open bounded set with Lipschitz boundary. Let 𝐹 ∈ ∞(𝛺) and 𝑢 ∈ 𝐵 𝑉 (𝛺) be such that 𝑢𝜆 ∈ 𝐿1(𝛺; |div𝐹 |)
for some Borel function 𝜆 ∶ 𝛺 → [0, 1]. Then we have

∫𝛺
𝑢𝜆 𝑑div𝐹 + (𝐹 , 𝐷 𝑢)𝜆(𝛺) = div(𝑢𝐹 )(𝛺) = −∫𝜕 𝛺

Tr𝜕 𝛺(𝑢)Tr𝑖(𝐹 , 𝜕 𝛺) 𝑑𝑛−1. (2.22)

Proof. We notice that 𝛺 is a weakly regular set. Hence, arguing as in the proof of Theorem 2.9, we consider the zero extension
𝐹 of 𝐹 to R𝑛. In addition, by [23, Theorem 3.87] we know that Tr𝜕 𝛺(𝑢) ∈ 𝐿1(𝜕 𝛺;𝑛−1) and that the zero extension �̂� of 𝑢 to R𝑛

atisfies �̂� ∈ 𝐵 𝑉 (R𝑛) and 𝐷 ̂𝑢 = 𝐷 𝑢 on 𝛺. For 𝑁 > 0, we consider the truncation 𝑇𝑁 (�̂�), which clearly satisfies 𝑇𝑁 (�̂�) = 𝑇𝑁 (𝑢). Thanks
o [12, Proposition 3.1], we know that

Tr𝑖(𝑇𝑁 (�̂�)𝐹 , 𝜕 𝛺) = Tr𝜕 𝛺(𝑇𝑁 (𝑢))Tr𝑖(𝐹 , 𝜕 𝛺) 𝑛−1-a.e. on 𝜕 𝛺 .
By applying (2.17) to the set 𝐸 = 𝛺 in the domain R𝑛, we get

div(𝑇𝑁 (𝑢)𝐹 )(𝛺1) = −∫𝜕 𝛺
Tr𝜕 𝛺(𝑇𝑁 (𝑢))Tr𝑖(𝐹 , 𝜕 𝛺) 𝑑𝑛−1.

However, 𝛺 is weakly regular, which implies that 𝑛−1(𝛺1 ⧵𝛺) = 0 (see [11, Corollary 5.5]), and so
div(𝑇𝑁 (𝑢)𝐹 )(𝛺1) = div(𝑇𝑁 (𝑢)𝐹 )(𝛺) = div(𝑇𝑁 (𝑢)𝐹 )(𝛺),

since |div(𝑇𝑁 (𝑢)𝐹 )| ≪ 𝑛−1 and 𝑇𝑁 (𝑢)𝐹 = 𝑇𝑁 (𝑢)𝐹 on 𝛺. Hence, by (2.15), we get

∫𝛺
𝑇𝑁 (𝑢)𝜆 𝑑div𝐹 + (𝐹 , 𝐷 𝑇𝑁 (𝑢))𝜆(𝛺) = div(𝑇𝑁 (𝑢)𝐹 )(𝛺) = −∫𝜕 𝛺

Tr𝜕 𝛺(𝑇𝑁 (𝑢))Tr𝑖(𝐹 , 𝜕 𝛺) 𝑑𝑛−1, (2.23)

where we set Tr𝑖(𝐹 , 𝜕 𝛺) ∶= Tr𝑖(𝐹 , 𝜕 𝛺), as in the proof of Theorem 2.9. Since 𝑇𝑁 (𝑢) → 𝑢 in 𝐵 𝑉 (𝛺), and therefore in 𝐵 𝑉 (𝛺)-strict as
→ +∞, [23, Theorem 3.88] implies that Tr𝜕 𝛺(𝑇𝑁 (𝑢)) → Tr𝜕 𝛺(𝑢) in 𝐿1(𝜕 𝛺;𝑛−1) as 𝑁 → +∞. As for the left hand side, combining

Proposition 2.1 and Proposition 2.7, we exploit Lebesgue’s dominated convergence theorem to obtain 𝑇𝑁 (𝑢)𝜆 → 𝑢𝜆 in 𝐿1(𝛺; |div𝐹 |)
as 𝑁 → +∞. Then, we know that (𝐹 , 𝐷 𝑇𝑁 (𝑢))𝜆 ⇀ (𝐹 , 𝐷 𝑢)𝜆 in (𝛺) by [13, Remark 4.5]. Let 𝛺𝛿 = {𝑥 ∈ 𝛺 ∶ dist (𝑥, 𝜕 𝛺) > 𝛿} for 𝛿 > 0
such that 𝛺𝛿 ≠ ∅. By (2.16), it is clear that the sequence of measures

(

|(𝐹 , 𝐷 𝑇𝑁 (𝑢))𝜆|
)

𝑁 is uniformly bounded, so that there exists
some measure 𝛾 ≥ |(𝐹 , 𝐷 𝑢)𝜆| such that |(𝐹 , 𝐷 𝑇𝑁 (𝑢))𝜆| ⇀ 𝛾 in (𝛺), up to a subsequence. Due to the non-concentration property of

adon measures, we know that 𝛾(𝜕 𝛺𝛿) = 0 for 1-a.e. 𝛿 > 0. We fix a sequence (𝛿𝑘)𝑘∈N, 𝛿𝑘 → 0+, of such good values of 𝛿 > 0. Thus,
y [23, Proposition 1.62], possibly up to a subsequence we get

(𝐹 , 𝐷 𝑇𝑁 (𝑢))𝜆(𝛺𝛿𝑘 ) → (𝐹 , 𝐷 𝑢)𝜆(𝛺𝛿𝑘 ) as 𝑁 → +∞. (2.24)

On the other hand, |𝐷 𝑇𝑁 (𝑢)| ≤ |𝐷 𝑢| and (2.16) yield

|(𝐹 , 𝐷 𝑇𝑁 (𝑢))𝜆|(𝛺 ⧵𝛺𝛿𝑘 ) ≤ ‖𝐹‖𝐿∞(𝛺;R𝑛)|𝐷 𝑢|(𝛺 ⧵𝛺𝛿𝑘 ) → 0 as 𝑘 → +∞.

Hence, for all 𝜀 > 0, there exists 𝑘0 ∈ N such that

max{|(𝐹 , 𝐷 𝑢)𝜆|(𝛺 ⧵𝛺𝛿𝑘 ), |(𝐹 , 𝐷 𝑇𝑁 (𝑢))𝜆|(𝛺 ⧵𝛺𝛿𝑘 )} ≤ ‖𝐹‖𝐿∞(𝛺;R𝑛)|𝐷 𝑢|(𝛺 ⧵𝛺𝛿𝑘 ) < 𝜀
for all 𝑘 ≥ 𝑘0 and 𝑁 > 0. Thus, thanks to (2.24) we obtain

lim sup
𝑁→+∞

|

|

(𝐹 , 𝐷 𝑇𝑁 (𝑢))𝜆(𝛺) − (𝐹 , 𝐷 𝑢)𝜆(𝛺)|
|

≤ lim
𝑁→+∞

|

|

|

(𝐹 , 𝐷 𝑇𝑁 (𝑢))𝜆(𝛺𝛿𝑘 ) − (𝐹 , 𝐷 𝑢)𝜆(𝛺𝛿𝑘 )
|

|

|

+ lim sup
𝑁→+∞

|(𝐹 , 𝐷 𝑇𝑁 (𝑢))𝜆|(𝛺 ⧵𝛺𝛿𝑘 ) + |(𝐹 , 𝐷 𝑢)𝜆|(𝛺 ⧵𝛺𝛿𝑘 )

≤ 2𝜀,

which, since 𝜀 is arbitrary, implies

lim
𝑁→+∞

(𝐹 , 𝐷 𝑇𝑁 (𝑢))𝜆(𝛺) = (𝐹 , 𝐷 𝑢)𝜆(𝛺).

All in all, we pass to the limit as 𝑁 → +∞ in (2.23), finally obtaining (2.22). □
10 
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2.3. Measures in the dual of 𝐵 𝑉

We recall the definition of the dual of the space 𝐵 𝑉 .

Definition 2.12. We denote by 𝐵 𝑉 (𝛺)∗ the dual of the space 𝐵 𝑉 (𝛺); that is, the space of linear functionals T ∶ 𝐵 𝑉 (𝛺) → R for
which there exists a constant 𝐶 > 0 such that

|T(𝑢)| ≤ 𝐶‖𝑢‖𝐵 𝑉 (𝛺) for all 𝑢 ∈ 𝐵 𝑉 (𝛺).

It is well known that there are some elements in the dual of 𝐵 𝑉 whose action can be represented as the integration of a suitable
representative of the 𝐵 𝑉 function against a Radon measure (see for instance [4]). Indeed, given 𝜇 ∈  (𝛺), the linear functional

T𝜇(𝑢) = ∫𝛺
𝑢∗ 𝑑 𝜇 for 𝑢 ∈ 𝐵 𝑉 (𝛺) ∩ 𝐿∞(𝛺)

is well defined, although not necessarily continuous. We point out that the assumption 𝜇 ∈  (𝛺) is necessary, since otherwise
𝑢∗(𝑥) might not be well defined for |𝜇|-a.e. 𝑥 ∈ 𝛺, and that the choice of the precise representative 𝑢∗ ensures the linearity of T𝜇 ,
due to (2.5). Therefore, we choose the following notation:

given 𝜇 ∈  (𝛺), we say that 𝜇 ∈ 𝐵 𝑉 (𝛺)∗ if there exists T ∈ 𝐵 𝑉 (𝛺)∗ such that
T(𝑢) = T𝜇(𝑢) 𝑓 𝑜𝑟 𝑎𝑙 𝑙 𝑢 ∈ 𝐵 𝑉 (𝛺) ∩ 𝐿∞(𝛺).

Under the additional assumption that 𝛺 is an open bounded set with Lipschitz boundary, it was proved in [4, Theorem 8.2] that
T𝜇 is continuous on 𝐵 𝑉 (𝛺) ∩ 𝐿∞(𝛺) with respect to the 𝐵 𝑉 -norm if and only if there exists 𝐶 > 0 such that

|𝜇(𝑈 ∩𝛺)| ≤ 𝐶 𝑃 (𝑈 ) for all open sets 𝑈 ⊂ R𝑛 with smooth boundary.

We further explore this and similar results in Section 4.
Given a pair (𝜇 , 𝜆) ∈  (𝛺) × 𝑏(𝛺), it is also possible to define

T𝜇 ,𝜆(𝑢) = ∫𝛺
𝑢𝜆 𝑑 𝜇 for 𝑢 ∈ 𝐵 𝑉 (𝛺) ∩ 𝐿∞(𝛺). (2.25)

However, unless 𝜆(𝑥) ≡ 1
2 for |𝜇|-a.e. 𝑥 ∈ 𝛺 or |𝜇|(𝛴) = 0 for all 𝑛−1-rectifiable sets 𝛴, this mapping is not linear. Indeed, arguing

analogously as in [13, Remark 4.6], we notice that for any 𝑢 ∈ 𝐵 𝑉 (𝛺) ∩ 𝐿∞(𝛺) we have

T𝜇 ,𝜆(𝑢) + T𝜇 ,𝜆(−𝑢) = ∫𝛺

(

𝑢𝜆 + (−𝑢)𝜆) 𝑑 𝜇 = ∫𝛺
(2𝜆 − 1)(𝑢+ − 𝑢−) 𝑑 𝜇 .

Nevertheless, it is worth remarking that for a relevant class of measures the functional T𝜇 ,𝜆 can be extended to a continuous
unctional defined on the whole space 𝐵 𝑉 (𝛺), see Definition 4.6 and Lemma 4.17.

3. 𝝀-Approximation

It is natural to expect that many properties of the 𝜆-pairing (𝐹 , 𝐷 𝑢)𝜆 can be obtained as direct extensions of properties satisfied
by the pairing when 𝑢 is a smooth function. The goal of this section is to provide the required approximation result, Theorem 3.4,
which in turn is based on Theorem 3.2, a finer version of Anzellotti-Giaquinta’s approximation that is specifically designed to enforce
lso the 𝑛−1-a.e. approximation of the 𝜆-representative 𝑢𝜆.

We start by stating a first refinement of Anzellotti-Giaquinta approximation theorem for 𝐵 𝑉 functions involving also the 𝑛−1-a.e.
pointwise convergence and the strict convergence with respect to the area functional. As customary, we say that any radial function
𝜌 ∈ 𝐶∞

𝑐 (𝐵1(0)) such that 𝜌 ≥ 0 and ∫𝐵1(0)
𝜌 𝑑 𝑥 = 1 is a standard mollifier. For all 𝜀 > 0 we set 𝜌𝜀(𝑥) = 𝜀−𝑛𝜌

(

𝑥
𝜀

)

, and we recall that, for

all 𝑢 ∈ 𝐵 𝑉 (𝛺), by [23, Corollary 3.80] we have

lim
𝜀→0+

(𝜌𝜀 ∗ 𝑢)(𝑥) = 𝑢∗(𝑥) for 𝑛−1-a.e. 𝑥 ∈ 𝛺 . (3.1)

Theorem 3.1. Let 𝑢 ∈ 𝐵 𝑉 (𝛺). Then there exists (𝑢𝜀)𝜀>0 ⊂ 𝐵 𝑉 (𝛺) ∩ 𝐶∞(𝛺) such that
(1) 𝑢𝜀 → 𝑢 in 𝐿1(𝛺) as 𝜀 → 0,
(2) |𝐷 𝑢𝜀|(𝛺) ≤ |𝐷 𝑢|(𝛺) + 4𝜀 for all 𝜀 > 0, and so lim

𝜀→0
|𝐷 𝑢𝜀|(𝛺) = |𝐷 𝑢|(𝛺),

(3)
√

1 + |𝐷 𝑢𝜀|2(𝛺) ≤
√

1 + |𝐷 𝑢|2(𝛺) + 4𝜀 for all 𝜀 > 0, and so lim
𝜀→0

√

1 + |𝐷 𝑢𝜀|2(𝛺) =
√

1 + |𝐷 𝑢|2(𝛺),

(4) 𝑢𝜀(𝑥) → 𝑢∗(𝑥) for 𝑛−1-a.e. 𝑥 ∈ 𝛺 as 𝜀 → 0,
(5) ‖𝑢𝜀‖𝐿∞(𝛺) ≤ (1 + 𝜀)‖𝑢‖𝐿∞(𝛺) for all 𝜀 > 0,
(6) if 𝛺 is an open set with bounded Lipschitz boundary, then Tr𝜕 𝛺(𝑢𝜀) = Tr𝜕 𝛺(𝑢) for all 𝜀 > 0.
11 
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Proof. The proof is based on a slight modification of the construction of the approximating sequence in Anzellotti-Giaquinta
theorem, for which we refer for instance to [28, Theorem 3, Section 5.2.2].

Fix 𝜀 > 0. Given a positive integer 𝑚, we set 𝛺0 = ∅, define for each 𝑘 ∈ N, 𝑘 ≥ 1 the sets

𝛺𝑘 =
{

𝑥 ∈ 𝛺 ∶ dist (𝑥, 𝜕 𝛺) > 1
𝑚 + 𝑘

}

∩ 𝐵(0, 𝑘 + 𝑚)

and then we choose 𝑚 such that |𝐷 𝑢|(𝛺 ⧵𝛺1) < 𝜀.
We define now 𝛴𝑘 ∶= 𝛺𝑘+1 ⧵𝛺𝑘−1. Since (𝛴𝑘)𝑘≥1 is an open cover of 𝛺, then there exists a partition of unity subordinate to that

open cover; that is, a sequence of functions (𝜁𝑘)𝑘≥1 such that:

(1) 𝜁𝑘 ∈ 𝐶∞
𝑐 (𝛴𝑘);

(2) 0 ≤ 𝜁𝑘 ≤ 1;
(3) ∑+∞

𝑘=1 𝜁𝑘 = 1 on 𝛺.

Next, we take a standard mollifier 𝜌 and for all 𝑘 ∈ N, 𝑘 ≥ 1 we choose 𝛿𝑘 = 𝛿𝑘(𝜀) > 0 small enough such that the following
conditions hold

supp(𝜌𝛿𝑘 ∗ 𝜁𝑘) ⊂ 𝛴𝑘, (3.2)

‖𝜌𝛿𝑘 ∗ (𝑢𝜁𝑘) − 𝑢𝜁𝑘‖𝐿1(𝛺) <
𝜀
2𝑘

, (3.3)

‖𝜌𝛿𝑘 ∗ (𝑢∇𝜁𝑘) − 𝑢∇𝜁𝑘‖𝐿1(𝛺;R𝑛) <
𝜀
2𝑘

, (3.4)

‖𝜌𝛿𝑘 ∗ 𝜁𝑘 − 𝜁𝑘‖𝐿∞(𝛺) <
𝜀
2𝑘

. (3.5)

Then we define 𝑢𝜀 ∶=
+∞
∑

𝑘=1
𝜌𝛿𝑘 ∗ (𝑢𝜁𝑘). We notice that, for any fixed 𝑥 ∈ 𝛺, there exists a unique 𝑘 = 𝑘(𝑥) ≥ 1 such that 𝑥 ∈ 𝛴𝑘 ∩𝛴𝑘+1,

so that, by (3.2),

𝑢𝜀(𝑥) =
1
∑

𝑗=0
(𝜌𝛿𝑘+𝑗 ∗ (𝑢𝜁𝑘+𝑗 ))(𝑥). (3.6)

Hence, 𝑢𝜀 ∈ 𝐶∞(𝛺), since locally there are at most two nonzero terms in the sum. The proof of points (1) and (2) follows in a
standard way from (3.2), (3.3) and (3.4) (see for instance [28, Theorem 3, Section 5.2.2] and [24, Theorem 1.17]). Arguing in a
imilar way, for any (𝜑, 𝜂) ∈ 𝐶1

𝑐 (𝛺;R𝑛 × R) such that ‖(𝜑, 𝜂)‖𝐿∞(𝛺;R𝑛×R) ≤ 1 we obtain

∫𝛺
𝜂 + 𝑢𝜀div𝜑 𝑑 𝑥 = ∫𝛺

𝜂 + 𝑢div(𝜁1(𝜌𝛿1 ∗ 𝜑)) 𝑑 𝑥 +
+∞
∑

𝑘=2
∫𝛺

𝑢div(𝜁𝑘(𝜌𝛿𝑘 ∗ 𝜑)) 𝑑 𝑥+

−
+∞
∑

𝑘=1
∫𝛺

𝜑 ⋅
(

𝜌𝛿𝑘 ∗
(

𝑢∇𝜁𝑘
)

− 𝑢∇𝜁𝑘
)

𝑑 𝑥

≤
√

1 + |𝐷 𝑢|2(𝛺) +
+∞
∑

𝑘=2
|𝐷 𝑢|(𝛴𝑘) +

+∞
∑

𝑘=1
‖𝜌𝛿𝑘 ∗ (𝑢∇𝜁𝑘) − 𝑢∇𝜁𝑘‖𝐿1(𝛺;R𝑛)

≤
√

1 + |𝐷 𝑢|2(𝛺) + 2|𝐷 𝑢|(𝛺 ⧵𝛺1) +
+∞
∑

𝑘=1

𝜀
2𝑘

≤
√

1 + |𝐷 𝑢|2(𝛺) + 3𝜀.

Together with the lower semicontinuity of the area functional with respect to the 𝐿1 convergence, this implies point (3). Then, since
𝜁𝑘 is continuous for every 𝑘 and 𝑢 ∈ 𝐵 𝑉 (𝛺), by (3.1) we have

lim
𝜀→0+

(𝜌𝛿𝑘 ∗ (𝑢𝜁𝑘))(𝑥) = 𝜁𝑘(𝑥)𝑢∗(𝑥) for 𝑛−1-a.e. 𝑥 ∈ 𝛺 ,

where the 𝑛−1-negligible set of points depends only on 𝑢. Hence, for 𝑛−1-a.e. 𝑥 ∈ 𝛺, by (3.6) we get

lim
𝜀→0+

𝑢𝜀(𝑥) = lim
𝜀→0+

1
∑

𝑗=0
(𝜌𝛿𝑘+𝑗 ∗ (𝑢𝜁𝑘+𝑗 ))(𝑥) = 𝑢∗(𝑥)

1
∑

𝑗=0
𝜁𝑘+𝑗 (𝑥) = 𝑢∗(𝑥).

As for point (5), we can assume without loss of generality that 𝑢 ∈ 𝐿∞(𝛺). For any 𝑥 ∈ 𝛺 there exists a unique 𝑘 ≥ 1 such that
∑1

𝑗=0 𝜁𝑘+𝑗 (𝑥) = 1. Therefore we apply (3.5) and (3.6) to get

|𝑢𝜀(𝑥)| ≤ ‖𝑢‖𝐿∞(𝛺)

1
∑

𝑗=0
(𝜌𝛿𝑘+𝑗 ∗ 𝜁𝑘+𝑗 )(𝑥) ≤ ‖𝑢‖𝐿∞(𝛺)

(

1 +
1
∑

𝑗=0
|(𝜌𝛿𝑘+𝑗 ∗ 𝜁𝑘+𝑗 )(𝑥) − 𝜁𝑘+𝑗 (𝑥)|

)

≤ (1 + 𝜀)‖𝑢‖𝐿∞(𝛺).

Finally, if 𝛺 is an open set with bounded Lipschitz boundary, then the trace operator is well defined and, thanks to [23, Theorem
3.87], it satisfies
12 
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lim
𝜌→0

1
𝜌𝑛 ∫𝛺∩𝐵𝜌(𝑥)

|𝑢(𝑦) − Tr𝜕 𝛺(𝑢)(𝑥)| 𝑑 𝑦 = 0 for 𝑛−1-a.e. 𝑥 ∈ 𝜕 𝛺 .

Hence, arguing as in [24, Remarks 1.18 and 2.12], we conclude that (6) holds true. □

We exploit Theorem 3.1 in order to obtain the following finer 𝜆-approximation theorem, which is then applied to the
approximation of 𝜆-pairings (Theorem 3.4 below) and is exploited at length in Section 4. In addition, it represents one of the
key tools in the proofs of the main results of [22].

Theorem 3.2 (𝜆-Approximation). Let 𝜆 ∶ 𝛺 → [0, 1] be a given Borel function. Then for every 𝑢 ∈ 𝐵 𝑉 (𝛺) there exists a sequence
(𝑢𝜆𝑘)𝑘∈N ⊂ 𝐶∞(𝛺) ∩ 𝐵 𝑉 (𝛺) such that we have the following:

(1) 𝑢𝜆𝑘 → 𝑢 in 𝐵 𝑉 (𝛺)-strict as 𝑘 → +∞,
(2) 𝑢𝜆𝑘(𝑥) → 𝑢𝜆(𝑥) for 𝑛−1-a.e. 𝑥 ∈ 𝛺 as 𝑘 → +∞,

(3) lim
𝑘→+∞

√

1 + |𝐷 𝑢𝜆𝑘|
2(𝛺) =

√

1 + |𝐷 𝑢|2(𝛺),

(4) ‖𝑢𝜆𝑘‖𝐿∞(𝛺) ≤
(

1 + 1
𝑘

)

‖𝑢‖𝐿∞(𝛺) for all 𝑘 ∈ N,

(5) if 𝛺 is an open set with bounded Lipschitz boundary, then Tr𝜕 𝛺(𝑢𝜆𝑘)(𝑥) = Tr𝜕 𝛺(𝑢)(𝑥) for 𝑛−1-a.e. 𝑥 ∈ 𝛺 and all 𝑘 ∈ N.

Proof. We first prove the theorem under the assumption ‖𝑢‖𝐿∞(𝛺) < +∞. It is enough to construct a sequence (𝑢𝜆𝑘)𝑘 of smooth
functions that converge to 𝑢 in 𝐵 𝑉 (𝛺)-strict, to 𝑢∗ = �̃� = 𝑢𝜆 𝑛−1-a.e. on 𝛺 ⧵ 𝐽𝑢, and to 𝑢𝜆 locally in measure with respect to
𝜇 = 𝑛−1 𝐽𝑢. Then, we conclude by extracting a suitable subsequence that converges 𝜇-almost everywhere to 𝑢𝜆, hence 𝑛−1-a.e.
on 𝛺.

Let (𝑢𝜀)𝜀>0 be the smooth approximation of 𝑢 given by Theorem 3.1. We choose a sequence 𝜀 = 1
𝑘 , and we set 𝑢𝑘 ∶= 𝑢 1

𝑘
for

simplicity. Since 𝑢𝑘(𝑥) → 𝑢∗(𝑥) for 𝑛−1-a.e. 𝑥 ∈ 𝛺, the idea is to define 𝑢𝜆𝑘 as a suitable perturbation of 𝑢𝑘 near the jump set 𝐽𝑢, and
hen show that 𝑢𝜆𝑘 satisfies the convergence in measure stated above. The proof will be split into some steps.
Step one: local construction and estimates.
We fix 𝜀 > 0 and a Borel set 𝐴 ⊂⊂ 𝛺, then we consider the set

𝑆 = 𝑆(𝑢, 𝐴, 𝜀) = {

𝑥 ∈ 𝐴 ∩ 𝐽𝑢 ∶ 𝑢+(𝑥) − 𝑢−(𝑥) > 𝜀} .

Notice that 𝑛−1(𝑆) < +∞, hence 𝜇(𝑆) < +∞. Up to choosing the parameter 𝑚 in the proof of Theorem 3.1 to be large enough, we
an assume that 𝑢𝑘 = 𝑢 ∗ 𝜌𝑘 on 𝐴, where 𝜌𝑘(|𝑥|) = 𝑘𝑛𝜌(𝑘|𝑥|) is a standard mollifier with support in 𝐵1∕𝑘, for 𝑘 sufficiently large. For
𝑛−1-a.e. 𝑥 ∈ 𝑆, we define the blow-up of 𝑢 at 𝑥 as the step function 𝑢𝑥,∞ ∶ R𝑛 → R defined by

𝑢𝑥,∞(𝑦) =
{

𝑢+(𝑥) if (𝑦 − 𝑥) ⋅ 𝜈𝑢(𝑥) ≥ 0,
𝑢−(𝑥) otherwise.

Therefore we have

lim
𝑟→0

1
𝑟𝑛 ∫𝐵𝑟(𝑥)

|𝑢(𝑦) − 𝑢𝑥,∞(𝑦)| 𝑑 𝑦 = 0 .

For 𝑛−1-a.e. 𝑥 ∈ 𝑆 we define the Borel function 𝜏 = 𝜏𝑘(𝑥) ∈ [−1, 1] as the unique implicit solution of

𝑢𝑥,∞ ∗ 𝜌𝑘(𝑥 + 𝜏 𝜈𝑢(𝑥)∕𝑘) = 𝑢𝜆(𝑥) . (3.7)

Note that 𝜏𝑘(𝑥) can be written as the composition of a continuous function, depending only on the mollifier 𝜌𝑘, with the function
𝜆(𝑥).

Fix 𝛿 ∈ (0, 1) to be later chosen, and consider the following perturbation of 𝑢𝑘 inside a ball 𝐵 = 𝐵𝑟(𝑥) centered at 𝑥 ∈ 𝑆:

𝑢𝜏 ,𝐵𝑘 (𝑦) ∶= 𝜙𝑟,𝛿(𝑦 − 𝑥)𝑢𝑘(𝑦 + 𝜏 𝜈𝑢(𝑥)∕𝑘) +
(

1 − 𝜙𝑟,𝛿(𝑦 − 𝑥)
)

𝑢𝑘(𝑦) , (3.8)

where 𝜏 ∈ [−1, 1] and 𝜙𝑟,𝛿(𝑧) ∈ [0, 1] is a radially symmetric cut-off function of class 𝐶∞, with compact support in 𝐵𝑟(0) and such
that 𝜙𝑟,𝛿(𝑧) = 1 if |𝑧| < (1 − 𝛿)𝑟 and ‖∇𝜙𝑟,𝛿‖𝐿∞(𝐵𝑟(0);R𝑛) <

2
𝛿 𝑟 . Clearly, 𝑢𝜏 ,𝐵𝑘 is a smooth function obtained by locally ‘‘gluing’’ a suitable

translation of 𝑢𝑘 with 𝑢𝑘 itself, it coincides with 𝑢𝑘 outside 𝐵, and satisfies

𝑢𝜏 ,𝐵𝑘 (𝑥) = 𝑢𝑘(𝑥 + 𝜏 𝜈𝑢(𝑥)∕𝑘) = 𝑢 ∗ 𝜌𝑘(𝑥 + 𝜏 𝜈𝑢(𝑥)∕𝑘) . (3.9)

Its gradient is given by

∇𝑢𝜏 ,𝐵𝑘 (𝑦) = ∇𝑢𝑘(𝑦) + ∇𝜙𝑟,𝛿(𝑦 − 𝑥)
(

𝑢𝑘(𝑦 + 𝑣𝑘) − 𝑢𝑘(𝑦)
)

+ 𝜙𝑟,𝛿(𝑦 − 𝑥)
(

∇𝑢𝑘(𝑦 + 𝑣𝑘) − ∇𝑢𝑘(𝑦)
)

.

where we have set 𝑣𝑘 = 𝜏
𝑘 𝜈𝑢(𝑥). For the sake of simplicity, we also set 𝐵𝛿 = 𝐵(1−𝛿)𝑟(𝑥), and 𝐶𝛿 = 𝐵 ⧵ 𝐵𝛿 . We find that

∫𝐵
|∇𝑢𝜏 ,𝐵𝑘 (𝑦)| 𝑑 𝑦 ≤ ∫𝐵𝛿

|∇𝑢𝑘(𝑦 + 𝑣𝑘)| 𝑑 𝑦 + ∫𝐶𝛿

|∇𝑢𝑘(𝑦)| 𝑑 𝑦 + 2
𝛿 𝑟 ∫𝐶𝛿

|𝑢𝑘(𝑦 + 𝑣𝑘) − 𝑢𝑘(𝑦)| 𝑑 𝑦

+ |∇𝑢𝑘(𝑦 + 𝑣𝑘) − ∇𝑢𝑘(𝑦)| 𝑑 𝑦 . (3.10)
∫𝐶𝛿
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Then, owing to the fact that |𝐷 𝑢𝑘|(𝐴) ≤ |𝐷 𝑢|(𝐴+𝐵1∕𝑘(0)), the first term in the right-hand side of (3.10) can be estimated as follows:

∫𝐵𝛿

|∇𝑢𝑘(𝑦 + 𝑣𝑘)| 𝑑 𝑦 ≤ |𝐷 𝑢|(𝐵𝛿 ,𝑘) , (3.11)

where we have set

𝐵𝛿 ,𝑘 = 𝐵𝛿 + 𝐵2∕𝑘(0) = 𝐵(1−𝛿)𝑟+2∕𝑘(𝑥) .

On observing that |𝑣𝑘| ≤ 𝑘−1, the third term in the right-hand side of (3.10) can be estimated as follows:
2
𝛿 𝑟 ∫𝐶𝛿

|𝑢𝑘(𝑦 + 𝑣𝑘) − 𝑢𝑘(𝑦)| 𝑑 𝑦 ≤ 2
𝑘𝛿 𝑟 |𝐷 𝑢|(𝐶𝛿 ,𝑘) , (3.12)

where 𝐶𝛿 ,𝑘 = 𝐶𝛿 +𝐵2∕𝑘(0). Concerning the fourth term in the right-hand side of (3.10), we set 𝜌𝑘,𝑥(𝑧) = 𝜌𝑘(𝑧− 𝑣𝑘) and denote by 𝑢𝑘,𝑧
he average of 𝑢 on 𝐵2∕𝑘(𝑧), so that we obtain

∫𝐶𝛿

|∇𝑢𝑘(𝑦 + 𝑣𝑘) − ∇𝑢𝑘(𝑦)| 𝑑 𝑦 ≤ ∫𝐶𝛿

|

|

|

|

∫𝛺
𝑢(𝑦)

(

∇𝜌𝑘,𝑥(𝑧 − 𝑦) − ∇𝜌𝑘(𝑧 − 𝑦)
)

𝑑 𝑦||
|

|

𝑑 𝑧

= ∫𝐶𝛿

|

|

|

|

|

∫𝐵2∕𝑘(𝑧)
(𝑢(𝑦) − 𝑢𝑘,𝑧)

(

∇𝜌𝑘,𝑥(𝑧 − 𝑦) − ∇𝜌𝑘(𝑧 − 𝑦)
)

𝑑 𝑦
|

|

|

|

|

𝑑 𝑧

≤
‖∇2𝜌𝑘‖𝐿∞(𝐵1;R𝑛2 )

𝑘 ∫𝐶𝛿
∫𝐵2∕𝑘(𝑧)

|𝑢(𝑦) − 𝑢𝑘,𝑧| 𝑑 𝑦 𝑑 𝑧

≤ 𝐶 𝑘𝑛+1 ∫𝐶𝛿
∫𝐵2∕𝑘(𝑧)

|𝑢(𝑦) − 𝑢𝑘,𝑧| 𝑑 𝑦 𝑑 𝑧

≤ 𝐶 𝑘𝑛 ∫𝐶𝛿

|𝐷 𝑢|(𝐵2∕𝑘(𝑧)
)

𝑑 𝑧 ,

where we have used the fact that ‖∇2𝜌𝑘‖𝐿∞(𝐵1;R𝑛2 ) ≤ 𝐶 𝑘𝑛+2 and, in the last step, the Poincarè-Wirtinger inequality on 𝐵2∕𝑘(𝑧) (note
hat in this last estimate, as well as in the next ones, we will denote by 𝐶 a dimensional constant that can possibly change from
ne line to another). We can push further the estimate by noticing that

∫𝐶𝛿

|𝐷 𝑢|(𝐵2∕𝑘(𝑧)
)

𝑑 𝑧 = ∫𝐶𝛿
∫𝐵2∕𝑘(𝑧)

𝑑|𝐷 𝑢|(𝑦) 𝑑 𝑧

= ∫𝐶𝛿+𝐵2∕𝑘
∫𝐶𝛿∩𝐵2∕𝑘(𝑦)

𝑑 𝑧 𝑑|𝐷 𝑢|(𝑦)

= ∫𝐶𝛿+𝐵2∕𝑘

|𝐶𝛿 ∩ 𝐵2∕𝑘(𝑦)| 𝑑|𝐷 𝑢|(𝑦)

≤ 𝐶
𝑘𝑛

|𝐷 𝑢|(𝐶𝛿 + 𝐵2∕𝑘
)

= 𝐶
𝑘𝑛

|𝐷 𝑢|(𝐶𝛿 ,𝑘
)

.

This leads us to

∫𝐶𝛿

|∇𝑢𝑘(𝑦 + 𝑣𝑘) − ∇𝑢𝑘(𝑦)| 𝑑 𝑦 ≤ 𝐶|𝐷 𝑢|(𝐶𝛿 ,𝑘
)

. (3.13)

Consequently, if we plug (3.11), (3.12), (3.13) into (3.10), we obtain

∫𝐵
|∇𝑢𝜏 ,𝐵𝑘 | 𝑑 𝑦 ≤ |𝐷 𝑢|(𝐵𝛿 ,𝑘) +

(

𝐶 + 2
𝑘𝛿 𝑟

)

|𝐷 𝑢|(𝐶𝛿 ,𝑘
)

, (3.14)

where 𝐶 is a constant only depending on the dimension 𝑛. Note that as soon as 𝑘 ≥ (𝑟𝛿)−1 the inequality improves to

∫𝐵
|∇𝑢𝜏 ,𝐵𝑘 | 𝑑 𝑦 ≤ |𝐷 𝑢|(𝐵𝛿 ,𝑘) + (𝐶 + 2)|𝐷 𝑢|(𝐶𝛿 ,𝑘

)

. (3.15)

Step two: from local to global.
Here we show how to use the local construction and the estimate (3.14) provided by Step one, to define a sequence of

approximations that behaves well on a compact subset of 𝑆 with large measure. To this aim we must first guarantee the continuity
and the uniformity of some quantities that appear in Step one, and then apply the appropriate covering theorem.

By Lusin and Egoroff Theorems, for every 𝜂 ∈ (0, 1) we can find a compact set 𝑆𝜂 ⊂ 𝑆 satisfying the following properties:

(i) 𝑛−1(𝑆𝜂) ≥ (1 − 𝜂)𝑛−1(𝑆);
(ii) the functions 𝜆, 𝜈𝑢, 𝑢+, 𝑢− restricted to 𝑆𝜂 are continuous;

(iii) if we set

𝛥𝜂(𝑟) ∶= sup
𝑥∈𝑆𝜂

1
𝑟𝑛 ∫𝐵𝑟(𝑥)

|𝑢(𝑦) − 𝑢𝑥,∞(𝑦)| 𝑑 𝑦 ,

we have lim 𝛥 (𝑟) = 0;

𝑟→0 𝜂
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(iv) there exists 0 < 𝑟𝛿 ,𝜂 < 1 such that

|𝐷 𝑢|(𝐶𝛿 ,𝑘(𝑥, 𝑟)) ≤ 𝑐𝑛𝛿 |𝐷 𝑢|(𝐵𝑟(𝑥)) (3.16)

for all 0 < 𝑟 < 𝑟𝛿 ,𝜂 , 0 < 𝛿 < 1
3 , 𝑘 > (𝛿 𝑟)−1, and 𝑥 ∈ 𝑆𝜂 , where 𝐶𝛿 ,𝑘(𝑥, 𝑟) is defined as in the previous step (here the dependence

upon 𝑥 and 𝑟 is explicitly written for the sake of clarity) and 𝑐𝑛 = max{1, 7(𝑛 − 1)}.
We remark that showing (i), (ii), and (iii) is standard. As for (iv), in the case 𝑛 ≥ 2 we notice that the asymptotic behavior of
𝐷 𝑢|(𝐶𝛿 ,𝑘) for 𝑘 > 1

𝑟 max
{

1
𝛿 ,

2
1−𝛿

}

and as 𝑟 → 0 is

|𝐷 𝑢|(𝐶𝛿 ,𝑘) = |𝐷𝑑𝑢|(𝐶𝛿 ,𝑘) + |𝐷𝑗𝑢|(𝐶𝛿 ,𝑘)
=
(

1 + 𝑜(1)
)

𝜔𝑛−1|𝑢
+(𝑥) − 𝑢−(𝑥)|

[

(𝑟 + 2∕𝑘)𝑛−1 − (𝑟(1 − 𝛿) − 2∕𝑘)𝑛−1]

=
(

1 + 𝑜(1)
)

𝜔𝑛−1|𝑢
+(𝑥) − 𝑢−(𝑥)|𝑟𝑛−1

[

(1 + 2∕(𝑘𝑟))𝑛−1 − ((1 − 𝛿) − 2∕(𝑘𝑟))𝑛−1]

=
(

1 + 𝑜(1)
)

𝜔𝑛−1|𝑢
+(𝑥) − 𝑢−(𝑥)|𝑟𝑛−1𝛿

[

4∕(𝑘𝛿 𝑟) + 1] (𝑛 − 1)(1 + 2𝛿)𝑛−2
≤ 7(𝑛 − 1)𝛿 |𝐷 𝑢|(𝐵𝑟(𝑥)) ,

assuming 𝛿 sufficiently small so that (1 + 2𝛿)𝑛−2 ≤ 7
6 . Then, it is easy to see that 1

𝛿 > 2
1−𝛿 for all 𝛿 ∈

(

0, 13
)

, so that we obtain (iv)
or 𝑛 ≥ 2. In the case 𝑛 = 1, we notice that the sets 𝐽𝑢 and 𝑆 are discrete and finite, so that we can choose 𝑆𝜂 discrete and finite
s well and we have 𝐵𝑟(𝑥) ∩ 𝐽𝑢 = {𝑥} for all 𝑟 < 𝑟0, where 𝑟0 is the minimal distance between distinct points in 𝐽𝑢. Hence, we have
𝐷𝑗𝑢|(𝐶𝛿 ,𝑘) = 0 as long as 0 < 𝑟 < 𝑟0 and 𝑥 ∉ 𝐶𝛿 ,𝑘(𝑥, 𝑟), which holds true since 2

𝑘 < (1 − 𝛿)𝑟 for all 0 < 𝛿 < 1
3 and 𝑘 > 1

𝛿 𝑟 . Therefore,
under these assumptions we see that |𝐷 𝑢|(𝐵𝑟(𝑥)) ≥ 1, while

|𝐷 𝑢|(𝐶𝛿 ,𝑘) = |𝐷𝑑𝑢|(𝐶𝛿 ,𝑘) = 𝑜(1) as 𝑟 → 0.

Thus, there exists 𝑟𝛿 ,𝜂 > 0 such that |𝐷 𝑢|(𝐶𝛿 ,𝑘)| ≤ 𝛿 ≤ 𝛿|𝐷 𝑢|(𝐵𝑟(𝑥)), which finally yields (iv) in the case 𝑛 = 1.
Fix now an open set 𝑈 containing 𝑆𝜂 , then consider the family  of balls centered in 𝑆𝜂 and contained in 𝑈 , with radius 𝑟 so

small that 𝛥𝜂(𝑟) < 𝜀. By Vitali-Besicovitch Covering Theorem, we can find a finite and mutually disjoint family of balls {𝐵𝑖}𝑁𝑖=1, with
𝐵𝑖 = 𝐵𝑟𝑖 (𝑥𝑖) ∈  , 0 < 𝑟𝑖 < 𝑟𝛿 ,𝜂 , and 𝑁 depending on 𝛿 and 𝜂, such that

𝑛−1

(

𝑆𝜂 ∩
𝑁
⋃

𝑖=1
𝐵𝑖

)

≥ (1 − 𝜂)𝑛−1(𝑆𝜂) ≥ (1 − 𝜂)2𝑛−1(𝑆) ,

where we have used property (i) in the last inequality.
Step three: total variation estimate.
We set 𝑟0 = min{𝑟𝑖 ∶ 𝑖 = 1,… , 𝑁} and consider the sequence 𝑢𝜆𝑘 constructed by replacing 𝑢𝑘 with 𝑢𝜏 ,𝐵𝑘 inside each ball 𝐵 = 𝐵𝑖,

as obtained and described in the previous steps. Hereafter we show that the total variation of 𝐷 𝑢𝜆𝑘 is controlled by that of 𝐷 𝑢, up
to an error that goes to zero as 𝛿 → 0 (hence as 𝑘 → ∞). Indeed, if we set 𝐶 𝑖

𝛿 = 𝐵𝑖 ⧵ 𝐵𝑖
𝛿 , we can assume, up to a small perturbation

of 𝑟𝑖, that |𝐷 𝑢|(𝜕 𝐶 𝑖
𝛿) = 0 for all 𝑖, hence thanks to the estimate (3.14) we obtain

|𝐷 𝑢𝜆𝑘|(𝛺) ≤ |𝐷 𝑢𝑘|
(

𝛺 ⧵
𝑁
⋃

𝑖=1
𝐵𝑖

)

+
𝑁
∑

𝑖=1
|𝐷 𝑢𝜆𝑘|(𝐵𝑖)

≤ |𝐷 𝑢𝑘|
(

𝛺 ⧵
𝑁
⋃

𝑖=1
𝐵𝑖

)

+
𝑁
∑

𝑖=1

(

|𝐷 𝑢|(𝐵𝑖
𝛿 ,𝑘) +

(

𝐶 + 2
𝑘𝛿 𝑟𝑖

)

|𝐷 𝑢|(𝐶 𝑖
𝛿 ,𝑘)

)

. (3.17)

Let now assume 𝑘 ≥ (𝛿 𝑟0)−1. Thanks to (3.15), (3.16) and recalling that the balls 𝐵𝑖 are mutually disjoint, we have
𝑁
∑

𝑖=1

(

𝐶 + 2
𝑘𝛿 𝑟𝑖

)

|𝐷 𝑢|(𝐶 𝑖
𝛿 ,𝑘) ≤ (𝐶 + 2)

𝑁
∑

𝑖=1
|𝐷 𝑢|(𝐶 𝑖

𝛿 ,𝑘) ≤ 𝐶 𝛿
𝑁
∑

𝑖=1
|𝐷 𝑢|(𝐵𝑖) ≤ 𝐶 𝛿|𝐷 𝑢|(𝛺) . (3.18)

Thanks to Theorem 3.1, we have the strict convergence of 𝑢𝑘 to 𝑢 on 𝛺, hence by the lower semicontinuity of |𝐷 𝑢𝑘| restricted to
the open set ⋃𝑁

𝑖=1 𝐵
𝑖 we obtain

lim sup
𝑘→∞

|𝐷 𝑢𝑘|
(

𝛺 ⧵
𝑁
⋃

𝑖=1
𝐵𝑖

)

= |𝐷 𝑢|(𝛺) − lim inf
𝑘→∞

|𝐷 𝑢𝑘|
( 𝑁
⋃

𝑖=1
𝐵𝑖

)

≤ |𝐷 𝑢|
(

𝛺 ⧵
𝑁
⋃

𝑖=1
𝐵𝑖

)

,

hence by selecting 𝑘 large enough we can enforce

|𝐷 𝑢𝑘|
(

𝛺 ⧵
𝑁
⋃

𝑖=1
𝐵𝑖

)

≤ |𝐷 𝑢|
(

𝛺 ⧵
𝑁
⋃

𝑖=1
𝐵𝑖

)

+ 𝛿 𝑟0 . (3.19)

By combining (3.17), (3.18), and (3.19) we finally get

|𝐷 𝑢𝜆𝑘|(𝛺) ≤ |𝐷 𝑢|
(

𝛺 ⧵
𝑁
⋃

𝑖=1
𝐵𝑖

)

+ 𝛿 𝑟0 +
𝑁
∑

𝑖=1
|𝐷 𝑢|(𝐵𝑖) + 𝐶 𝛿|𝐷 𝑢|(𝛺)

= (1 + 𝐶 𝛿)|𝐷 𝑢|(𝛺) . (3.20)

This shows that the total variation of 𝐷 𝑢𝜆𝑘 is arbitrarily close to the total variation of 𝐷 𝑢, up to choosing 𝑘 large enough. This will
ventually lead to the 𝐵 𝑉 -strict approximation property (see Step five). Arguing in a similar way, we can obtain an analogous upper
15 
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bound for the area functional. This is due to the coincidence of the singular parts of the area and the total variation functionals
(see (2.11)) hence the previous construction leads to an estimate like (3.20) with

√

1 + |𝐷 𝑢𝜆𝑘|
2 and

√

1 + |𝐷 𝑢|2 replacing the total
ariation functionals.
Step four: pointwise closeness of 𝑢𝜆𝑘 to 𝑢𝜆 on 𝑆𝜂 .
Let us fix 𝐵𝑖 = 𝐵𝑟𝑖 (𝑥𝑖) for 𝑖 = 1,… , 𝑁 , and choose 𝑥 ∈ 𝐵𝑖

𝛿 ∩𝑆𝜂 , where 𝐵𝑖
𝛿 = 𝐵(1−𝛿)𝑟𝑖 (𝑥𝑖). We would like to prove that 𝑢𝜆𝑘(𝑥) is close

o 𝑢𝜆(𝑥). We have

|𝑢𝜆𝑘(𝑥) − 𝑢𝜆(𝑥)| ≤ |𝑢𝜆𝑘(𝑥) − 𝑢𝜆(𝑥𝑖)| + |𝑢𝜆(𝑥𝑖) − 𝑢𝜆(𝑥)| ≤ |𝑢𝜆𝑘(𝑥) − 𝑢𝑥,∞ ∗ 𝜌𝑘(𝑥 + 𝑣𝑘(𝑥))|+

+ |𝑢𝑥,∞ ∗ 𝜌𝑘(𝑥 + 𝑣𝑘(𝑥)) − 𝑢𝑥𝑖 ,∞ ∗ 𝜌𝑘(𝑥𝑖 + 𝑣𝑘(𝑥𝑖))|+

+ |𝑢𝑥𝑖 ,∞ ∗ 𝜌𝑘(𝑥𝑖 + 𝑣𝑘(𝑥𝑖)) − 𝑢𝜆(𝑥𝑖)| + |𝑢𝜆(𝑥𝑖) − 𝑢𝜆(𝑥)|

=∶ 𝐴1 + 𝐴2 + 𝐴3 + 𝐴4 .

First of all, by (3.9) and (iii) we obtain

𝐴1 ≤ ∫𝐵1∕𝑘(𝑥+𝑣𝑘(𝑥))
𝜌𝑘
(

𝑥 + 𝑣𝑘(𝑥) − 𝑦
)

|𝑢(𝑦) − 𝑢𝑥,∞(𝑦)| 𝑑 𝑦

≤ 𝑘𝑛‖𝜌‖𝐿∞(𝐵1) ∫𝐵2∕𝑘(𝑥)
|𝑢(𝑦) − 𝑢𝑥,∞(𝑦)| 𝑑 𝑦 → 0 as 𝑘 → ∞ .

Then, 𝐴3 = 0 by (3.7), recalling that 𝑣𝑘(𝑦) = 𝜏(𝑦)
𝑘 𝜈𝑢(𝑦), while thanks to (ii) the terms 𝐴2 and 𝐴4 are close to 0 if 𝑥 is close to 𝑥𝑖, which

in turn depends on the fact that 𝑟𝑖 is taken small enough. This shows that, by choosing 𝑟𝑖 small and 𝑘 ≥ (𝛿 𝑟0)−1 large enough, we
can enforce the required pointwise closeness.

Step five: conclusion. Let us fix three positive and infinitesimal sequences 𝜀𝑗 , 𝜂𝑗 , 𝛿𝑗 , as well as a monotone sequence 𝐴𝑗 ⊂⊂ 𝛺 of
Borel sets, such that ⋃𝑗 𝐴𝑗 = 𝛺. Let 𝑈𝑗 be a sequence of open sets as in Step two, satisfying the extra condition |𝑈𝑗 | < 2−𝑗 for all
. For any integer 𝑗 ≥ 1 we can apply the previous steps with 𝐴 = 𝐴𝑗 (Step one) and 𝑈 = 𝑈𝑗 (Step two), and select from the initial
equence (𝑢𝑘)𝑘 a suitable subsequence, that we do not relabel, whose elements can be locally perturbed according to the procedure
escribed in Step one. We shall perform this construction iteratively, so that the sequence that we extract at the (𝑗 + 1)-th stage
s also a subsequence of the one obtained at the 𝑗th stage. By diagonal selection we obtain a sequence relabeled as 𝑢𝜆𝑘. Owing to
tep four, 𝑢𝜆𝑘 converges to 𝑢𝜆 in 𝑛−1-measure on the whole jump set 𝐽𝑢 as 𝑘 → +∞, while by the choice of 𝑈𝑗 we have that 𝑢𝜆𝑘
onverges to 𝑢 in 𝐿1(𝛺). Hence, by Step three, 𝑢𝜆𝑘 converges to 𝑢 in 𝐵 𝑉 (𝛺)-strict, which is point (1) of the statement. Similarly, we
educe point (3). Up to a further extraction of a subsequence, we obtain the pointwise convergence 𝑛−1-a.e. on 𝛺. Then, the bound
𝑢𝜆𝑘(𝑥)| ≤

(

1 + 1
𝑘

)

‖𝑢‖𝐿∞(𝛺) for all 𝑥 ∈ 𝛺 follows immediately from the definition of 𝑢𝜆𝑘 in terms of 𝑢𝜏 ,𝐵𝑘 and (3.8), thus concluding
the proof of the theorem under the assumption ‖𝑢‖𝐿∞(𝛺) < +∞. To obtain the complete proof, we apply the previous steps to the
sequence of truncations 𝑇𝑚(𝑢), and obtain (𝑇𝑚(𝑢)𝜆𝑘)𝑘 for each 𝑚 ∈ N. The diagonal sequence 𝑇𝑘(𝑢)𝜆𝑘 can then be easily shown to satisfy
all the required properties. Finally, point (5) can be proved as in Theorem 3.1, given that the sequence (𝑢𝑘𝜆)𝑘 is obtained by a local
perturbation of the approximating sequence (𝑢𝑘)𝑘 from Anzellotti-Giaquinta approximation theorem. □

We state for later use a simple consequence of Theorem 3.2.

Corollary 3.3. Let 𝜆 ∶ 𝛺 → [0, 1] be a given Borel function. Let 𝑢 ∈ 𝐵 𝑉 (𝛺) and (𝑢𝜆𝑘)𝑘∈N ⊂ 𝐶∞(𝛺) be the approximating sequence of
Theorem 3.2. Then we have

√

1 + |𝐷 𝑢𝜆𝑘|
2

⇀

√

1 + |𝐷 𝑢|2 in (𝛺).

Proof. The lower semicontinuity on open sets is an immediate consequence of the fact that 𝑢𝜆𝑘 → 𝑢 in 𝐿1(𝛺), thanks to point (1)
f Theorem 3.2; while the upper semicontinuity on compact sets follows from the lower semicontinuity on the open sets and point
3) of Theorem 3.2. □

We conclude this section with an approximation result for the 𝜆-pairings, which, as a byproduct, allows us to derive a different
roof for the estimate (2.16), see Remark 3.6 below. In addition, we provide a useful alternative bound for the 𝜆-pairing in our

framework, a particular case of which was proved in [17, Lemma 5.5].

Theorem 3.4. Let 𝐹 ∈ ∞(𝛺), 𝑢 ∈ 𝐵 𝑉 (𝛺) and 𝜆 ∶ 𝛺 → [0, 1] be a Borel function. If 𝑢𝜆 ∈ 𝐿1(𝛺; |div𝐹 |), then there exists a sequence
(𝑢𝑗 )𝑗∈N ⊂ 𝐶∞(𝛺) ∩ 𝐵 𝑉 (𝛺) ∩ 𝐿∞(𝛺) such that 𝑢𝑗 → 𝑢 in 𝐵 𝑉 (𝛺)-strict and

(𝐹 ⋅ ∇𝑢𝑗 )𝑛 ⇀ (𝐹 , 𝐷 𝑢)𝜆 in (𝛺). (3.21)

If 𝑢 ∈ 𝐵 𝑉 (𝛺) ∩ 𝐿∞(𝛺), then 𝑢𝐹 ∈ ∞(𝛺) and (3.21) holds true for the approximating sequence (𝑢𝜆𝑘)𝑘∈N given by Theorem 3.2.
Finally, for all 𝑎 ≥ ‖𝐹‖𝐿∞(𝛺;R𝑛) we have

|(𝐹 , 𝐷 𝑢)𝜆| ≤ 𝑎
√

1 + |𝐷 𝑢|2 −
√

𝑎2 − |𝐹 |

2 𝑛 on 𝛺 . (3.22)
16 
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Proof. Thanks to Theorem 2.6, we know that div(𝑢𝐹 ), (𝐹 , 𝐷 𝑢)𝜆 ∈ (𝛺) and that the Leibniz rule (2.15) holds true. In addition,
Proposition 2.7 implies that 𝑀[𝑢, 𝜆] ∈ 𝐿1(𝛺; |div𝐹 |), given that 𝑢𝜆 ∈ 𝐿1(𝛺; |div𝐹 |).

Now, we exploit Theorem 3.2 in order to construct the smooth approximation 𝑇𝑁 (𝑢)𝜆𝑘 of the truncation 𝑇𝑁 (𝑢), for all 𝑁 > 0.
hanks to (2.15), for all 𝑘 ∈ N and 𝑁 > 0, we have

div(𝑇𝑁 (𝑢)𝜆𝑘𝐹 ) = 𝑇𝑁 (𝑢)𝜆𝑘div𝐹 + (𝐹 ⋅ ∇𝑇𝑁 (𝑢)𝜆𝑘)
𝑛 on 𝛺 .

Hence, Theorem 3.2 implies that
|

|

|

div(𝑇𝑁 (𝑢)𝜆𝑘𝐹 )||
|

(𝛺) ≤
(

1 + 1
𝑘

)

𝑁|div𝐹 |(𝛺) + ‖𝐹‖𝐿∞(𝛺;R𝑛) sup
𝑘∈N

‖∇𝑇𝑁 (𝑢)𝜆𝑘‖𝐿1(𝛺;R𝑛).

Therefore, we conclude that (div(𝑇𝑁 (𝑢)𝜆𝑘𝐹 ))𝑘∈N is bounded sequence in (𝛺) for each fixed 𝑁 > 0, and, since div(𝑇𝑁 (𝑢)𝜆𝑘𝐹 ) converges
to div(𝑇𝑁 (𝑢)𝐹 ) in the sense of distributions, we deduce that it also weakly converges in the sense of Radon measures. In addition,
Theorem 3.2 and the Lebesgue theorem with respect to the measure |div𝐹 | imply that

𝑇𝑁 (𝑢)𝜆𝑘 div𝐹 ⇀ 𝑇𝑁 (𝑢)𝜆div𝐹 in (𝛺).

All in all, we see that

(𝐹 ⋅ ∇𝑇𝑁 (𝑢)𝜆𝑘)
𝑛 = div(𝑇𝑁 (𝑢)𝜆𝑘𝐹 ) − 𝑇𝑁 (𝑢)𝜆𝑘div𝐹

⇀ div(𝑇𝑁 (𝑢)𝐹 ) − 𝑇𝑁 (𝑢)𝜆div𝐹 = (𝐹 , 𝐷 𝑇𝑁 (𝑢))𝜆 as 𝑘 → +∞, (3.23)

given that (2.15) holds true for 𝑇𝑁 (𝑢) and 𝐹 , so that we get

∫𝛺
𝜑 𝑑(𝐹 , 𝐷 𝑇𝑁 (𝑢))𝜆 = −∫𝛺

𝑇𝑁 (𝑢)𝐹 ⋅ ∇𝜑 𝑑 𝑥 − ∫𝛺
𝜑(𝑇𝑁 (𝑢))𝜆 𝑑div𝐹 (3.24)

for all 𝜑 ∈ 𝐶1
𝑐 (𝛺). Since the family of measures

(

(𝐹 , 𝐷 𝑇𝑁 (𝑢))𝜆
)

𝑁 >0 is uniformly bounded in 𝑁 > 0 by (2.16) and the fact that
|𝐷 𝑇𝑁 (𝑢)| ≤ |𝐷 𝑢|, we see that, up to extracting a subsequence, we may pass to the limit as 𝑁 → +∞. Thanks to Proposition 2.1, we
see that the truncation 𝑇𝑁 (𝑢) for 𝑁 > 0 satisfies

(𝑇𝑁 (𝑢))𝜆(𝑥) → 𝑢𝜆(𝑥) as 𝑁 → +∞ and |(𝑇𝑁 (𝑢))𝜆(𝑥)| ≤ 𝑀[𝑢, 𝜆](𝑥) for |div𝐹 |-a.e. 𝑥 ∈ 𝛺 ,
so that the right hand side of (3.24) clearly converges to

−∫𝛺
𝑢𝐹 ⋅ ∇𝜑 𝑑 𝑥 − ∫𝛺

𝜑𝑢𝜆 𝑑div𝐹 = ∫𝛺
𝜑 𝑑(𝐹 , 𝐷 𝑢)𝜆,

thanks to Lebesgue’s Dominated Convergence Theorem with respect to the measure |div𝐹 |. Hence, we deduce that

(𝐹 , 𝐷 𝑇𝑁 (𝑢))𝜆 ⇀ (𝐹 , 𝐷 𝑢)𝜆 in (𝛺) as 𝑁 → +∞. (3.25)

All in all, we see that there exists a sequence (𝑘𝑗 )𝑗∈N ⊂ N such that 𝑢𝑗 = 𝑇𝑗 (𝑢)𝜆𝑘𝑗 ∈ 𝐶∞(𝛺) ∩ 𝐵 𝑉 (𝛺) ∩ 𝐿∞(𝛺) satisfies (3.21). If in
ddition 𝑢 ∈ 𝐵 𝑉 (𝛺) ∩ 𝐿∞(𝛺), then clearly 𝑢𝐹 ∈ ∞(𝛺) and it is not necessary to consider the truncation of 𝑢, and therefore the
irst part of the argument above still holds true for the sequence (𝑢𝜆𝑘)𝑘∈N given by Theorem 3.2.

Finally, we deal with (3.22). Due to the homogeneity of the 𝜆-pairing in the first component, without loss of generality we
assume ‖𝐹‖𝐿∞(𝛺;R𝑛) ≤ 1 and 𝑎 = 1. For all 𝜙 ∈ 𝐶𝑐 (𝛺) with 𝜙 ≥ 0, thanks to (3.23) and Corollary 3.3 applied to 𝑇𝑁 (𝑢) for 𝑁 > 0, we
have

∫𝛺
𝜙 𝑑(𝐹 , 𝐷 𝑇𝑁 (𝑢))𝜆 + ∫𝛺

𝜙
√

1 − |𝐹 |

2 𝑑 𝑥 = lim
𝑘→+∞∫𝛺

𝜙(𝐹 ⋅ ∇𝑇𝑁 (𝑢)𝜆𝑘 +
√

1 − |𝐹 |

2) 𝑑 𝑥

≤ lim inf
𝑘→+∞ ∫𝛺

𝜙
|

|

|

|

|

(𝐹 ,
√

1 − |𝐹 |

2) ⋅ (∇𝑇𝑁 (𝑢)𝜆𝑘, 1)
|

|

|

|

|

𝑑 𝑥

≤ lim
𝑘→+∞∫𝛺

𝜙
√

1 + |∇𝑇𝑁 (𝑢)𝜆𝑘|
2 𝑑 𝑥

= ∫𝛺
𝜙 𝑑

√

1 + |𝐷 𝑇𝑁 (𝑢)|2 ≤ ∫𝛺
𝜙 𝑑

√

1 + |𝐷 𝑢|2.

We see that (3.25) yields

∫𝛺
𝜙 𝑑(𝐹 , 𝐷 𝑢)𝜆 = lim

𝑁→+∞∫𝛺
𝜙 𝑑(𝐹 , 𝐷 𝑇𝑁 (𝑢))𝜆 ≤ ∫𝛺

𝜙 𝑑
√

1 + |𝐷 𝑢|2 − ∫𝛺
𝜙
√

1 − |𝐹 |

2 𝑑 𝑥.

Due to the fact that 𝜙 ≥ 0, this implies that

(𝐹 , 𝐷 𝑢)+𝜆 ≤
√

1 + |𝐷 𝑢|2 −
√

1 − |𝐹 |

2𝑛 on 𝛺 .

By an analogous computation, in which the term ∫𝛺
𝜙
√

1 − |𝐹 |

2 𝑑 𝑥 is subtracted instead of added, and 𝜙 is replaced with −𝜙, we
obtain

−∫𝛺
𝜙 𝑑(𝐹 , 𝐷 𝑢)𝜆 + ∫𝛺

𝜙
√

1 − |𝐹 |

2 𝑑 𝑥 ≤ ∫𝛺
𝜙 𝑑

√

1 + |𝐷 𝑢|2 ,

which implies
17 
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(𝐹 , 𝐷 𝑢)−𝜆 ≤
√

1 + |𝐷 𝑢|2 −
√

1 − |𝐹 |

2𝑛 on 𝛺 .
All in all, we obtain (3.22). □

Remark 3.5. The optimal value of 𝑎 in (3.22) is not necessarily 𝑎 = ‖𝐹‖𝐿∞(𝛺;R𝑛). Indeed, let us consider 𝐹 (𝑥) = (𝑐 , 0,… , 0), for
some 𝑐 > 0, and 𝑢(𝑥) = 𝑥1. Then (3.22) reduces to

𝑐 ≤ 𝑎
√

2 −
√

𝑎2 − 𝑐2

for all 𝑎 ≥ 𝑐. However, it is plain to see that the minimum of the function 𝑔(𝑎) = 𝑎
√

2 −
√

𝑎2 − 𝑐2 on [𝑐 ,+∞) is attained at 𝑎 = 𝑐
√

2,
and we have 𝑔(𝑐

√

2) = 𝑐, while 𝑔(𝑐) = 𝑐
√

2.

Remark 3.6. We notice that we can also prove the estimate on the total variation of the 𝜆-pairings (2.16) as a consequence of the
-approximation (3.21). Indeed, it is not difficult to check that 𝑢𝑗 → 𝑢 in 𝐵 𝑉 (𝛺)-strict, thanks to Theorem 3.2 and the well-known

properties of the truncation operator. Given that the strict convergence implies the weak convergence |∇𝑢𝑗 |𝑛 ⇀ |𝐷 𝑢|, for all
𝜙 ∈ 𝐶𝑐 (𝛺) we get

∫𝛺
𝜙 𝑑(𝐹 , 𝐷 𝑢)𝜆 = lim

𝑗→+∞∫𝛺
𝜙 (𝐹 ⋅ ∇𝑢𝑗 ) 𝑑 𝑥

≤ ‖𝐹‖𝐿∞(𝛺;R𝑛) lim
𝑗→+∞∫𝛺

|𝜙||∇𝑢𝑗 | 𝑑 𝑥 = ‖𝐹‖𝐿∞(𝛺;R𝑛) ∫𝛺
|𝜙| 𝑑|𝐷 𝑢|.

Then, this easily implies |(𝐹 , 𝐷 𝑢)𝜆| ≤ ‖𝐹‖𝐿∞(𝛺;R𝑛)|𝐷 𝑢| on 𝛺.

4. Perimeter bounds and admissible measures

In the following we shall use the notation  (𝛺) introduced in (2.1).
We start by giving a simple characterization of measures which are the distributional divergence of an essentially bounded vector

ield.

Lemma 4.1. Let 𝜇 ∈ (𝛺) and assume that there exists 𝐹 ∈ 𝐿∞(𝛺;R𝑛) such that div𝐹 = 𝜇. Then 𝜇 enjoys the following properties:
(1) 𝜇 ∈  (𝛺),
(2) max{|𝜇(𝐸1)|, |𝜇(𝐸1 ∪ 𝜕∗𝐸)|} ≤ ‖𝐹‖𝐿∞(𝛺;R𝑛)𝑃 (𝐸) for all sets 𝐸 ⊂⊂ 𝛺 of finite perimeter in R𝑛,
(3) if in addition 𝛺 is weakly regular, then we have

max{|𝜇(𝐸1 ∩𝛺)|, |𝜇((𝐸1 ∪ 𝜕∗𝐸) ∩𝛺)|} ≤ ‖𝐹‖𝐿∞(𝛺;R𝑛)𝑃 (𝐸)

for all sets 𝐸 ⊂ 𝛺 of finite perimeter in R𝑛.

Proof. It is clear that 𝐹 ∈ ∞(𝛺), and so 𝜇 = div𝐹 ∈  (𝛺) by [19, Theorem 3.2]. Then, (2) and (3) are easy consequences of
the Gauss–Green formulas, see Theorem 2.9. Indeed, by (2.17) and (2.18) we get

|𝜇(𝐸1 ∩𝛺)| = |div𝐹 (𝐸1 ∩𝛺)| ≤ ‖𝐹‖𝐿∞(𝐸;R𝑛)𝑃 (𝐸) ≤ ‖𝐹‖𝐿∞(𝛺;R𝑛)𝑃 (𝐸),

and

|𝜇((𝐸1 ∪ 𝜕∗𝐸) ∩𝛺)| = |div𝐹 ((𝐸1 ∪ 𝜕∗𝐸) ∩𝛺)| ≤ ‖𝐹‖𝐿∞(𝛺;R𝑛)𝑃 (𝐸). □

In analogy with the bounds obtained in Lemma 4.1 for measure which are the divergence of a ∞ vector field, we define a
general class of measures satisfying similar bounds with respect to the perimeter.

Definition 4.2. Given 𝜇 ∈ (𝛺) and 𝐿 > 0, we say that 𝜇 belongs to  𝐿(𝛺) if

|𝜇(𝐸1 ∩𝛺)| ≤ 𝐿 𝑃 (𝐸) for all measurable sets 𝐸 ⊂ 𝛺 . (4.1)

We also set  (𝛺) ∶= ⋃

𝐿>0  𝐿(𝛺) and, if 𝜇 ∈  (𝛺), we say that 𝜇 satisfies a perimeter bound condition.

Remark 4.3. If 𝜇 ∈  (𝛺), then there exists 𝐿 > 0 such that |𝜇(𝐵𝑟(𝑥))| ≤ 𝐿𝑛𝜔𝑛𝑟𝑛−1 for all 𝑥 ∈ 𝛺 and 𝑟 > 0 small enough so that
𝐵𝑟(𝑥) ⊂ 𝛺. In particular, by [4, Theorem 4.2 and Corollary 4.3] we have 𝜇 ∈  (𝛺).

It is interesting to notice that, under some mild regularity assumptions on 𝛺, the perimeter bound condition (4.1) needs only to
be satisfied on open sets with smooth boundary compactly contained in 𝛺.
18 
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Lemma 4.4. Let 𝛺 be weakly regular, 𝜇 ∈ (𝛺) and 𝐿 > 0. Then we have 𝜇 ∈  𝐿(𝛺) if and only if
|𝜇(𝐴)| ≤ 𝐿 𝑃 (𝐴) for all open sets with smooth boundary 𝐴 ⊂⊂ 𝛺 . (4.2)

Proof. Clearly, any 𝜇 ∈  𝐿(𝛺) satisfies (4.2). As for the opposite implication, we start by noticing that, if 𝜇 satisfies (4.2), then
∈  (𝛺), thanks to Remark 4.3. By [27, Theorem 1.1], for all 𝜀 > 0 there exists an increasing family of open sets with smooth

boundary (𝛺𝜀)𝜀>0 such that 𝛺𝜀 ⊂⊂ 𝛺, ⋃𝜀>0 𝛺𝜀 = 𝛺 and lim𝜀→0+ 𝑃 (𝛺𝜀) = 𝑃 (𝛺).
We consider now 𝐸 ⊂ 𝛺 be a set of finite perimeter, and we set 𝐸𝜀 = 𝐸 ∩ 𝛺𝜀. Due to the smoothness of 𝛺𝜀, we obtain that

1
𝜀 = 𝐸1 ∩𝛺𝜀. Since 𝜇 ∈  (𝛺), we can apply [29, Theorem 3.1] to conclude that there exists a smooth approximation (𝐸𝜀,𝑘)𝑘∈N

of the set of finite perimeter 𝐸𝜀 such that

lim
𝑘→+∞

𝜇(𝐸𝜀,𝑘) = 𝜇(𝐸1
𝜀 ) = 𝜇(𝐸1 ∩𝛺𝜀) and lim

𝑘→+∞
𝑃 (𝐸𝜀,𝑘) = 𝑃 (𝐸 ∩𝛺𝜀).

In particular, the construction performed in [29] implies that 𝐸𝜀,𝑘 ⊂⊂ 𝛺, given that 𝐸𝜀 ⊂⊂ 𝛺. Hence, we can apply (4.2) to 𝐸𝜀,𝑘,
and pass to the limit as 𝑘 → +∞ in order to get

|𝜇(𝐸1 ∩𝛺𝜀)| = lim
𝑘→+∞

𝜇(𝐸𝜀,𝑘) ≤ 𝐿 lim
𝑘→+∞

𝑃 (𝐸𝜀,𝑘) = 𝐿𝑃 (𝐸 ∩𝛺𝜀).

Now, we pass to the limit as 𝜀 → 0+ and we employ the submodularity of the perimeter [23, Proposition 3.38] to obtain

|𝜇(𝐸1 ∩𝛺)| = lim
𝜀→0+

|𝜇(𝐸1 ∩𝛺𝜀)| ≤ 𝐿 lim sup
𝜀→0+

(

𝑃 (𝐸) + 𝑃 (𝛺𝜀) − 𝑃 (𝐸 ∪𝛺𝜀)
)

= 𝐿
(

𝑃 (𝐸) + 𝑃 (𝛺) − lim inf
𝜀→0+

𝑃 (𝐸 ∪𝛺𝜀)
)

≤ 𝐿 (𝑃 (𝐸) + 𝑃 (𝛺) − 𝑃 (𝛺)) = 𝐿𝑃 (𝐸).

Thus, we prove (4.1). □

We state now a basic result concerning nonnegative measures in the dual of 𝐵 𝑉 .

Lemma 4.5. Let 𝜈 ∈ 𝐵 𝑉 (𝛺)∗ be nonnegative, and let 𝐶 > 0 be such that
|

|

|

|

∫𝛺
𝑢∗ 𝑑 𝜈||

|

|

≤ 𝐶 ‖𝑢‖𝐵 𝑉 (𝛺) for all 𝑢 ∈ 𝐵 𝑉 (𝛺) ∩ 𝐿∞(𝛺).

Then for any 𝑢 ∈ 𝐵 𝑉 (𝛺) we have 𝑢± ∈ 𝐿1(𝛺; 𝜈), as well as 𝑢∗, 𝑢𝜆, 𝑀[𝑢, 𝜆] ∈ 𝐿1(𝛺; 𝜈) for any Borel function 𝜆 ∶ 𝛺 → [0, 1]. In particular,
we obtain

∫𝛺
|𝑢𝜆| 𝑑 𝜈 ≤ 𝐶 ‖𝑢‖𝐵 𝑉 (𝛺) for all 𝑢 ∈ 𝐵 𝑉 (𝛺). (4.3)

Proof. By Theorem 3.2 there exist two sequences (𝑢0𝑘) and (𝑢1𝑘) (corresponding to the choices 𝜆 ≡ 0 and 𝜆 ≡ 1) of smooth functions
in 𝐵 𝑉 (𝛺) converging to 𝑢 in 𝐵 𝑉 (𝛺)-strict, and respectively to 𝑢− and 𝑢+ 𝜈-almost everywhere on 𝛺. With a little abuse of notation,
we shall write 𝑢−𝑘 = 𝑢0𝑘 and 𝑢+𝑘 = 𝑢1𝑘, from this point onwards. For any fixed 𝑁 ∈ N, the truncation operator 𝑇𝑁 is Lipschitz, so
that the sequences of truncations

(

𝑇𝑁 (|𝑢±𝑘 |)
)

converge to 𝑇𝑁 (|𝑢±|) 𝜈-almost everywhere on 𝛺, as 𝑘 → ∞. By Lebesgue’s Dominated
Convergence Theorem we obtain

∫𝛺
𝑇𝑁 (|𝑢±|) 𝑑 𝜈 = lim

𝑘→∞∫𝛺
𝑇𝑁 (|𝑢±𝑘 |) 𝑑 𝜈 ≤ 𝐶 lim sup

𝑘→∞
‖𝑇𝑁 (|𝑢𝑘|)‖𝐵 𝑉 (𝛺)

≤ 𝐶 lim sup
𝑘→∞

‖ |𝑢𝑘| ‖𝐵 𝑉 (𝛺) ≤ 𝐶 lim sup
𝑘→∞

‖𝑢𝑘‖𝐵 𝑉 (𝛺) = 𝐶‖𝑢‖𝐵 𝑉 (𝛺) .

By monotone convergence we can take the limit as 𝑁 → ∞ and conclude

∫𝛺
|𝑢±| 𝑑 𝜈 ≤ 𝐶‖𝑢‖𝐵 𝑉 (𝛺) . (4.4)

This easily implies that 𝑢∗, 𝑢𝜆, 𝑀[𝑢, 𝜆] ∈ 𝐿1(𝛺; 𝜈) for any Borel function 𝜆 ∶ 𝛺 → [0, 1], and that (4.3) holds true. □

We introduce a special class of measures related to the dual of 𝐵 𝑉 , which we call admissible in view of their role in the subsequent
aper [22].

Definition 4.6. We say that 𝜇 ∈  (𝛺) is admissible if |𝜇| ∈ 𝐵 𝑉 (𝛺)∗.

Lemma 4.7. If 𝜇 ∈  (𝛺) is admissible, then, for all 𝑢 ∈ 𝐵 𝑉 (𝛺) and all Borel functions 𝜆 ∶ 𝛺 → [0, 1], we have 𝑢𝜆, 𝑀[𝑢, 𝜆] ∈ 𝐿1(𝛺; |𝜇|).
In particular, there exists a constant 𝐶 > 0 such that

∫𝛺
|𝑢𝜆| 𝑑|𝜇| ≤ 𝐶 ‖𝑢‖𝐵 𝑉 (𝛺) for all 𝑢 ∈ 𝐵 𝑉 (𝛺) and all Borel functions 𝜆 ∶ 𝛺 → [0, 1]. (4.5)

Proof. Since |𝜇| ∈ 𝐵 𝑉 (𝛺)∗, then Lemma 4.5 immediately yields the conclusion. □
19 
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Remark 4.8. We notice that, thanks to Lemma 4.7, if the measure div𝐹 is admissible in Theorems 2.6, 2.11 and 3.4, then we do not
need to require 𝑢𝜆 ∈ 𝐿1(𝛺; |div𝐹 |). In other words, if div𝐹 is admissible, then the Leibniz rule and the integration by parts formula
hold true for all 𝐵 𝑉 functions.

Remark 4.9. We notice that, if 𝜇 ∈  (𝛺) is admissible, then we have also 𝜇 ∈ 𝐵 𝑉 (𝛺)∗. Indeed, due to Lemma 4.7, we know
that 𝑢∗ ∈ 𝐿1(𝛺 , |𝜇|) for all 𝑢 ∈ 𝐵 𝑉 (𝛺), and, by exploiting (4.5) for 𝜆 = 1

2 , we see that
|

|

|

|

∫𝛺
𝑢∗ 𝑑 𝜇||

|

|

≤ ∫𝛺
|𝑢∗| 𝑑|𝜇| ≤ 𝐶‖

‖

‖

𝑢‖‖
‖𝐵 𝑉 (𝛺)

.

We underline that, in general, the converse is not true, as shown in Remark 4.12.

In the following proposition, we explore the relations between the divergence-measure fields, the perimeter bound, and the
admissibility condition.

Proposition 4.10. The following hold true:
(1) If 𝛺 is weakly regular and 𝐹 ∈ ∞(𝛺), then div𝐹 ∈  𝐿(𝛺) for 𝐿 = ‖𝐹‖𝐿∞(𝛺;R𝑛); if in addition 𝛺 has Lipschitz boundary, then

div𝐹 ∈ 𝐵 𝑉 (𝛺)∗.
(2) If 𝛺 is a bounded open set with Lipschitz boundary and 𝜇 ∈  (𝛺), then there exists 𝐹 ∈ ∞(𝛺) such that div𝐹 = 𝜇 on 𝛺, there

exists �̃� > 0 such that
|𝜇(𝑈 ∩𝛺)| ≤ �̃� 𝑃 (𝑈 ) for all bounded open sets 𝑈 ⊂ R𝑛 with smooth boundary, (4.6)

we have 𝜇 ∈ 𝐵 𝑉 (𝛺)∗, with its action given for all 𝑢 ∈ 𝐵 𝑉 (𝛺) ∩ 𝐿∞(𝛺) by

T𝜇(𝑢) = ∫𝛺
𝑢∗ 𝑑 𝜇 = −(𝐹 , 𝐷 𝑢)∗(𝛺) − ∫𝜕 𝛺

Tr𝜕 𝛺(𝑢)Tr𝑖(𝐹 , 𝜕 𝛺) 𝑑𝑛−1 , (4.7)

and, if 𝜇 is admissible, formula (4.7) holds for all 𝑢 ∈ 𝐵 𝑉 (𝛺). If 𝑛 = 1, (4.6) holds for all finite unions of open intervals.
(3) If |𝛺| < +∞ and 𝜇 ∈  (𝛺) is an admissible measure, then 𝜇 ∈  (𝛺).
(4) If 𝜇 ∈  (𝛺) is an admissible measure, then there exists 𝐹 , 𝐹 ∈ ∞(𝛺) such that 𝜇 = div𝐹 and |𝜇| = div𝐹 on 𝛺.
(5) If 𝑛 = 1 and 𝜇 ∈ (𝛺), then 𝜇 is admissible and there exists 𝑓 , 𝑓 ∈ 𝐵 𝑉 (𝛺) such that 𝜇 = 𝐷 𝑓 and |𝜇| = 𝐷𝑓 on 𝛺; if in addition

|R ⧵𝛺| > 0, then (𝛺) =  (𝛺).

Proof. The first part of point (1) is an immediate consequence of Lemma 4.1. The second is a consequence of the integration by
parts formula (2.22) for 𝜆 ≡ 1

2 : for all 𝑢 ∈ 𝐵 𝑉 (𝛺) ∩ 𝐿∞(𝛺) we exploit the continuity of the trace operator, (2.16) and (2.19) to get
|

|

|

|

∫𝛺
𝑢∗ 𝑑div𝐹

|

|

|

|

≤ |(𝐹 , 𝐷 𝑢)∗(𝛺)| +
|

|

|

|

∫𝜕 𝛺
Tr𝜕 𝛺(𝑢)Tr𝑖(𝐹 , 𝜕 𝛺) 𝑑𝑛−1|

|

|

|

≤ ‖𝐹‖𝐿∞(𝛺;R𝑛)
(

|𝐷 𝑢|(𝛺) + 𝐶‖𝑢‖𝐵 𝑉 (𝛺)
)

.

As for point (2), the existence of 𝐹 ∈ ∞(𝛺) such that div𝐹 = 𝜇 on 𝛺 follows from [4, Theorem 7.4]. Now, if 𝑛 = 1, we notice
hat

|

|

|

|

∫𝛺
𝑢𝜆 𝑑 𝜇||

|

|

≤ |𝜇|(𝛺)‖𝑢‖𝐿∞(𝛺) ≤ 𝐶‖𝑢‖𝐵 𝑉 (𝛺) for all 𝑢 ∈ 𝐵 𝑉 (𝛺) and 𝜆 ∶ 𝛺 → [0, 1] Borel,

thanks to the embedding 𝐵 𝑉 (𝛺) ⊂ 𝐿∞(𝛺). Therefore, if 𝜆 ≡ 1
2 , we see that 𝜇 ∈ 𝐵 𝑉 (𝛺)∗. In addition, if 𝑈 ⊂ R is a finite union of

open intervals, and 𝜆 ≡ 0, so that 𝜒𝜆
𝑈 = 𝜒−

𝑈 = 𝜒𝑈 , we obtain

|𝜇(𝑈 ∩𝛺)| ≤ |𝜇|(𝛺)‖𝜒𝑈‖𝐿∞(𝛺) ≤ |𝜇|(𝛺)𝑃 (𝑈 ),

since 𝑃 (𝑈 ) ≥ 1. If instead 𝑛 ≥ 2, we consider an open bounded set 𝑈 with smooth boundary and apply (2.22) to the vector field 𝐹
nd to the function 𝜒𝑈 ∈ 𝐵 𝑉 (𝛺) ∩ 𝐿∞(𝛺), by choosing 𝜆 ≡ 0. Given that 𝑈 = 𝑈1 due to the smoothness of the boundary, by (2.12)

we get 𝜒𝜆
𝑈 = 𝜒−

𝑈 = 𝜒𝑈 and

∫𝛺
𝜒𝑈 𝑑div𝐹 = −(𝐹 , 𝐷 𝜒𝑈 )0(𝛺) − ∫𝜕 𝛺

Tr𝜕 𝛺(𝜒𝑈 )Tr𝑖(𝐹 , 𝜕 𝛺) 𝑑𝑛−1.

Since div𝐹 = 𝜇, we exploit the continuity of the trace operator, (2.13) and (2.16) to obtain

|𝜇(𝑈 ∩𝛺)| ≤ ‖𝐹‖𝐿∞(𝛺;R𝑛)
(

|𝐷 𝜒𝑈 |(𝛺) + ‖Tr𝜕 𝛺(𝜒𝑈 )‖𝐿1(𝜕 𝛺;𝑛−1)
)

≤ ‖𝐹‖𝐿∞(𝛺;R𝑛)
(

𝑃 (𝑈 , 𝛺) + 𝐶‖𝜒𝑈‖𝐵 𝑉 (𝛺)
)

≤ ‖𝐹‖𝐿∞(𝛺;R𝑛)

(

𝑃 (𝑈 , 𝛺) + 𝐶(𝑐𝑛|𝛺|

1
𝑛 + 1)𝑃 (𝑈 )

)

.
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All in all, we obtain (4.6) with �̃� = ‖𝐹‖𝐿∞(𝛺;R𝑛)(1 +𝐶(𝑐𝑛|𝛺|

1
𝑛 + 1)). Thus, we exploit [4, Theorem 8.2]1 to conclude that 𝜇 ∈ 𝐵 𝑉 (𝛺)∗.

Finally, (4.7) is an immediate consequence of Theorem 2.11, combined with Lemma 4.7 and Remark 4.8 if 𝜇 is admissible.
Then, we notice that, if 𝜇 ∈  (𝛺), by (2.12) we have

|

|

|

|

∫𝛺
𝜒∗
𝐸 𝑑|𝜇|

|

|

|

|

= |𝜇|(𝐸1 ∩𝛺) + 1
2
|𝜇|(𝜕∗𝐸 ∩𝛺) ≥ |𝜇(𝐸1 ∪𝛺)| (4.8)

for any measurable set 𝐸 ⊂ 𝛺 of finite perimeter in R𝑛.
Let now |𝛺| < +∞, 𝜇 ∈  (𝛺) be an admissible measure and 𝐶 > 0 be such that (4.5) holds true. Hence, we choose 𝑢 = 𝜒𝐸 for

some measurable set 𝐸 ⊂ 𝛺 of finite perimeter in R𝑛 and we exploit (2.13) to obtain
|

|

|

|

∫𝛺
𝜒∗
𝐸 𝑑|𝜇|

|

|

|

|

≤ 𝐶‖𝜒𝐸‖𝐵 𝑉 (𝛺) ≤ 𝐶(𝑐𝑛|𝛺|

1
𝑛 + 1)𝑃 (𝐸).

Thus, in the light of (4.8), we get 𝜇 ∈  𝐿(𝛺) for 𝐿 = 𝐶(𝑐𝑛|𝛺|

1
𝑛 + 1), and this proves point (3).

Point (4) is stated in [4, Lemma 7.3] in the case 𝛺 is an open bounded set with Lipschitz boundary; however, given that the
proof is completely analogous to the one in the case 𝛺 = R𝑛 (see [4, Lemma 4.1]), we stress the fact that this representation result
holds true without any additional assumption on the set 𝛺.

Finally, let 𝑛 = 1. We notice that  (𝛺) = (𝛺), and we exploit point (4) and the fact that ∞(𝛺) = 𝐵 𝑉 (𝛺). Then, if
R ⧵𝛺| > 0, we have 𝑃 (𝐸) ≥ 1 as long as |𝐸| > 0, so that we get

|

|

|

|

∫𝛺
𝜒∗
𝐸 𝑑|𝜇|

|

|

|

|

≤ |𝜇|(𝛺)𝑃 (𝐸).

Combining this bound with (4.8) we obtain 𝜇 ∈  𝐿(𝛺) for 𝐿 = |𝜇|(𝛺), and so we conclude that (𝛺) =  (𝛺). □

As an immediate consequence of Proposition 4.10(2), we obtain the following refinement of [4, Theorem 8.2].

Corollary 4.11. Let 𝛺 be a bounded open set with Lipschitz boundary and 𝜇 ∈ (𝛺). Then we have 𝜇 ∈ 𝐵 𝑉 (𝛺)∗ if and only if there
exists 𝐿 > 0 such that

|𝜇(𝑈 )| ≤ 𝐿 𝑃 (𝑈 ) for all open sets with smooth boundary 𝑈 ⊂⊂ 𝛺 . (4.9)

Proof. If 𝜇 ∈ 𝐵 𝑉 (𝛺)∗, then [4, Theorem 8.2] implies (4.9). On the other hand, combining Lemma 4.4 and (4.9), we get 𝜇 ∈  𝐿(𝛺).
herefore, by Proposition 4.10(2) we conclude that 𝜇 ∈ 𝐵 𝑉 (𝛺)∗. □

In the light of Proposition 4.10(5), we see that in the one dimensional case every Radon measure is admissible. This fails to be
true if 𝑛 ≥ 2, even assuming the perimeter bound condition, as we show in the following remark.

Remark 4.12. There exist measures in  (𝛺) which are not admissible. To see this we can closely follow [4, Proposition 5.1],
which shows the existence of a measure 𝜇 ∈ 𝐵 𝑉 (R𝑛)∗ such that |𝜇| ∉ 𝐵 𝑉 (R𝑛)∗. We let 𝜇𝜀 = 𝑓𝜀 𝑛, where

𝑓𝜀(𝑥) = 𝜀|𝑥|−1−𝜀 sin (|𝑥|−𝜀) + (𝑛 − 1)|𝑥|−1 cos (|𝑥|−𝜀) for 𝑥 ≠ 0

and some 𝜀 ∈ (0, 𝑛 − 1). Then, we have 𝑓𝜀 = div𝐹𝜀 for

𝐹𝜀(𝑥) = 𝑥
|𝑥|

cos (|𝑥|−𝜀).

Clearly, 𝐹𝜀 ∈ ∞
loc(R

𝑛) and ‖𝐹𝜀‖𝐿∞(R𝑛;R𝑛) = 1, and so, due to Proposition 4.10(1), we have 𝜇𝜀 ∈ 𝐵 𝑉 (𝛺)∗ ∩  1(𝛺) for any open
ounded set 𝛺 with Lipschitz boundary.

Then, we consider the function 𝑢𝜀(𝑥) = |𝑥|−𝑛+1+𝜀, which satisfies 𝑢𝜀 ∈ 𝑊 1,1
loc (R

𝑛). We notice that 𝑢𝜀 ∉ 𝐿1(𝐵𝑟; |𝜇𝜀|) for any 𝑟 > 0.
ndeed, while it is easy to check that

∫𝐵𝑟

| cos (|𝑥|−𝜀)|
|𝑥|𝑛−𝜀

𝑑 𝑥 < +∞,

we see that, if we set 𝑐𝑛 = 𝑛−1(𝜕 𝐵1),

∫𝐵𝑟

| sin (|𝑥|−𝜀)|
|𝑥|𝑛

𝑑 𝑥 = 𝑐𝑛 ∫

𝑟

0

| sin (𝜌−𝜀)|
𝜌

𝑑 𝜌 = [𝜌−𝜀 = 𝑡] = 𝑐𝑛 ∫

+∞

𝑟−
1
𝜀

1
𝜀
| sin (𝑡)|

𝑡
𝑑 𝑡 = +∞,

due to the well-known fact that the function 𝑡 → sin (𝑡)
𝑡 ∉ 𝐿1((𝛿 ,+∞)) for all 𝛿 > 0. This proves that 𝑢𝜀𝑓𝜀 ∉ 𝐿1(𝐵𝑟), and therefore

𝑢𝜀 ∉ 𝐿1(𝐵𝑟; |𝜇𝜀|). More in general, for any open set 𝛺 containing the origin we have 𝑢𝜀 ∉ 𝐿1(𝛺; |𝜇𝜀|), and therefore, due to Lemma 4.7,
we obtain |𝜇𝜀| ∉ 𝐵 𝑉 (𝛺)∗.

The previous remark shows that we cannot drop the admissibility condition on 𝜇, if we want to ensure that 𝑢𝜆 ∈ 𝐿1(𝛺; |𝜇|) for all
𝑢 ∈ 𝐵 𝑉 (𝛺) and 𝜆 ∶ 𝛺 → [0, 1] Borel, even in the case 𝛺 is a bounded open set with Lipschitz boundary. However, even without the
admissibility condition, it is enough to assume that at least one 𝜆-representative of 𝑢 ∈ 𝐵 𝑉 (𝛺) is |𝜇|-summable, in order to ensure
this summability for all of them.

1 In this result, the authors extend 𝜇 to 0 on R𝑛 ⧵𝛺, which is equivalent to taking the intersection with 𝛺 on the left hand side of (4.6). Also, by closely
inspecting the proof, we notice that it is sufficient to take bounded open sets with smooth boundary.
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Remark 4.13. If 𝜇 ∈  (𝛺), Proposition 4.10(2) implies that 𝜇 = div𝐹 for some 𝐹 ∈ ∞(𝛺), hence we can apply Proposition 2.7
to conclude that, given some Borel functions 𝜆1, 𝜆2 ∶ 𝛺 → [0, 1], we have 𝑢𝜆1 ∈ 𝐿1(𝛺; |𝜇|) if and only if 𝑢𝜆2 ∈ 𝐿1(𝛺; |𝜇|). In addition,
for any Borel function 𝜆 ∶ 𝛺 → [0, 1], we have 𝑢𝜆 ∈ 𝐿1(𝛺; |𝜇|) if and only if 𝑀[𝑢, 𝜆] ∈ 𝐿1(𝛺; |𝜇|), again by Proposition 2.7.

We provide a few basic examples of admissible measures, which, in the light of Proposition 4.10(3), also belong to in  (𝛺), as
long as |𝛺| < +∞.

Example 4.14. Let 𝛺 be a bounded open set with Lipschitz boundary. We consider 𝜇 ∈ (𝛺) defined as

𝜇 = ℎ𝑛 + 𝛾𝑛−1 𝛤

where ℎ ∈ 𝐿𝑞(𝛺) for some 𝑞 > 𝑛, 𝛾 ∈ 𝐿∞(𝛺;𝑛−1 𝛤 ), and 𝛤 ⊂ 𝛺 is a compact set such that there exist 𝛬, 𝜌 > 0 for which

𝑛−1(𝛤 ∩ 𝐵𝜌(𝑥)) ≤ 𝛬𝜌𝑛−1 ∀ 0 < 𝜌 < 𝜌 and ∀ 𝑥 ∈ 𝛤 . (4.10)

We claim that 𝜇 is admissible, and we prove it by showing that both the measures ℎ𝑛 and 𝛾𝑛−1 𝛤 are admissible. In particular,
this implies that all these measures belong to  (𝛺), thanks to Proposition 4.10(3). We first point out that, thanks to the Sobolev
embedding of 𝐵 𝑉 (𝛺) into 𝐿

𝑛
𝑛−1 (𝛺), we get

|

|

|

|

∫𝛺
𝑢 |ℎ| 𝑑 𝑥||

|

|

≤ ‖ℎ‖𝐿𝑛(𝛺)‖𝑢‖𝐿
𝑛

𝑛−1 (𝛺)
≤ 𝐶‖ℎ‖𝐿𝑛(𝛺)‖𝑢‖𝐵 𝑉 (𝛺) for all 𝑢 ∈ 𝐵 𝑉 (𝛺),

This shows that ℎ𝑛 is an admissible measure.
Then, we notice that the reason for requiring (4.10) is that it ensures a crucial continuity property of the upper and lower trace

perators from 𝐵 𝑉 to 𝐿1(𝛤 ;𝑛−1). Indeed, there exists a constant 𝐶 > 0 depending only on 𝛺 ,𝑛−1(𝛤 ), 𝜌 and 𝛬 such that

∫𝛤
|𝑢±| 𝑑𝑛−1 ≤ 𝐶‖𝑢‖𝐵 𝑉 (𝛺) for all 𝑢 ∈ 𝐵 𝑉 (𝛺). (4.11)

In order to show (4.11), we consider the zero-extension of 𝑢 to R𝑛, which we denote by 𝑢0: we have 𝑢0 ∈ 𝐵 𝑉 (R𝑛) and

‖𝑢0‖𝐵 𝑉 (R𝑛) ≤ 𝑐‖𝑢‖𝐵 𝑉 (𝛺), (4.12)

for some 𝑐 = 𝑐(𝛺) > 0 (see for instance [30, Lemma 5.10.4]). Due to (4.10), we can apply [23, Theorem 3.86] to get

∫𝛤
|𝑢±| 𝑑𝑛−1 ≤ 𝐶‖𝑢0‖𝐵 𝑉 (R𝑛) (4.13)

where 𝐶 > 0 is a constant depending only on 𝑛−1(𝛤 ), 𝜌 and 𝛬. Combining (4.12) and (4.13), we obtain (4.11), which in particular
implies 𝑛−1 𝛤 ∈ 𝐵 𝑉 (𝛺)∗ and that 𝑢± ∈ 𝐿1(𝛤 ;𝑛−1). Hence, for all 𝑢 ∈ 𝐵 𝑉 (𝛺) we obtain

|

|

|

|

∫𝛤
𝑢∗ |𝛾| 𝑑𝑛−1|

|

|

|

≤ ∫𝛤
|𝑢∗| |𝛾| 𝑑𝑛−1 ≤ 𝐶‖𝛾‖𝐿∞(𝛤 ;𝑛−1)‖𝑢‖𝐵 𝑉 (𝛺),

where 𝐶 > 0 is a constant depending only on 𝛺 ,𝑛−1(𝛤 ), 𝜌 and 𝛬. Therefore, the measure 𝛾𝑛−1 𝛤 is admissible. All in all, this
proves that 𝜇 is an admissible measure.

Example 4.15. Let 𝑛 ≥ 2 and 𝜇 = ℎ𝑛, where

ℎ(𝑥) = (𝑛 − 1)
|𝑥 − 𝑥0|

for 𝑥 ≠ 𝑥0,

for some 𝑥0 ∈ R𝑛. We notice that ℎ ∈ 𝐿𝑞
loc(R

𝑛) only for 𝑞 ∈ [1, 𝑛). However, it is easy to check that 𝜇 = div𝐹 , where

𝐹 (𝑥) = (𝑥 − 𝑥0)
|𝑥 − 𝑥0|

for 𝑥 ≠ 𝑥0.

By Proposition 4.10(1), for any open bounded set 𝛺 with Lipschitz boundary we have 𝜇 ∈ 𝐵 𝑉 (𝛺)∗, so that 𝜇 is indeed an admissible
measure, given that 𝜇 ≥ 0. In addition, since ‖𝐹‖𝐿∞(R𝑛;R𝑛) = 1, we see that 𝜇 ∈  1(𝛺), by Lemma 4.1.

Given that the admissibility of a measure depends on its total variation, it seems natural to characterize it in terms of properties
of the positive and negative parts of the given measure. In the following lemma we prove that any measure whose positive and
egative parts belong to  (𝛺) is indeed admissible.

Lemma 4.16. Let 𝛺 be an open bounded set with Lipschitz boundary and let 𝜇 ∈ (𝛺). Assume that its positive and negative parts,
+ and 𝜇−, belong to  𝐿+

(𝛺) and  𝐿−
(𝛺) for some 𝐿+, 𝐿− > 0, respectively. Then 𝜇 is admissible and belongs to  𝐿(𝛺), where

= max{𝐿+, 𝐿−}. In particular, if 𝜇 ≥ 0 and 𝜇 ∈  (𝛺), then it is admissible.

Proof. Thanks to Proposition 4.10(2), we know that 𝜇+, 𝜇− ∈ 𝐵 𝑉 (𝛺)∗. Hence, a simple application of the triangle inequality
implies that |𝜇| ∈ 𝐵 𝑉 (𝛺)∗. Let now 𝐿+, 𝐿− > 0 be the constants for which 𝜇+ and 𝜇− satisfy (4.1), respectively. We notice that, for
all measurable sets 𝐸 ⊂ 𝛺, we have

|𝜇(𝐸1 ∩𝛺)| = |𝜇+(𝐸1 ∩𝛺) − 𝜇−(𝐸1 ∩𝛺)| ≤ max{𝜇+(𝐸1 ∩𝛺), 𝜇−(𝐸1 ∩𝛺)} ≤ max{𝐿+, 𝐿−}𝑃 (𝐸),

so that 𝜇 ∈  𝐿(𝛺), for 𝐿 = max{𝐿+, 𝐿−}. □
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A relevant consequence of the results explored so far is that, for admissible measures 𝜇, the functional T𝜇 ,𝜆 defined in (2.25) can
e naturally extended to all functions in 𝐵 𝑉 (𝛺).

Lemma 4.17. Let 𝜇 ∈  (𝛺) be admissible and 𝜆 ∶ 𝛺 → [0, 1] be a Borel function. Then the functional T𝜇 ,𝜆 ∶ 𝐵 𝑉 (𝛺) → R given by
(2.25) is well-defined. Then, given 𝑢 ∈ 𝐵 𝑉 (𝛺), if we consider the truncation of 𝑢, 𝑇𝑁 (𝑢) for 𝑁 > 0, and its smooth approximation 𝑇𝑁 (𝑢)𝜆𝑘
iven by Theorem 3.2, we have

lim
𝑁→+∞∫𝛺

𝑇𝑁 (𝑢)𝜆 𝑑 𝜇 = ∫𝛺
𝑢𝜆 𝑑 𝜇 (4.14)

and

lim
𝑁→+∞

lim
𝑘→+∞∫𝛺

𝑇𝑁 (𝑢)𝜆𝑘 𝑑 𝜇 = ∫𝛺
𝑢𝜆 𝑑 𝜇 . (4.15)

Finally, for any 𝑢 ∈ 𝐵 𝑉 (𝛺) we can find a sequence (𝑢𝑗 )𝑗∈N ⊂ 𝐶∞(𝛺) ∩ 𝐵 𝑉 (𝛺) ∩ 𝐿∞(𝛺) such that
lim

𝑗→+∞
T𝜇 ,𝜆(𝑢𝑗 ) = T𝜇 ,𝜆(𝑢). (4.16)

Proof. We recall that T𝜇 ,𝜆 is well-defined on 𝐵 𝑉 (𝛺) ∩𝐿∞(𝛺). Thanks to Lemma 4.7, |𝜇| ∈ 𝐵 𝑉 (𝛺)∗ implies 𝑢𝜆, 𝑀[𝑢, 𝜆] ∈ 𝐿1(𝛺; |𝜇|).
Hence, for any 𝑢 ∈ 𝐵 𝑉 (𝛺) we get (4.14) by Lebesgue’s Dominated Convergence Theorem with respect to the measure |𝜇|, thanks
to (2.9). In addition, the functional

T𝜇 ,𝜆(𝑢) = ∫𝛺
𝑢𝜆 𝑑 𝜇

is well-defined for any 𝑢 ∈ 𝐵 𝑉 (𝛺). Let now 𝑁 > 0 and 𝑇𝑁 (𝑢)𝜆𝑘 be the smooth approximation of 𝑇𝑁 (𝑢) given by Theorem 3.2. Then,
we have

𝑇𝑁 (𝑢)𝜆𝑘(𝑥) → 𝑇𝑁 (𝑢)𝜆(𝑥) as 𝑘 → +∞ for |𝜇|-a.e. 𝑥 ∈ 𝛺 ,
since 𝜇 ∈  (𝛺), and |𝑇𝑁 (𝑢)𝜆𝑘(𝑥)| ≤ 2𝑁 for every 𝑥 ∈ 𝛺 and 𝑘 ≥ 1. Therefore we obtain

lim
𝑘→∞∫𝛺

𝑇𝑁 (𝑢)𝜆𝑘 𝑑 𝜇 = ∫𝛺
𝑇𝑁 (𝑢)𝜆 𝑑 𝜇

by Lebesgue’s Dominated Convergence Theorem with respect to |𝜇|, since the constant 𝑁 is a summable majorant, given that
|𝜇|(𝛺) < ∞. Hence, combining this result with (4.14), we get

lim
𝑁→+∞

lim
𝑘→+∞∫𝛺

𝑇𝑁 (𝑢)𝜆𝑘 𝑑 𝜇 = lim
𝑁→+∞∫𝛺

𝑇𝑁 (𝑢)𝜆 𝑑 𝜇 = ∫𝛺
𝑢𝜆 𝑑 𝜇 .

This proves (4.16). Consequently, there exists a sequence (𝑘𝑗 )𝑗∈N ⊂ N such that 𝑢𝑗 ∶= 𝑇𝑗 (𝑢)𝜆𝑘𝑗 belongs to 𝐶∞(𝛺) ∩ 𝐵 𝑉 (𝛺) ∩ 𝐿∞(𝛺)
nd satisfies (4.15). □

Remark 4.18. It is easy to see that, if 𝜇 ∈ 𝐵 𝑉 (𝛺)∗ and 𝜇 ≥ 0, then 𝜇 is an admissible measure. Hence, if we choose 𝜆 ≡ 1
2 ,

Lemma 4.17 provides an extension of [4, Theorem 7.4 (iv) and Remark 8.3], with no additional assumptions on 𝛺.
We exploit the previous result to find a sharp estimate of |T𝜇 ,𝜆(𝑢)| in terms of the total variation of 𝑢 and its trace on the boundary

of the domain.

Proposition 4.19. Let 𝛺 be an open bounded set with Lipschitz boundary. Let 𝐿 > 0 and 𝜇 ∈  𝐿(𝛺). Let 𝑢 ∈ 𝐵 𝑉 (𝛺) and 𝜆 ∶ 𝛺 → [0, 1]
be a Borel function. If 𝑢𝜆 ∈ 𝐿1(𝛺; |𝜇|), then

|

|

|

|

∫𝛺
𝑢𝜆 𝑑 𝜇||

|

|

≤ 𝐿
(

|𝐷 𝑢|(𝛺) + ∫𝜕 𝛺
|Tr𝜕 𝛺(𝑢)| 𝑑𝑛−1

)

. (4.17)

In particular, (4.17) holds true for all 𝑢 ∈ 𝐵 𝑉 (𝛺) as long as 𝜇 is admissible.

Proof. We start by noticing that, thanks to Remark 4.3, we know that 𝜇 ∈  (𝛺). In addition, by Remark 4.13, we deduce that
𝑀[𝑢, 𝜆] ∈ 𝐿1(𝛺; |𝜇|), given that 𝑢𝜆 ∈ 𝐿1(𝛺; |𝜇|). In particular, if 𝜇 is admissible, Lemma 4.7 ensures that 𝑢𝜆, 𝑀[𝑢, 𝜆] ∈ 𝐿1(𝛺; |𝜇|) for
all 𝑢 ∈ 𝐵 𝑉 (𝛺). Take now 𝑁 > 0 and let 𝑇𝑁 (𝑢)𝜆𝑘 be the smooth approximation of 𝑇𝑁 (𝑢) given by Theorem 3.2. Arguing as in the
roof of Lemma 4.17, we see that

∫𝛺
𝑇𝑁 (𝑢)𝜆 𝑑 𝜇 = lim

𝑘→∞∫𝛺
𝑇𝑁 (𝑢)𝜆𝑘 𝑑 𝜇 . (4.18)

We notice now that 𝑇𝑁 (𝑢)𝜆𝑘 ∈ 𝐶∞(𝛺), so that the superlevel and sublevel sets

{𝑇𝑁 (𝑢)𝜆𝑘 > 𝑡} = {𝑥 ∈ 𝛺 ∶ 𝑇𝑁 (𝑢)𝜆𝑘(𝑥) > 𝑡} and {𝑇𝑁 (𝑢)𝜆𝑘 < 𝑡} = {𝑥 ∈ 𝛺 ∶ 𝑇𝑁 (𝑢)𝜆𝑘(𝑥) < 𝑡}
are open sets with smooth boundary for 1-a.e. 𝑡 ∈ R, by Morse-Sard lemma [25, Lemma 13.15]. In particular, we deduce that, for
1-a.e. 𝑡 ∈ R,
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{𝑇𝑁 (𝑢)𝜆𝑘 > 𝑡}1 = {𝑇𝑁 (𝑢)𝜆𝑘 > 𝑡} and {𝑇𝑁 (𝑢)𝜆𝑘 < 𝑡}1 = {𝑇𝑁 (𝑢)𝜆𝑘 < 𝑡}.
We exploit now Theorem 3.2 to notice that

|𝑇𝑁 (𝑢)𝜆𝑘| ≤ 2𝑁 for all 𝑘 ≥ 1, (4.19)

𝑇𝑁 (𝑢)𝜆𝑘 → 𝑇𝑁 (𝑢) in 𝐵 𝑉 (𝛺)-strict as 𝑘 → +∞, (4.20)

and

Tr𝜕 𝛺
(

𝑇𝑁 (𝑢)𝜆𝑘
)

(𝑥) = Tr𝜕 𝛺(𝑇𝑁 (𝑢))(𝑥) for 𝑛−1-a.e. 𝑥 ∈ 𝜕 𝛺 . (4.21)

Therefore, by using (4.18), the layer-cake representation together with (4.19), the fact that 𝜇 satisfies (4.1), the coarea formula,
Lemma 2.3, the convergence (4.20) and the identity (4.21), we get

|

|

|

|

∫𝛺
𝑇𝑁 (𝑢)𝜆 𝑑 𝜇||

|

|

= lim
𝑘→∞

|

|

|

|

|

∫

∞

0 ∫{𝑇𝑁 (𝑢)𝜆𝑘>𝑡}
𝑑 𝜇 𝑑 𝑡 − ∫

0

−∞ ∫{𝑇𝑁 (𝑢)𝜆𝑘<𝑡}
𝑑 𝜇 𝑑 𝑡

|

|

|

|

|

≤ lim sup
𝑘→∞ ∫

2𝑁

0

|

|

|

𝜇({𝑇𝑁 (𝑢)𝜆𝑘 > 𝑡})||
|

𝑑 𝑡 + ∫

0

−2𝑁

|

|

|

𝜇({𝑇𝑁 (𝑢)𝜆𝑘 < 𝑡})||
|

𝑑 𝑡

≤ 𝐿 lim sup
𝑘→∞ ∫

2𝑁

0
𝑃 ({𝑇𝑁 (𝑢)𝜆𝑘 > 𝑡}) 𝑑 𝑡 + ∫

0

−2𝑁
𝑃 ({𝑇𝑁 (𝑢)𝜆𝑘 < 𝑡}) 𝑑 𝑡

≤ 𝐿 lim sup
𝑘→∞ ∫

2𝑁

−2𝑁
|𝐷 𝜒{𝑇𝑁 (𝑢)𝜆𝑘>𝑡}

|(𝛺) 𝑑 𝑡 + ∫

2𝑁

0 ∫𝜕 𝛺
Tr𝜕 𝛺(𝜒{|𝑇𝑁 (𝑢)𝜆𝑘|>𝑡}

) 𝑑𝑛−1 𝑑 𝑡

≤ 𝐿 lim sup
𝑘→∞ ∫

∞

−∞
|𝐷 𝜒{𝑇𝑁 (𝑢)𝜆𝑘>𝑡}

|(𝛺) 𝑑 𝑡 + ∫

+∞

0 ∫𝜕 𝛺
Tr𝜕 𝛺(𝜒{|𝑇𝑁 (𝑢)𝜆𝑘|>𝑡}

) 𝑑𝑛−1 𝑑 𝑡

≤ 𝐿 lim
𝑘→∞

|𝐷 𝑇𝑁 (𝑢)𝜆𝑘|(𝛺) + ∫𝜕 𝛺
|Tr𝜕 𝛺(𝑇𝑁 (𝑢)𝜆𝑘)| 𝑑

𝑛−1

= 𝐿
(

|𝐷 𝑇𝑁 (𝑢)|(𝛺) + ∫𝜕 𝛺
|Tr𝜕 𝛺(𝑇𝑁 (𝑢))| 𝑑𝑛−1

)

≤ 𝐿
(

|𝐷 𝑢|(𝛺) + ∫𝜕 𝛺
|Tr𝜕 𝛺(𝑇𝑁 (𝑢))| 𝑑𝑛−1

)

,

since |𝐷 𝑇𝑁 (𝑢)| ≤ |𝐷 𝑢|. In addition, we notice that 𝑇𝑁 (𝑢) → 𝑢 in 𝐵 𝑉 (𝛺)-strict as 𝑁 → +∞, so that we obtain

Tr𝜕 𝛺(𝑇𝑁 (𝑢)) → Tr𝜕 𝛺(𝑢) in 𝐿1(𝜕 𝛺;𝑛−1) as 𝑁 → +∞,

see for instance to [23, Theorem 3.88]. Thus, we obtain (4.17) by passing to the limit as 𝑁 → +∞ also on the left hand side, again
thanks to the Lebesgue’s Dominated Convergence Theorem, employing (2.9), (2.10), and the fact that 𝑀[𝑢, 𝜆] ∈ 𝐿1(𝛺; |𝜇|). □

Remark 4.20. We stress that we could not directy apply the Cavalieri representation formula to ∫𝛺
𝑇𝑁 (𝑢)𝜆 𝑑 𝜇, since, a priori, we

o not know whether

{𝑇𝑁 (𝑢)𝜆 > 𝑡} = {𝑇𝑁 (𝑢)𝜆 > 𝑡}1 or {𝑇𝑁 (𝑢)𝜆 > 𝑡} = {𝑇𝑁 (𝑢)𝜆 > 𝑡}1 ∪ 𝜕∗{𝑇𝑁 (𝑢)𝜆 > 𝑡}.
Therefore, we would not be able to apply the property (4.1) and proceed with the proof. Instead, we see here the usefulness of
Theorem 3.2 in ensuring that, for 1-a.e. 𝑡 ∈ R,

{(𝑇𝑁 (𝑢))𝜆𝑘 > 𝑡}1 = {(𝑇𝑁 (𝑢))𝜆𝑘 > 𝑡}, 𝜕∗{(𝑇𝑁 (𝑢))𝜆𝑘 > 𝑡} = 𝜕{(𝑇𝑁 (𝑢))𝜆𝑘 > 𝑡},
{(𝑇𝑁 (𝑢))𝜆𝑘 < 𝑡}1 = {(𝑇𝑁 (𝑢))𝜆𝑘 < 𝑡}, 𝜕∗{(𝑇𝑁 (𝑢))𝜆𝑘 < 𝑡} = 𝜕{(𝑇𝑁 (𝑢))𝜆𝑘 < 𝑡}.

Lemma 4.21. Let 𝛺 be a bounded open set with Lipschitz boundary. Let 𝐿 > 0 and 𝜇 ∈  𝐿(𝛺) be an admissible measure. Then there
xists 𝐹 ∈ ∞(𝛺) such that div𝐹 = 𝜇 on 𝛺 and ‖𝐹‖𝐿∞(𝛺;R𝑛) ≤ 𝐿.

Proof. Thanks to Lemma 4.7, for all 𝑢 ∈ 𝐵 𝑉 (𝛺) and Borel functions 𝜆 ∶ 𝛺 → [0, 1] we have 𝑢𝜆 ∈ 𝐿1(𝛺; |𝜇|). Hence, Proposition 4.19
implies that 𝜇 ∈ 𝑊 1,1

0 (𝛺)∗; that is, it defines a linear continuous functional on 𝑊 1,1
0 (𝛺), since

|

|

|

|

∫𝛺
�̃� 𝑑 𝜇||

|

|

≤ 𝐿‖∇𝑢‖𝐿1(𝛺;R𝑛),

by (4.17), given that Tr𝜕 𝛺(𝑢) = 0 and 𝑢𝜆(𝑥) = 𝑢∗(𝑥) = �̃�(𝑥) for 𝑛−1-a.e. 𝑥 ∈ 𝛺 and all Borel functions 𝜆 ∶ 𝛺 → [0, 1]. Hence, [4,
Lemma 7.3] yields

‖𝜇‖𝑊 1,1
0 (𝛺)∗ = sup

{

∫𝛺
�̃� 𝑑 𝜇 ∶ 𝑢 ∈ 𝑊 1,1

0 (𝛺), ‖∇𝑢‖𝐿1(𝛺;R𝑛) ≤ 1
}

{ ∞ 𝑛 }
= min ‖𝐺‖𝐿∞(𝛺;R𝑛) ∶ 𝐺 ∈ 𝐿 (𝛺;R ), div𝐺 = 𝜇 on 𝛺 .
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Thus, this ends the proof. □

Remark 4.22. Under the same assumptions of Lemma 4.21, we notice that the measure 𝜇 actually satisfies

|𝜇((𝐸1 ∪ 𝜕∗𝐸) ∩𝛺)| ≤ 𝐿 𝑃 (𝐸) ,

for all sets 𝐸 ⊂ 𝛺 of finite perimeter in R𝑛, coherently with properties (2) and (3) of Lemma 4.1. Indeed, 𝛺 is an open bounded set
with Lipschitz boundary, and hence it is weakly regular. Therefore, we can choose a vector field 𝐹 as in Lemma 4.21 and, using
the Gauss–Green formula (2.18), we immediately obtain

|𝜇((𝐸1 ∪ 𝜕∗𝐸) ∩𝛺)| = |div𝐹 ((𝐸1 ∪ 𝜕∗𝐸) ∩𝛺)| =
|

|

|

|

∫𝜕∗𝐸
Tr𝑒(𝐹 , 𝜕∗𝐸) 𝑑𝑛−1|

|

|

|

≤ ‖𝐹‖𝐿∞(𝛺;R𝑛)𝑃 (𝐸) ≤ 𝐿 𝑃 (𝐸)

for all sets 𝐸 ⊂ 𝛺 of finite perimeter in R𝑛.
In addition, we notice that, if 𝜇 ∈  (𝛺) is an admissible measure, then Theorem 2.11 (taking into account Remark 4.8), (2.16)

and (2.19) imply the estimate
|

|

|

|

∫𝛺
𝑢𝜆 𝑑 𝜇||

|

|

≤ 𝛬
(

|𝐷 𝑢|(𝛺) + ∫𝜕 𝛺
|Tr𝜕 𝛺(𝑢)| 𝑑𝑛−1

)

,

where

𝛬 = inf {‖𝐹‖𝐿∞(𝛺;R𝑛) ∶ 𝐹 ∈ ∞(𝛺) with div𝐹 = 𝜇}.

However, assuming 𝜇 ∈  𝐿(𝛺) for some 𝐿 > 0, we cannot prove that 𝛬 ≤ 𝐿 without exploiting Proposition 4.19 itself, since in
he proof of Lemma 4.21 it is essential to know that the perimeter bound for sets holds at least for functions in 𝑊 1,1

0 (𝛺).
As a final result, we show the stability of the admissibility and the perimeter bound conditions under a suitable type of smooth

pproximation procedure. More precisely, we prove that any admissible measure 𝜇 ∈  𝐿(𝛺) can be approximated in the weak–∗
ense by a sequence of absolutely continuous measures 𝜇𝑗𝑛 ∈  𝐿𝑗

(𝛺) with smooth density functions, where 𝐿𝑗 → 𝐿 as 𝑗 → +∞.
he key idea is to use the duality between admissible measures in  (𝛺) and essentially bounded divergence-measure fields. While

t is not clear if a direct mollification of 𝜇 would in general still belong to  𝐿(𝛺) (even assuming 𝜇 of compact support in 𝛺),
e shall instead rely on the fact that the Anzellotti-Giaquinta–type regularization of a vector field almost preserves its 𝐿∞ norm.

Similar ideas can be found for instance in [31].

Proposition 4.23. Let 𝛺 be an open bounded set with Lipschitz boundary. Let 𝐿 > 0 and 𝜇 ∈  𝐿(𝛺) be an admissible measure. Then
there exists a sequence of functions (𝜇𝑗 )𝑗 ⊂ 𝐶∞(𝛺) such that 𝜇𝑗𝑛 is an admissible measure and it belongs to  𝐿(1+1∕𝑗)(𝛺) for all 𝑗 ∈ N,
and 𝜇𝑗 𝑛 ⇀ 𝜇 as 𝑗 → +∞. Moreover, if 𝜇 = ℎ𝑛 + 𝜇𝑠 with ℎ ∈ 𝐿𝑞(𝛺), for some 𝑞 ∈ [1,+∞], and 𝜇𝑠 has compact support in 𝛺, then for
any open set 𝛺′ ⊂⊂ 𝛺 containing the support of 𝜇𝑠 we have the following properties:

• there exists (ℎ𝑗 )𝑗 such that ℎ𝑗 → ℎ in 𝐿𝑝(𝛺), for all 𝑝 ∈ [1, 𝑞) and 𝑝 = 𝑞 if 𝑞 < +∞, and 𝜇𝑗 − ℎ𝑗 → 0 in 𝐿𝑛(𝛺 ⧵𝛺′);
• 𝜇𝑗 = 𝜌𝑗 ∗ 𝜇𝑠 + ℎ𝑗 on 𝛺′ for 𝑗 large enough and 𝜌𝑗 (𝑥) = 𝛿−𝑛𝑗 𝜌(𝑥∕𝛿𝑗 ), for some sequence 𝛿𝑗 ↓ 0 and some fixed mollifier 𝜌 ∈ 𝐶∞

𝑐 (𝐵1).

Proof. The construction of the sequence 𝜇𝑗 starting from the measure 𝜇 can be done as follows. We recall that, thanks to
Proposition 4.10(4) and Lemma 4.21, if 𝜇 ∈  𝐿(𝛺) and it is admissible, then there exist vector fields 𝐹 , 𝐺 ∈ ∞(𝛺) such
that

• ‖𝐹‖𝐿∞(𝛺;R𝑛) ≤ 𝐿 and div𝐹 = 𝜇 on 𝛺,
• div𝐺 = |𝜇| on 𝛺.

Analogously as in the proof of Theorem 3.1, we set 𝛺0,𝑚 = ∅ for 𝑚 ∈ N,

𝛺𝑘,𝑚 =
{

𝑥 ∈ 𝛺 ∶ dist (𝑥, 𝜕 𝛺) > 1
𝑚 + 𝑘

}

for 𝑘, 𝑚 ≥ 1

and then 𝛴𝑘,𝑚 ∶= 𝛺𝑘+1,𝑚 ⧵ 𝛺𝑘−1,𝑚. For notational simplicity we set 𝛺𝑘 = 𝛺𝑘,𝑚 and 𝛴𝑘 = 𝛴𝑘,𝑚, since in the first part of the proof
the second parameter does not play any role. We let (𝜁𝑘)𝑘≥1 be a partition of unity subordinate to the open cover (𝛴𝑘)𝑘≥1 of 𝛺. We
choose a nonnegative sequence (𝛿𝑗 ,𝑘)𝑗 ,𝑘≥1 such that 𝛿𝑗 ,𝑘 → 0 as 𝑗 → +∞ for all 𝑘 ≥ 1 and

supp(𝜁𝑘) + 𝐵𝛿𝑗 ,𝑘 ⊂ 𝛴𝑘. (4.22)

Finally, we take a standard mollifier 𝜌 and we require that the family of mollifiers 𝜌𝑗 ,𝑘 = 𝜌𝛿𝑗 ,𝑘 satisfies the following set of conditions:

‖𝜌𝛿𝑗 ,𝑘 ∗ 𝜁𝑘 − 𝜁𝑘‖𝐿∞(𝛺) ≤
1
𝑗2𝑘

, (4.23)

‖𝜌𝑗 ,𝑘 ∗ (𝐹 ⋅ ∇𝜁𝑘) − 𝐹 ⋅ ∇𝜁𝑘‖𝐿𝑟(𝛺) ≤
1
𝑗2𝑘

(4.24)

for all 𝑟 ∈ [1, 𝑛],
‖𝜌𝑗 ,𝑘 ∗ (𝐺 ⋅ ∇𝜁𝑘) − 𝐺 ⋅ ∇𝜁𝑘‖𝐿𝑛(𝛺) ≤

1 (4.25)

𝑗2𝑘
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and, if 𝜇 = ℎ𝑛 + 𝜇𝑠,

‖𝜌𝑗 ,𝑘 ∗ (𝜁𝑘ℎ) − 𝜁𝑘ℎ‖𝐿𝑝(𝛺) ≤
1
𝑗2𝑘

, (4.26)

for 𝑝 ∈ [1, 𝑞) and 𝑝 = 𝑞 if 𝑞 < +∞. Then we set

𝐹𝑗 =
+∞
∑

𝑘=1
𝜌𝑗 ,𝑘 ∗ (𝜁𝑘𝐹 )

and, finally,

𝜇𝑗 = div𝐹𝑗 . (4.27)

With reference to the proof of Theorem 3.1, we fix 𝜑 ∈ 𝐶∞
𝑐 (𝛺) and obtain

∫𝛺
𝜑 𝜇𝑗 𝑑 𝑥 = −∫𝛺

𝐹𝑗 ⋅ ∇𝜑 𝑑 𝑥

= −
+∞
∑

𝑘=1
∫𝛺

(𝜁𝑘𝐹 ) ∗ 𝜌𝑗 ,𝑘 ⋅ ∇𝜑 𝑑 𝑥

=
+∞
∑

𝑘=1
∫𝛺

𝜁𝑘(𝜌𝑗 ,𝑘 ∗ 𝜑) 𝑑 𝜇 +
+∞
∑

𝑘=1
∫𝛺

𝜑
(

𝜌𝑗 ,𝑘 ∗ (𝐹 ⋅ ∇𝜁𝑘) − 𝐹 ⋅ ∇𝜁𝑘
)

𝑑 𝑥

⟶ ∫𝛺
𝜑 𝑑 𝜇 , as 𝑗 → +∞,

where the final passage to the limit is justified because
|

|

|

|

∫𝛺
𝜑
(

𝜌𝑗 ,𝑘 ∗ (𝐹 ⋅ ∇𝜁𝑘) − 𝐹 ⋅ ∇𝜁𝑘
)

𝑑 𝑥||
|

|

≤ ‖𝜑‖𝐿∞(𝛺)‖𝜌𝑗 ,𝑘 ∗ (𝐹 ⋅ ∇𝜁𝑘) − 𝐹 ⋅ ∇𝜁𝑘‖𝐿1(𝛺) ≤
‖𝜑‖𝐿∞(𝛺)

𝑗2𝑘

thanks to (4.24). As a byproduct of the previous calculations, we also get

𝜇𝑗 =
+∞
∑

𝑘=1
𝜌𝑗 ,𝑘 ∗ (𝜁𝑘𝜇) +

+∞
∑

𝑘=1

(

𝜌𝑗 ,𝑘 ∗ (𝐹 ⋅ ∇𝜁𝑘) − 𝐹 ⋅ ∇𝜁𝑘
)

. (4.28)

In order to prove that 𝜇𝑗𝑛 is admissible, we consider separately the two sums on the right hand side. Given that div𝐺 = |𝜇|, it is
easy to see that

|𝜇𝑗 | ≤
+∞
∑

𝑘=1
𝜌𝑗 ,𝑘 ∗ (𝜁𝑘div𝐺) +

+∞
∑

𝑘=1

|

|

|

𝜌𝑗 ,𝑘 ∗ (𝐹 ⋅ ∇𝜁𝑘) − 𝐹 ⋅ ∇𝜁𝑘
|

|

|

.

Due to (4.24) and the Sobolev embedding 𝐵 𝑉 (𝛺) ⊂ 𝐿 𝑛
𝑛−1 (𝛺),2 for all 𝑢 ∈ 𝐵 𝑉 (𝛺), we have

|

|

|

|

|

|

∫𝛺
𝑢

+∞
∑

𝑘=1

|

|

|

𝜌𝑗 ,𝑘 ∗ (𝐹 ⋅ ∇𝜁𝑘) − 𝐹 ⋅ ∇𝜁𝑘
|

|

|

𝑑 𝑥
|

|

|

|

|

|

≤
+∞
∑

𝑘=1
‖𝑢‖

𝐿
𝑛

𝑛−1 (𝛺)
‖𝜌𝑗 ,𝑘 ∗ (𝐹 ⋅ ∇𝜁𝑘) − 𝐹 ⋅ ∇𝜁𝑘‖𝐿𝑛(𝛺)

≤ 𝐶‖𝑢‖𝐵 𝑉 (𝛺).

As for the first sum, given that div𝐺 is an admissible measure, in the light of Remark 4.8 we can exploit the integration by parts
ormula (2.22) to obtain

∫𝛺
𝑢

+∞
∑

𝑘=1
𝜌𝑗 ,𝑘 ∗ (𝜁𝑘div𝐺) 𝑑 𝑥 =

+∞
∑

𝑘=1
∫𝛺

𝜁𝑘(𝜌𝑗 ,𝑘 ∗ 𝑢) 𝑑div𝐺

= −
+∞
∑

𝑘=1
∫𝛺

𝐺 ⋅ ∇
(

𝜁𝑘(𝜌𝑗 ,𝑘 ∗ 𝑢)
)

𝑑 𝑥,

since supp(𝜁𝑘) ⊂⊂ 𝛺. Now, we exploit the Leibniz rule to get
+∞
∑

𝑘=1
∫𝛺

𝐺 ⋅ ∇
(

𝜁𝑘(𝜌𝑗 ,𝑘 ∗ 𝑢)
)

𝑑 𝑥 = ∫𝛺
𝐺 ⋅

(+∞
∑

𝑘=1
𝜁𝑘(𝜌𝑗 ,𝑘 ∗ 𝐷 𝑢)

)

𝑑 𝑥 +
+∞
∑

𝑘=1
∫𝛺

𝑢∇𝜁𝑘 ⋅ (𝜌𝑗 ,𝑘 ∗ 𝐺 − 𝐺) 𝑑 𝑥

+
+∞
∑

𝑘=1
∫𝛺

𝑢∇𝜁𝑘 ⋅ 𝐺 𝑑 𝑥.

We deal with the three terms separately. As for the first term, we exploit the fact that ∑+∞
𝑘=1 𝜒𝛴𝑘

≤ 2 and (4.23) in order to get
|

|

|

|

|

|

∫𝛺
𝐺 ⋅

(+∞
∑

𝑘=1
𝜁𝑘(𝜌𝑗 ,𝑘 ∗ 𝐷 𝑢)

)

𝑑 𝑥
|

|

|

|

|

|

≤ ‖𝐺‖𝐿∞(𝛺;R𝑛)

+∞
∑

𝑘=1
∫supp(𝜁𝑘)

𝜌𝑗 ,𝑘 ∗ |𝐷 𝑢| 𝑑 𝑥

≤ 2‖𝐺‖𝐿∞(𝛺;R𝑛)|𝐷 𝑢|(𝛺).

2 If 𝑛 = 1, 𝐵 𝑉 (𝛺) ⊂ 𝐿∞(𝛺).
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Then, by (4.25) we see that
|

|

|

|

|

|

+∞
∑

𝑘=1
∫𝛺

𝑢∇𝜁𝑘 ⋅ (𝜌𝑗 ,𝑘 ∗ 𝐺 − 𝐺) 𝑑 𝑥
|

|

|

|

|

|

≤
+∞
∑

𝑘=1
‖𝑢‖

𝐿
𝑛

𝑛−1 (𝛺)
‖𝜌𝑗 ,𝑘 ∗ (𝐺 ⋅ ∇𝜁𝑘) − 𝐺 ⋅ ∇𝜁𝑘‖𝐿𝑛(𝛺) ≤ 𝐶‖𝑢‖𝐵 𝑉 (𝛺),

again thanks to the Sobolev embedding for 𝐵 𝑉 functions. Finally, we exploit again (2.22) to obtain
+∞
∑

𝑘=1
∫𝛺

𝑢∇𝜁𝑘 ⋅ 𝐺 𝑑 𝑥 = −
+∞
∑

𝑘=1
∫𝛺

𝜁𝑘 𝑑div(𝑢𝐺) = −∫𝛺
𝑑div(𝑢𝐺) = ∫𝜕 𝛺

Tr𝑖(𝐺 , 𝜕 𝛺)Tr𝜕 𝛺(𝑢) 𝑑𝑛−1,

so that, thanks to (2.19), we get
|

|

|

|

|

|

+∞
∑

𝑘=1
∫𝛺

𝑢∇𝜁𝑘 ⋅ 𝐺 𝑑 𝑥
|

|

|

|

|

|

≤ ‖𝐺‖𝐿∞(𝛺;R𝑛)‖𝑢‖𝐵 𝑉 (𝛺).

All in all, this shows that |𝜇𝑗 |𝑛 ∈ 𝐵 𝑉 (𝛺)∗.
In addition, when 𝜇 = ℎ𝑛 + 𝜇𝑠 with ℎ ∈ 𝐿𝑞(𝛺), for some 𝑞 ∈ [1,+∞], and 𝜇𝑠 has compact support in 𝛺′ ⊂⊂ 𝛺, by choosing 𝑚

large enough so that 𝛺′ ⊂⊂ 𝛺1,𝑚, thanks to (4.22) the first sum in (4.28) coincides with 𝜌𝑗 ,1 ∗ 𝜇𝑠 + ℎ𝑗 if restricted to 𝛺′, where ℎ𝑗 is
he Anzellotti-Giaquinta’s regularization of ℎ, and it coincides with ℎ𝑗 when restricted to 𝛺 ⧵𝛺′. At the same time, the second sum

in (4.28) tends to 0 as 𝑗 → ∞ in 𝐿𝑛(𝛺) by (4.24). Finally, ℎ𝑗 → ℎ in 𝐿𝑝(𝛺) with 𝑝 as above, by (4.26). This shows the last part of
the statement.

Finally, we prove that 𝜇𝑗 ∈  𝐿(1+1∕𝑗)(𝛺). Given any set 𝐸 ⊂ 𝛺 of finite perimeter in R𝑛, by Theorem 2.9 we have
|

|

|

|

∫𝐸∩𝛺
𝜇𝑗 𝑑 𝑥

|

|

|

|

=
|

|

|

|

∫𝜕∗𝐸
Tr𝑖(𝐹𝑗 , 𝜕∗𝐸) 𝑑𝑛−1|

|

|

|

≤ ‖𝐹𝑗‖𝐿∞(𝛺;R𝑛) 𝑃 (𝐸).

Then, we notice that, for any 𝑥 ∈ 𝛺, there exists a unique 𝑘0 ≥ 1 such that 𝑥 ∈ 𝛴𝑘0 ∩𝛴𝑘0+1, so that, arguing as in the proof of point
(5) of Theorem 3.1, thanks to the assumptions on 𝜁𝑘 and 𝜌𝑗 ,𝑘, in particular (4.22) and (4.23), we obtain

|𝐹𝑗 (𝑥)| ≤ ‖𝐹‖𝐿∞(𝛺;R𝑛)

(

1 +
𝑘0+1
∑

𝑘=𝑘0

|(𝜁𝑘 ∗ 𝜌𝑗 ,𝑘)(𝑥) − 𝜁𝑘(𝑥)|

)

≤ 𝐿(1 + 1∕𝑗) , □
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