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DirectionalQueries: Making Top-kQueries More Effective in
Discovering Relevant Results

ABSTRACT
Top-𝑘 queries, in particular those based on a linear scoring function,

are a common way to extract relevant results from large datasets.

Their major advantage over alternative approaches, such as skyline

queries (which return all the undominated objects in a dataset), is

that the cardinality of the output can be easily controlled through

the 𝑘 parameter and user preferences can be accommodated by

appropriately weighing the involved attributes.

In this paper we concentrate on two so-far neglected aspects

of top-𝑘 queries: first, their general ability to return all the poten-
tially interesting results, i.e., the tuples in the skyline; second, the

difficulty that linear top-𝑘 queries might encounter in returning

tuples with balanced attribute values that match user preferences

more closely than tuples that are extremely good in one dimension

but (very) poor in others. In order to quantify these undesirable

effects we introduce four novel indicators for skyline tuples, which

measure their robustness as well as the difficulty incurred by top-𝑘

queries to retrieve them.

After observing that real datasets usually contain many relevant

results that are hardly retrievable by linear top-𝑘 queries, and with

the aim of favoring balanced results, we extend the queries with a

term that accounts for the distance of a tuple from the preference

direction established by the attributes’ weights. This novel query,

which we call directional query, adds the flexibility needed to allow

each skyline tuple to be ranked first for a proper choice of weights,

with no extra burden on the user and, in the most adverse scenarios,

only a minor computational overhead, as measured through an

extensive experimental analysis on real and synthetic data.

CCS CONCEPTS
• Information systems� Data management systems; Top-k
retrieval in databases.
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Figure 1: A hotel dataset and ranks of some hotels.

1 INTRODUCTION
Ranking queries based on linear scoring functions (i.e., using a

weighted sum of the attribute values) are undoubtedly the most

common way to obtain relevant results from large, multi-attribute

datasets. This stems from a series of factors, including the ability to

limit the cardinality of the result (hence the alternate name “top-𝑘

queries”, where 𝑘 is the output size), the possibility of incorporating

user preferences (in the form of weights), and the availability of effi-

cient indexing and processing methods [20]. In spite of this, linear

top-𝑘 queries have several shortcomings, including the difficulty in

specifying exact values for the weights, which is an especially hard

task with many attributes [11, 25, 28].

In this paper, we focus on further limitations of linear top-𝑘

queries that have so far been neglected. First, the best result ac-

cording to any linear top-𝑘 query is restricted to be an element of

the convex hull of the dataset [6]. This can lead to missing relevant

results, even when large values of 𝑘 are used. Second, depending on

data distribution, tuples with somehow balanced attribute values

might be hard to retrieve. Example 1.1 illustrates both aspects.

Example 1.1. Ana is looking for a room and wants to minimize

both the price and the distance from the city center. The hotels still

available for reservation, shown in Figure 1a, mainly concentrate

in two clusters: luxury hotels located at most a few hundred meters

from the center, and budget hotels, further away from the center.

Hotels 𝐴, 𝐵, and 𝐶 are more balanced alternatives lying between

these two extreme cases, with intermediate prices and not too far

from the center – a combination that might indeed be an interesting

trade-off for Ana. Assume that hotels are ranked by a linear function

combining (normalized) price and distance, i.e.,𝑤𝑑 ·𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒/3000+
𝑤𝑝 · 𝑝𝑟𝑖𝑐𝑒/330. No matter how Ana specifies the weights, the best

result will be a hotel in one of the two clusters. Furthermore, for any
choice of the weights, the top-5 set will never include any of 𝐴, 𝐵,

or 𝐶 , whose ranks are shown in Figure 1b for several combinations

of𝑤𝑑 and𝑤𝑝 (the lower the rank, the better).

As the example highlights, a dataset might well contain interest-

ing results that are hardly retrievable by any linear top-𝑘 query, thus
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limiting the possibility of users to access relevant alternatives and

reducing the effectiveness of preferences. The same problem also

occurs with more sophisticated approaches, like regret queries [28]
and the ORD and ORU operators in [25], since all of them stay

within the realm of linear functions. Although one may be tempted

to circumvent the problem by using non-linear (e.g., quadratic or

cubic) scoring functions, the analysis we provide in Section 3.2

shows that, in practice, there are objects that can become top-1

only with functions of very high polynomial degree, which makes

this approach hardly applicable. Furthermore, the higher the non-

linearity of the function, the less user preferences are effective in

influencing the ranking, as discussed in Section 4.

Relevant points like 𝐴, 𝐵, or 𝐶 in Example 1.1 could be obtained

by computing the skyline of the dataset [3] – a point 𝑡 belongs to the
skyline iff 𝑡 is undominated (𝑠 dominates 𝑡 if it is no worse than 𝑡 on

all attributes and strictly better for at least one). However, skyline

queries have major shortcomings, as they cannot accommodate

user preferences and are unable to limit the cardinality of the result.

To provide a user-independent and objective way to determine

whether a point is relevant, we identify the relevant points with

those in the skyline. The rationale for this choice is that all other

points are dominated, thus less interesting. Clearly, the relevance

of different skyline points might change depending on the specified

user preferences. In Section 3, we introduce a set of 4 indicators,
aiming to quantify both the difficulty of retrieving skyline points

with top-𝑘 queries and their interestingness. The findings we obtain
from both real and synthetic datasets lead us to conclude that the

existence of hard-to-retrieve yet interesting results is the rule rather

than the exception.

To overcome the limits of linear top-𝑘 queries, while avoiding

additional complexity on the user side, in Section 4 we introduce an

original type of scoring functions, which give rise to what we call

directional queries. The rationale for these queries is that, besides
considering a weighted mean of the attribute values, as linear rank-

ing queries do, they also include a term accounting for how much a

point is balanced with respect to the stated user preferences. In the

basic case in which all weights are equal, this would favor points

close to the main diagonal of the data space, whereas in the general

case the distance with respect to a preference line (easily derived

from the weights) can be used. By referring to Example 1.1, one

could indeed argue that 𝐵 is the best compromise if one aims to bal-

ance the price and distance criteria, yet 𝐵 is one of the worst hotels

if one runs a linear ranking query with equal weights! Directional

queries can easily solve problems like this and, generally, achieve a

higher result quality than linear top-𝑘 queries, without incurring

extra computational overhead.

Summarizing, our contributions are: i) we characterize the limits

of linear top-𝑘 queries in retrieving relevant results by introduc-

ing a set of novel indicators, and we experimentally show that

interesting results that are hard to retrieve are very common; ii) to
overcome the above limits, we introduce the novel notion of direc-

tional query, which combines the classical mean-based component

of linear top-𝑘 queries with another one based on the distance from

the preference line, a novel concept exploiting the notion of bal-

anced results; iii)we show that, with directional queries (and unlike

linear queries), any skyline point can be the best result; iv) we pro-
vide an extensive experimental analysis that shows that directional

queries are more effective than linear top-𝑘 queries, as well as other

methods including non-linear scoring functions, in terms of quality

of results without requiring any significant overhead. Proofs are

omitted or only sketched in the interest of space.

2 BACKGROUND
Consider a relational schema 𝑅(𝐴1, . . . , 𝐴𝑑 ), with 𝑑 ≥ 1 numeric

attributes whose domains are, respectively, 𝐷1, . . . , 𝐷𝑑 . A tuple
𝑡 = ⟨𝑣1, . . . , 𝑣𝑑 ⟩ over 𝑅 is an element of D = 𝐷1 × . . . × 𝐷𝑛 ; each 𝑣𝑖
is denoted by 𝑡 [𝑖]. Without loss of generality, in the following we

assume D = [0, 1]𝑑 , unless otherwise specified. An instance over 𝑅
is a set of tuples over 𝑅; in the following, we refer to an instance 𝑟

over 𝑅 with |𝑟 | = 𝑁 tuples.

Definition 2.1 (Dominance and skyline). Let 𝑠, 𝑡 be tuples over 𝑅.
Then, 𝑡 dominates 𝑠 , written 𝑡 ≺ 𝑠 , if (i) ∀𝑖 . 1 ≤ 𝑖 ≤ 𝑑 → 𝑡 [𝑖] ≤ 𝑠 [𝑖],
and (ii) ∃ 𝑗 . 1 ≤ 𝑗 ≤ 𝑑 ∧ 𝑡 [ 𝑗] < 𝑠 [ 𝑗]. The skyline of 𝑟 , denoted by

Sky(𝑟 ), is defined as Sky(𝑟 ) = {𝑡 ∈ 𝑟 | �𝑠 ∈ 𝑟 . 𝑠 ≺ 𝑡}.

A scoring function 𝑓 is a function 𝑓 : D → R+
. For a tuple

𝑡 = ⟨𝑣1, . . . , 𝑣𝑑 ⟩ over 𝑅, the value 𝑓 (𝑣1, . . . , 𝑣𝑑 ) is called the score of 𝑡 ,
also written 𝑓 (𝑡). We conventionally consider lower attribute values

to be better than higher ones, as would be appropriate for attributes

representing “cost” and similar characteristics (but of course the

opposite convention would also be possible); consequently, lower

score values are also preferred over higher ones.

The rank rank(𝑡 ; 𝑟, 𝑓 ) of a tuple 𝑡 ∈ 𝑟 according to scoring func-

tion 𝑓 is 1 plus the number of tuples with a better score than 𝑓 (𝑡),
i.e., rank(𝑡 ; 𝑟, 𝑓 ) = 1 + |{𝑠 ∈ 𝑟 | 𝑓 (𝑠) < 𝑓 (𝑡)}|. We write Top𝑘 (𝑟 ; 𝑓 )
to indicate a set of top-𝑘 ranked tuples (𝑘 ≥ 1) in 𝑟 according to 𝑓 .1

We generally refer to a family L𝑝 of scoring functions with a

weight vector 𝑤 = ⟨𝑤1, . . . ,𝑤𝑑 ⟩ whose components are normalized,

i.e.,

∑𝑑
𝑖=1

𝑤𝑖 = 1 ∧ ∀𝑖 .𝑤𝑖 ∈ [0, 1]:

L𝑝 =

𝑓
������� 𝑓 (𝑡) =

(
𝑑∑︁
𝑖=1

𝑤𝑖𝑡 [𝑖]𝑝
) 1

𝑝
 , 𝑝 ≥ 1 (1)

The vast majority of cases considered in the literature refer to top-𝑘

queries using a scoring function in L1, simply called linear top-𝑘
queries in the following.

By interpreting the tuples of a relation 𝑟 as points in a 𝑑-

dimensional space, we can define the convex hull of 𝑟 as the in-

tersection of all convex sets containing 𝑟 . As is well known [6], a

prominent limitation of linear top-𝑘 queries is that they can never

rank as first any skyline tuple not in the convex hull of 𝑟 . Following

this geometric view, using a scoring function in L1 corresponds to

moving from the origin and sweeping the data space with a hyper-

plane orthogonal to the weight vector [33];
2
the order in which the

points are intercepted determines the ranking of the corresponding

tuples. Similar considerations apply to L𝑝 , in which case we have

“curved” fronts (one such example will be shown in Section 3 in

Figure 2b for L2).

1
The set is unique when no ties occur.

2
Clearly, hyperplanes are planes in 3D and lines in 2D.
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3 INDICATORS
Several previous research attempts, including [5, 8, 22–24, 28, 29,

31, 34–38], have tried to assess the “strength” of skyline tuples so

as to be able to rank such tuples and thereby control the cardinality

of the skyline – indeed, unlike top-𝑘 queries, skyline queries suf-

fer from the inability to impose an output size. Inspired by these

efforts, in this section, we discuss four indicators (three are novel

contributions of this work and one generalizes a previous proposal)

that we use for measuring properties of skyline tuples.

The first two indicators we introduce, namely best rank (Sec-

tion 3.1) and concavity degree (Section 3.2) aim to quantify the

“difficulty” of retrieving a skyline tuple 𝑡 . We also consider two

other indicators for measuring the “robustness” of a skyline tuple

𝑡 , namely the exclusive volume (Section 3.3) and the grid resistance
(Section 3.4).

We shall use our indicators to address an important research

question: are there natural occurrences of skyline tuples that are

highly interesting (i.e., they distinguish themselves neatly from

other skyline tuples and are thus particularly robust according to

our indicators) but difficult to obtain with a linear top-𝑘 query? We

address this question (and answer it in the affirmative) in Section 3.6,

where we also discuss our experiments on indicators, an excerpt of

which is shown in Table 2 in that section as aggregate values over

various datasets.

Besides the purposes for which the indicators are used in the

present work, they are interesting in their own right, and might

equally well be adopted in all contexts in which skyline tuples

need to be compared (including skyline cardinality control). To this

end, we extend to our indicators two properties that have been

studied [28] for assessing variants of top-𝑘 and skyline queries. An

indicator is scale-invariant if it ranks skyline tuples in the same

way even if we multiply all values in some attribute by a constant.

An indicator is stable if it does not depend on dominated tuples

(i.e., adding or removing “uninteresting” tuples does not change the

ranking of skyline tuples). Table 1 offers an overview of the extent

and properties of our indicators.

3.1 Best rank
The first indicator we introduce considers how well a skyline tuple

can perform when a set of possible scoring functions F is in use;

these functions represent the possible criteria to be used for ranking

tuples. The best rank of 𝑡 is the minimum of rank(𝑡 ; 𝑟, 𝑓 ) when all

functions in F are considered:

brank(𝑡 ; 𝑟, F ) = min

𝑓 ∈F
rank(𝑡 ; 𝑟, 𝑓 ) (2)

For example, brank(𝑡 ; 𝑟,L1) returns the best rank that 𝑡 can have
with any linear top-𝑘 query, independently of the weights. Larger

Indicator Symbol Measures Stable Scale-inv.

Best rank brank Difficulty No Yes

Concavity degree cdeg Difficulty Yes Yes

Exclusive volume evol Robustness Yes Yes

Grid resistance gres Robustness Yes Yes

Table 1: Overview of the indicators

values thus indicate a higher difficulty in retrieving 𝑡 . For ease of

notation, we shall write brank𝑝 (𝑡 ; 𝑟 ) to indicate brank(𝑡 ; 𝑟,L𝑝 ).3

Example 3.1. Figure 2a shows a dataset 𝑟 whose skyline consists
of 𝑡1, 𝑡2, and 𝑡3. We have brank1 (𝑡1; 𝑟 ) = 1 (as can be seen, e.g., by

increasing the values obtained via a linear scoring function of the

form 𝑓 (𝑡) = 2

3
𝑡 [1] + 1

3
𝑡 [2], i.e., scanning the dataset from the origin

with lines perpendicular to the weight vector ⟨ 2

3
, 1

3
⟩, as the blue

line, which meets 𝑡1 first). Similarly, brank1 (𝑡3; 𝑟 ) = 1 (following

the purple line). Yet, 𝑡2 never ranks first with any linear top-𝑘 query:

its best rank is brank1 (𝑡2; 𝑟 ) = 3 (following, e.g., the blue arrow, one

meets 𝑡2 after 𝑡1 and 𝑡7). Changing the direction does not improve

𝑡2’s rank: 𝑡2 is met, e.g., after 𝑡1 and 𝑡3 if one follows the green arrow

or after 𝑡3 and 𝑡4 when moving along the purple arrow.

As is apparent in the previous example, the best rank of a skyline

tuple may be affected by the presence of non-skyline tuples (for

instance, without 𝑡7, the best rank of 𝑡2 would be 2 instead of 3), so

brank is not stable. However, brank is scale-invariant in L𝑝 , since
any multiplicative factor applied to a dimension can be countered

by dividing by the same factor the weight for that dimension in the

scoring function (and then re-normalizing the weights).

Proposition 3.2. brank𝑝 is scale-invariant for every 𝑝 ∈ N.

We observe that with linear functions the set of possible top-1

results is the intersection of Sky(𝑟 ) and the vertices of the convex

hull of 𝑟 . Consequently, we say that a skyline tuple 𝑡 ∈ Sky(𝑟 ) is
convex if brank1 (𝑡 ; 𝑟 ) = 1, concave otherwise.

3.2 Concavity degree
The second indicator we introduce to characterize the difficulty

encountered to retrieve a skyline tuple is called cdeg (for concav-
ity degree). Unlike brank, cdeg has the advantage of being stable,

thus insensitive to the presence of dominated tuples. The intuition

about cdeg is that it provides a way to measure the amount of

non-linearity needed so that also a concave skyline tuple can be-

come top-1 for some scoring function (as observed, concave skyline

tuples are never the top-1 result for any linear top-𝑘 query).

Example 3.3. Figure 2b shows that 𝑡2 is concave and any linear

top-𝑘 query would rank as first either 𝑡1 or 𝑡3 (which are convex).

As a major result, useful for defining cdeg, we can prove that

every skyline tuple is the top-1 result for some function in L𝑝 , for
a sufficiently large 𝑝 .

Theorem 3.4. If 𝑡 ∈ Sky(𝑟 ) then ∃𝑝∗ s. t., for 𝑝 ≥ 𝑝∗,
brank𝑝 (𝑡 ; 𝑟 ) = 1.

Proof sketch. To provide an intuition on this result, we con-

sider the notion of convex L𝑝 -combination [11], which generalizes

the standard notion of convex combination:

Definition 3.5. For a family L𝑝 , a (virtual) tuple 𝑣 is a convex L𝑝 -
combination of 𝑡1, . . . , 𝑡𝑛 , 𝑛 > 1, if ∃𝛼1, . . . , 𝛼𝑛 such that 𝛼 𝑗 ∈ [0, 1]
for 𝑗 in 1..𝑛,

∑𝑛
𝑗=1

𝛼 𝑗 = 1, and 𝑣 [𝑖]𝑝 =
∑𝑛
𝑗=1

𝛼 𝑗 𝑡 𝑗 [𝑖]𝑝 , for 𝑖 in 1..𝑑 .

3
Note that brank1 coincides with the MaxRank operator of [27]. However, we prefer

to qualify it as “best rank”, since one is indeed looking for the minimum (i.e., best)

possible rank of a tuple.
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Figure 2: Illustration of the indicators.

Theorem 4.7 in [11] proves that a skyline tuple 𝑡 is top-1 for

some function in L𝑝 iff no convex L𝑝 -combination dominates 𝑡 .

Since the 𝛼 𝑗 ’s sum up to 1, there exists 𝛼 𝑗∗ ≥ 1/𝑛. We observe

that, since 𝑡 is a skyline tuple, the relationship 1

𝑛 𝑡 𝑗∗ [𝑖 𝑗∗ ]
𝑝 > 𝑡 [𝑖 𝑗∗ ]𝑝

must hold for some 𝑝 and some attribute 𝑖 𝑗∗ ; this, in turn, implies

𝛼 𝑗∗𝑡 𝑗∗ [𝑖 𝑗∗ ]𝑝 > 𝑡 [𝑖 𝑗∗ ]𝑝 , hence non-dominance. □

We call the smallest integer 𝑝 such that brank𝑝 (𝑡 ; 𝑟 ) = 1 the

concavity degree of 𝑡 and denote it as cdeg(𝑡 ; 𝑟 ):

cdeg(𝑡 ; 𝑟 ) = min

𝑝∈N
{𝑝 | brank𝑝 (𝑡 ; 𝑟 ) = 1} (3)

As a consequence of Theorem 3.4, we have that for 𝑝 =

max𝑡 ∈Sky(𝑟 ) {cdeg(𝑡 ; 𝑟 )}, all skyline tuples become possible top-

1 results.

Example 3.6. Continuing Example 3.3, Figure 2b shows that no

straight front (like the green line, corresponding to the locus of

points with the same score as 𝑡1 and 𝑡3 according to a scoring

function 𝑓1 (𝑡) = 0.5𝑡 [1] + 0.5𝑡 [2] in L1) can meet 𝑡2 before 𝑡1 and

𝑡3. However, this is possible with a curved front, such as the red arc,

which corresponds to the points with the same score as 𝑡2 according

to a scoring function 𝑓2 (𝑡) =
√︁

0.5𝑡 [1]2 + 0.5𝑡 [2]2
in L2. Therefore,

cdeg(𝑡2; 𝑟 ) = 2, whereas cdeg(𝑡1; 𝑟 ) = cdeg(𝑡3; 𝑟 ) = 1.

As anticipates, unlike brank, the concavity degree of a tuple 𝑡 is

insensitive to dominated tuples. Moreover, cdeg is scale-invariant,

since convex combinations can even out any scaling factor.

Proposition 3.7. cdeg is both stable and scale-invariant.

3.3 Exclusive volume
When assessing the interestingness of a skyline tuple 𝑡 one may

want to assess its very ability to dominate other, non-skyline tuples.

A first, rough attempt might consist in counting the number of

tuples dominated by 𝑡 (indeed, this has been done in the relevant

literature [29]). Yet, such a counting is, by definition, dependent

on the presence of dominated tuples (i.e., uninteresting or less

interesting solutions). A more targeted approach would consist

in considering the number of dominated tuples that only 𝑡 (and

no other skyline tuple) dominates, but dependence on dominated

tuples would of course still be an issue. What we propose in this

section is an indicator that captures the potential of a skyline tuple

to dominate other tuples with respect to the rest of the skyline. To

this end, let DR(𝑡) = {𝑠 ∈ D | 𝑡 ≺ 𝑠} denote the dominance region
of tuple 𝑡 , i.e., the set of all points in the domain D dominated

by 𝑡 . Analogously, for a set of tuples 𝑆 , we extend this notion as

DR(𝑆) = ⋃
𝑡 ∈𝑆 DR(𝑡). Our proposal is then to consider the exclusive

dominance region XR(𝑡 ; 𝑟 ) of a skyline tuple 𝑡 , i.e., that part of the
dominance region of the overall skyline that would not be there

without 𝑡 :

XR(𝑡 ; 𝑟 ) = DR(Sky(𝑟 )) \ DR(Sky(𝑟 ) \ {𝑡}) (4)

With this, we define our indicator, called exclusive volume, as the
measure evol(𝑡 ; 𝑟 ) of the exclusive dominance region:

evol(𝑡 ; 𝑟 ) = Vol(XR(𝑡 ; 𝑟 )), (5)

where Vol(·) indicates the (hyper-)volume of a region. Intuitively,

a high value of evol(𝑡 ; 𝑟 ) indicates that 𝑡 is the only one to “cover”

a large part of the domain, and thus neatly distinguishes itself from

other skyline tuples.

Example 3.8. Figure 2c shows the dominance regions of the three

skyline tuples. The gray regions are dominated by either 𝑡1 or 𝑡3,

the hatched region is dominated by both and by 𝑡2, the white part is

non-dominated, while the pink region is XR(𝑡2; 𝑟 ), dominated only

by 𝑡2. Its area is the exclusive volume of 𝑡2 (here, evol(𝑡2; 𝑟 ) = 0.042,

computed as (𝑡3 [1] − 𝑡2 [1]) · (𝑡1 [2] − 𝑡2 [2])).
We observe that the exclusive volume of a tuple 𝑡 is insensitive

to dominated tuples, as immediately follows from Equations (4)

and (5). As the previous indicators, evol is also scale-invariant.

Proposition 3.9. evol is both stable and scale-invariant.

3.4 Grid resistance
While evol considers a volume measure in its entirety, the indicator

we introduce here accounts for the robustness of a skyline tuple on

the single attributes, i.e., whether it would remain in the skyline

after a slight perturbation of its attribute values. A practical way to

measure this is via value quantization. Quantizing tuple values (i.e.,
snapping tuples to a grid divided in cells of equal size) may indeed

affect dominance between tuples [16]. Typically, as the quantization

step size grows, more tuple values tend to collapse, causing some

skyline tuples that were non dominated by just a small margin

to become dominated. The more a skyline tuple resists to larger

quantization steps, the more it is robust.
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We consider grids obtained by dividing each dimension in the

same number (𝑔) of equal-size intervals; each such grid has 𝑔𝑑

cells and is henceforth referred to as a 𝑔-grid. The grid-projection
gproj(𝑡, 𝑔) of a tuple 𝑡 on a 𝑔-grid is defined as follows:

gproj(𝑡, 𝑔) =
〈
⌊𝑡 [1] · 𝑔⌋

𝑔
, . . . ,

⌊𝑡 [𝑑] · 𝑔⌋
𝑔

〉
, (6)

and corresponds to the lowest-value corner (in two dimensions: the

lower-left corner) of the cell that contains 𝑡 . We extend this notation

to a relation 𝑟 in the obvious way: gproj(𝑟, 𝑔) = {gproj(𝑡, 𝑔) | 𝑡 ∈ 𝑟 }.
When assimilating tuples with their grid-projections, some new

dominance relationships may occur.

Example 3.10. When using a 4-grid, as shown in Figure 2d, the

grid-projection of 𝑡2 (a skyline tuple, thus non-dominated) is domi-

nated by that of 𝑡1.

Intuitively, as the grid step increases (i.e., the lower the value of𝑔),

more distinct values tend to collapse to the only values available on

the grid, which may make some skyline tuples leave the skyline. We

define the grid resistance gres(𝑡 ; 𝑟 ) of a skyline tuple 𝑡 as the smallest

value of𝑔−1
for which 𝑡 is no longer in the skylinewhen considering

the grid-projections (notice that, indeed, 𝑔−1
corresponds, in the

case of [0, 1]-normalized domains, to the width of the intervals):

gres(𝑡 ; 𝑟 ) = min

𝑔∈N
{𝑔−1 | gproj(𝑡, 𝑔) ∉ Sky(gproj(𝑟, 𝑔))} (7)

Conventionally, we set gres(𝑡 ; 𝑟 ) = 1 if 𝑡 never exits the skyline.4

Example 3.11. As observed, tuple 𝑡2 in Figure 2d has gres(𝑡2; 𝑟 ) ≤
1/4. More precisely, here gres(𝑡2; 𝑟 ) = 1/6, since gproj(𝑡2, 6) =

⟨ 1

3
, 1

2
⟩ and gproj(𝑡1, 6) = ⟨0, 1

2
⟩ and for no 𝑔 > 6 do the grid projec-

tions of 𝑡2 and 𝑡1 have the same value on the 𝐴1 axis (nor will any

grid-projection of 𝑡3 ever dominate that of 𝑡2 for 𝑔 > 6).

We observe that the grid resistance of a tuple 𝑡 is insensitive to

dominated tuples and scale-invariant.

Proposition 3.12. gres is both stable and scale-invariant.

3.5 Computing the indicators
Algorithms for computing brank1 were given in [27], with a com-

plexity that is essentially exponential in the number of dimensions

𝑑 , but heavily affected by pruning and indexing. Computing brank𝑝 ,
with 𝑝 > 1, can be done in the same way on a transformed dataset

𝑟𝑝 obtained by mapping each tuple 𝑡 ∈ 𝑟 into a corresponding tuple
𝑡𝑝 such that 𝑡𝑝 [𝑖] = 𝑡 [𝑖]𝑝 , for 1 ≤ 𝑖 ≤ 𝑑 .

A simple algorithm for computing cdeg(𝑡 ; 𝑟 ) for a skyline tuple
𝑡 can proceed by first identifying an upper bound 𝑝∗ for which

Theorem 3.4 holds, and then starting a binary search for the min-

imum degree 𝑝 such that 𝑡 can be a top-1 result. To check this,

due to stability, non-skyline tuples can be omitted. We then trans-

form each tuple 𝑠 ∈ Sky(𝑟 ) into a corresponding tuple 𝑠𝑝 , as de-

scribed before, thus obtaining a transformed skyline Sky(𝑟 )𝑝 . With

this, checking whether 𝑡 is a possible top-1 result for a function in

L𝑝 amounts to checking its convexity in the transformed space,

i.e., whether 𝑡𝑝 belongs to the convex hull of Sky(𝑟 )𝑝 . An opti-

mal convex hull algorithm in any fixed number of dimensions

4
Indeed, the lowest value for 𝑔 is 1 and, in that case, all grid-projections collapse to

the origin and are thus non-dominated.

𝑑 has a complexity of 𝑂 (𝑛 log𝑛 + 𝑛𝑑/2), where 𝑛 is the dataset

size, see [7]. In our case, the complexity can then be expressed as

𝑂 (𝑆𝑑+log(𝑝∗) (𝑆 log𝑝∗+𝑆 log 𝑆+𝑆𝑑/2)), where 𝑆 = |Sky(𝑟 ) |,𝑂 (𝑆𝑑)
is the asymptotic complexity to find 𝑝∗ (whose value is dataset-

dependent and, a priori, unbounded), log𝑝∗ refers to the iterations

of binary search, and 𝑆 log𝑝∗ is the time required to transform the

space. If 𝑝∗ can be assimilated to a constant, the previous expression

simplifies to 𝑂 (𝑆𝑑 + 𝑆 log 𝑆 + 𝑆𝑑/2).
Computing evol when 𝑑 = 2 amounts to computing the area of a

rectangle. This can be done for all skyline tuples by simply sorting

them on 𝐴1 and then computing evol(𝑡𝑖 ; 𝑟 ) = (𝑡𝑖+1 [1] − 𝑡𝑖 [1]) ·
(𝑡𝑖−1 [2] − 𝑡𝑖 [2]), where 𝑡𝑖 is the 𝑖th tuple in the sorted dataset (we

conventionally set 𝑡0 [2] = 𝑡𝑁+1 [1] = 1). The overall complexity

for computing evol for all skyline tuples is thus 𝑂 (𝑆 log 𝑆), where
𝑆 = |Sky(𝑟 ) |. When 𝑑 > 2, the problem of computing evol (which
amounts to the volume of the union of hyper-rectangles) can be

cast as an instance of the hypervolume contribution problem, which

is #P-hard when solved exactly, and NP-hard to approximate [4, 17].

A more pragmatic approach consists in using estimates via Monte

Carlo sampling, with a convergence of 𝑂 (1/
√
𝐿), where 𝐿 is the

number of samples.

Finding gres requires recomputing dominance on grid-projected

datasets for various values of 𝑔 (grid intervals). Thanks to stability,

only tuples in Sky(𝑟 ) need to be considered. Let ℓ be the absolute

value of the smallest non-zero difference between any two tuples on

the same attribute, i.e., ℓ = min{|𝑡 [𝑖] − 𝑠 [𝑖] | | 𝑡, 𝑠 ∈ Sky(𝑟 ), 𝑡 [𝑖] ≠
𝑠 [𝑖], 1 ≤ 𝑖 ≤ 𝑑}. Then, no new dominance relationship may occur

when 𝑔−1 < ℓ . With this, we can set an upper bound 𝑔 = ⌊ℓ−1⌋ for
the number of grid intervals and, for each 𝑔 ∈ 𝑔..2, compute the

skyline and test membership. The complexity of computing gres
for a given tuple is therefore 𝑂 (𝑔𝑆2), where 𝑆 = |Sky(𝑟 ) | and 𝑔 is,
again, dataset-dependent and, a priori, unbounded.

3.6 Using the indicators in practice

convex

𝑁 𝑑 fraction brank1 cdeg evol · 10
4 gres

ANT2;5𝐾 5K 2 4/31 11.3, 41 12.3, >15 23, 462 0.03, 0.20

NBA 4832 2 2/14 9.1, 27 8.6, >15 51, 269 0.09, 0.50

ANT3;1𝑀 1M 3 42/1022 154.8, >1K >15, >15 0.2, 7 0.01, 0.14

ANT6;1𝑀 1M 6 195/99181 768.1, >1K >15, >15 0.004, 2 0.02, 0.50

SEN ∼2M 7 29/1496 352.2, >1K >15, >15 0.1, 23 0.03, 0.50

RES 3.5M 6 22/8789 840.8, >1K >15, >15 0.02, 54 0.01, 0.10

Table 2: Fraction of convex skyline tuples and indicator val-
ues (average and maximum) on datasets of various sizes (𝑁 )
and dimensions (𝑑)

We start by observing that brank and cdeg refer to two distinct

ways for tuning a top-𝑘 query so as to retrieve a given skyline tuple

𝑡 : brank(𝑡 ; 𝑟 ) indicates the minimum result cardinality (𝑘), while

cdeg(𝑡 ; 𝑟 ) gives the minimum degree of non-linearity required for

𝑡 to become top-1. Although the two measures are correlated (in

particular, both must equal 1 for convex tuples), neither is redun-

dant, and there are frequent occurrences of tuples with low brank
and high cdeg or vice versa. Similarly, both evol and gres convey
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Figure 3: Indicator values for the skyline tuples of the ANT2;5𝐾 dataset.
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Figure 4: Example datasets and their skyline (larger dots).

a rough intuition about the “strength” of a skyline tuple, and are

thus correlated, although, again, not redundant.

In order to root our discussion on practical cases, we have com-

puted the indicators on 20 real and synthetic datasets of various

sizes and distributions. In the interest of space, Table 2 shows just a

small excerpt of our experimental study, but the observations that

follow are common to all considered scenarios (datasets are fully

described in Section 5). In particular, the table reports aggregate

information about the indicators along with the incidence of convex

skyline tuples. We remark that there is always a significant number

of non-convex skyline tuples, with extremely high brank1 values,

i.e., impossible to find with a linear top-𝑘 query with a reasonable 𝑘

(e.g., the average value of brank1 in the RES dataset is > 800). Note

that this is common to all datasets in Table 2 with large cardinality

𝑁 and dimensionality 𝑑 (last 4 rows), in each of which more than

95% of skyline tuples are concave, with very high values of brank1

and cdeg, and many of them are robust.

We complement the numbers in Table 2 with an inspection of

the two smallest 2D datasets, i.e., the synthetic ANT2;5𝐾 and the real

NBA, both easy to visualize along with their skylines. Figure 3 shows
histograms for the value distributions of the four indicators when

applied to the 31 skyline tuples of ANT2;5𝐾 . There are indeed several

tuples that are “hard” to retrieve (for instance, brank1 > 10 and

cdeg > 5) but significantly robust. Figure 4a illustrates this on the

plot of the entire dataset, where the dominated tuples are shown

in gray, while the skyline tuples are shown as larger, non-gray

dots. There are only 4 convex tuples (shown in green) out of 31

skyline tuples. However, several other tuples in the skyline might

be interesting from a user’s perspective and yet not be retrievable

with any linear top-1 (or even top-10) query. For instance, the red

tuple 𝑡 in the figure has brank1 (𝑡) = 14 and cdeg(𝑡) = 3, so it is a

hard point for top-𝑘 queries; however, it has the sixth best evol and
the 8

th
best gres values in the entire skyline. Moreover, 𝑡 is a good

compromise between the two attributes, much more balanced than

the four available convex tuples.

For an example of a real dataset with a small skyline, Figure 4b

shows NBA,5 which, due to its particular distribution and the limited

number of distinct values on the two axes, has only 14 skyline tuples

(2 of which convex). Yet, it also contains several harder but more

balanced tuples. All tuples shown in red have brank1 > 10 and

cdeg ≥ 3, but non-negligible evol and gres values. In particular,

tuple 𝐴𝐽 has the fourth largest gres and evol values in the skyline.

4 DIRECTIONAL QUERIES
From the results in the previous section we know that many skyline

tuples are hard to retrieve with linear top-𝑘 queries (high values of

the brank1 indicator), yet they are potentially very interesting, as

measured with our evol and gres indicators. A possible way around

this shortcoming would be to use a different family of functions

than L1, thereby moving to non-linear queries. As was pointed

out in Theorem 3.4, a suitable value of 𝑝 always exists such that

any skyline tuple is also the top-1 result for some function in L𝑝 .
However, the cdeg values shown in Table 2, and the brank𝑝 values

(not shown in the table) that are obtained with low values of 𝑝

(e.g., brank2 and brank3 are both > 700, on average, in RES) show
that much higher values of 𝑝 would be required to easily retrieve

many concave skyline tuples. Besides adding an excessive cognitive

burden for the users, who would also have to come up with a

suitable value for 𝑝 , high values of 𝑝 can lead to two undesirable

side-effects. First, the higher 𝑝 is, the less preferences can influence

the result. This directly follows from the observation that, when 𝑝

tends to infinity, anyL𝑝 function 𝑓 (𝑡) tends to max{𝑡 [1], . . . , 𝑡 [𝑑]},
regardless of the weight vector. Second, ranking of tuples might be

in contrast with weights’ values, as the following example shows.

Example 4.1. Consider a dataset with 3 tuples 𝑡1 = ⟨0.6, 0.2⟩, 𝑡2 =

⟨0.2, 0.8⟩, 𝑡3 = ⟨0.5, 0.75⟩, and the weight vector 𝑤 = ⟨0.85, 0.15⟩.
With a linear function, 𝑡2 would be a clear winner, because of the

high value of the weight on the first attribute and of the best value

5
Normalized stats for “3 point field goals made” (3PM) and “offensive rebounds” (OREB).
Players in the skyline: S. Curry, R. Allen, V. Carter, L. James, J. Kidd, C. Anthony, K.

Love, A. Jamison, C. Drexler, S. Marion, D. Wilkins, C. Barkley, D. Rodman, M. Malone.
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Figure 5: Shape of the directional query in 2D and 3D for several combinations of 𝛽 ; ⟨𝑤1, . . . ,𝑤𝑑 ⟩.

that 𝑡2 has on it. However, for all 𝑝 ≥ 7, 𝑡2 would be the worst tuple,
which is quite counter-intuitive.

We have already observed that linear top-𝑘 queries may fail to

discover tuples that are well balanced across the various dimensions

when the dataset contains tuples that are extremely good in one

attribute but poor in the others. In order to give the user the oppor-

tunity to retrieve also these hard-to-find results, at the same time

avoiding the above-discussed negative effects of non-linear scoring

functions of high polynomial degree, we propose to enrich (linear)

scoring functions with a term explicitly favoring balanced results.

The key observation is that, when a user specifies the weights,

they already include an indication of the relative importance of

the attributes, and, thus, what parts of the data space may contain

the tuples corresponding to the best compromise of the different

attributes. Thus, with no need of introducing new parameters, the

weight vector itself may be used to determine a direction, that we

call preference line, in the data space: the closer to the preference

line, the better a tuple matches the original user’s intentions.

Example 4.2. Going back to the NBA dataset, shown in Figure 4a,

a user indicating equal importance for the two attributes (i.e., a

weight vector 𝑤 = ⟨0.5, 0.5⟩) would obtain, with a linear top-𝑘

query, very unbalanced results first. In particular, S. Curry (best

3PM but almost worst OREB) ranks first, and M. Malone (opposite

situation) ranks third; although overall excellent, these players may

not express the most balanced combination of 3PM and OREB, as
suggested by𝑤 . Possibly better compromises would be expressed,

e.g., by the more balanced (and much closer to the preference line)

K. Love and A. Jamison, who however are ranked 13
th
and, resp.,

23
rd

by the same linear top-𝑘 query.

When all weights are equal, it is natural to assume that the pref-

erence line coincides with the main diagonal of the data space, i.e.,

the locus of points where all attribute values are equal. A consistent

generalization to the case of unequal weights is to consider the

requirement of weighted balance, which can be expressed by stating

that weighted attribute values should now be equal, i.e., for any

point 𝑡 on the preference line, we should have𝑤𝑖𝑡 [𝑖] = 𝑤 𝑗 𝑡 [ 𝑗] for
all 𝑖, 𝑗 . This immediately leads to defining the preference line PL(𝑤)
corresponding to the weight vector𝑤 = ⟨𝑤1, . . . ,𝑤𝑑 ⟩ as the set:

PL(𝑤) = {⟨𝑤̄1𝑥, . . . , 𝑤̄𝑑𝑥⟩ | 𝑥 ≥ 0},

where 𝑤̄𝑖 = 1/𝑤𝑖 for 1 ≤ 𝑖 ≤ 𝑑 .
In order to determine how much a tuple 𝑡 is balanced, we

compute its (Euclidean) distance, Dist(𝑡, PL(𝑤)), from PL(𝑤),
which requires standard geometric techniques. First observe that

the value 𝑥0 of parameter 𝑥 such that the distance of 𝑡 from

⟨𝑤̄1𝑥, . . . , 𝑤̄𝑑𝑥⟩ is minimum is 𝑥0 =

∑𝑑
𝑗=1

𝑤̄𝑗 𝑡 [ 𝑗 ]∑𝑑
𝑗=1

𝑤̄2

𝑗

, as can be

obtained by deriving with respect to 𝑥 the distance between

𝑡 and ⟨𝑤̄1𝑥, . . . , 𝑤̄𝑑𝑥⟩ and setting it to zero. Then we have:

Dist(𝑡, PL(𝑤)) =

√︄∑𝑑
𝑖=1

(
𝑡 [𝑖] − 𝑤̄𝑖

∑𝑑
𝑗=1

𝑤̄𝑗 𝑡 [ 𝑗 ]∑𝑑
𝑗=1

𝑤̄2

𝑗

)
2

.

Clearly, being close to the preference line is not sufficient to

characterize a good tuple. Indeed, a tuple such as ⟨1, 1⟩ lies on the

preference line PL(⟨0.5, 0.5⟩), but can hardly be preferred to any

other tuple at all! Being as close as possible to the origin (the target

point) continues to matter.

With all this in mind, we are now ready to define a new kind

of query that overcomes all the aforementioned limitations. In

particular, i) we do not overburden the users with new specification

requirements, ii) we allow them to obtain any skyline tuple (not

just the convex ones) as a top-1 result, and iii) we preferentially
select those tuples that are close to the origin and whose balance

across different attributes best corresponds to the preference line

determined by the weight vector.

Our proposal, called directional query, is a top-𝑘 query whose

scoring function combines two components: a weighted mean and

a distance. The mean component is a weighted sum of the attribute

values through a weight vector 𝑤 , i.e., a function in L1 using 𝑤 .

The distance component is the distance from the preference line

determined by 𝑤 . For both, then, we just need exactly the same

specification as a linear top-𝑘 query: a weight vector𝑤 . The family

Dir of scoring functions of directional queries is then defined as:

Dir =

{
𝑓 | 𝑓 (𝑡) = 𝛽

𝑑∑︁
𝑖=1

𝑤𝑖𝑡 [𝑖] + (1 − 𝛽) Dist(𝑡, PL(𝑤))
}
, (8)

where 𝛽 ∈ [0, 1] is a parameter that expresses how to combine the

two components. While the weight vector determines the prefer-

ence line, changing 𝛽 causes the query to range between the two

extreme cases of a purely linear and a purely distance-based top-𝑘

query.
6
In more geometric terms, directional queries have query

fronts shaped like an “arrowhead”, whose width is determined by 𝛽

(the larger the value of 𝛽 , the wider the shape). Intuitively, lowering

𝛽 would increase the chance of tuples close to the preference line,

thus with more balanced attribute values, to be ranked better.

Figure 5 shows the iso-score curves for several combinations of

𝛽 and𝑤 , where darker colors indicate better (lower) scores. When

𝛽 = 0 only the distance from the preference line matters (Figure 5a),

whereas only the (weighted) mean matters when 𝛽 = 1 (Figure 5e).

The weight vector determines the slope of the preference line, as

6
Thus, directional queries are a generalization of standard linear top-𝑘 queries, since,

when 𝛽 = 1, we have a function in L1 .
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can be seen in Figure 5f for𝑤1 = 0.7. When 𝑑 ≥ 3 the shape of the

query front of the directional query is that of a cone (see Figures 5g

and 5h for examples in 3D with just one score value).

The 𝛽 parameter is not intended to be user-specified; in Sec-

tion 5.1 we will analyze its effect on the queries and how to conve-

niently set it.

Example 4.3. In the dataset shown in Figure 2, if the user chooses
a scoring function 𝑓 ∈ Dir with a balanced weight vector such as

𝑤 = ⟨0.5, 0.5⟩, a more balanced tuple like 𝑡2 may be preferred to

𝑡1 or 𝑡3 (which are farther from PL(𝑤)). This happens, e.g., with
𝛽 = 0.5, since 𝑓 (𝑡2) = 0.27 < 𝑓 (𝑡1) = 𝑓 (𝑡3) = 0.38.

The following result states that for any skyline tuple there is a

directional query that ranks it as top-1 with no tie.

Theorem 4.4. Let 𝑡 ∈ Sky(𝑟 ). Then ∃𝑓 ∈ Dir such that
rank(𝑡, 𝑟 ; 𝑓 ) = 1 and, ∀𝑠 ∈ 𝑟 , 𝑠 ≠ 𝑡 → rank(𝑠, 𝑟 ; 𝑓 ) > 1.

For readabilty, we shall henceforth use Dir to refer to directional

queries and Lin for linear queries.

4.1 Algorithms
The sequential evaluation of a Dir query adopts a standard, heap-

based, implementation, which guarantees a worst-case complexity

of 𝑂 (𝑁 log𝑘) for a dataset with 𝑁 tuples.

Besides sequential processing, we also consider the case in which

the dataset is indexed through an R-tree [18]. We adopt the branch-

and-bound algorithmic pattern described in [2] and [32], which

guarantees that top-𝑘 queries can be processed so as to minimize

the number of visited nodes (I/O optimality), provided that for each
node of the tree one is able to determine a tight bound on the best

(i.e., lowest, in our scenario) score obtainable from a tuple reachable

from that node. For a Lin query with weight vector𝑤 and a node

with opposite vertices ⟨𝑙1, . . . , 𝑙𝑑 ⟩ and ⟨ℎ1, . . . , ℎ𝑑 ⟩, with ∀𝑖 . 𝑙𝑖 < ℎ𝑖 ,
this lower bound clearly equals

∑𝑑
𝑖=1

𝑤𝑖𝑙𝑖 . For a Dir query, this

bound is only loose, since it does not consider the component of

the distance from the preference line. Nonetheless, a tight lower

bound can be determined by minimizing (8), which we do through a

non-linear programming solver [21]. In Section 5.2 we will contrast

the performance of Dir queries when the search adopts either a

loose or a tight bounding strategy, with the former cheaper to

compute but expected to require more node accesses.

Algorithm 1 provides a simplified description of the branch-and-

bound logic, which is the same for Lin and Dir queries. Nodes of

the tree are visited in increasing order of the best possible score,

𝑏𝑒𝑠𝑡 , that can be obtained from a tuple reachable from the node,

as computed by the Bound function (line (9)). Note that this and

the computation of a tuple score 𝑓 (𝑡) (line (7)) are the only parts in

which Lin and Dir queries differ. Entries corresponding to nodes

to be explored are maintained in a priority queue 𝑃𝑄 , ordered by

increasing 𝑏𝑒𝑠𝑡 values. If the first entry of 𝑃𝑄 is a leaf node, the

scores of its tuples are computed and the result set 𝑅𝐸𝑆 (organized

as a max-heap) possibly updated. For an intermediate node, the

entry of a child node is added to the queue only if it can improve

the result. The algorithm stops when the best entry popped from

𝑃𝑄 is no better than the 𝑘-th (i.e., worst) score value in 𝑅𝐸𝑆 . For

simplicity of pseudocode, we assume that 𝑅𝐸𝑆 [𝑘] .𝑠𝑐𝑜𝑟𝑒 = +∞ if

𝑅𝐸𝑆 has less than 𝑘 elements.

Algorithm 1: R-tree processing of linear and directional

top-𝑘 queries.

Input: scoring function 𝑓 , root node 𝑅 of R-tree.
Output: heap 𝑅𝐸𝑆 with the top-𝑘 tuples according to 𝑓 .

(1) 𝑃𝑄 := ∅ // queue storing nodes and their 𝑏𝑒𝑠𝑡 scores
(2) 𝑅𝐸𝑆 := ∅ // empty heap of max size 𝑘
(3) 𝑛𝑜𝑑𝑒 := 𝑅;𝑏𝑒𝑠𝑡 := 0

(4) while 𝑅𝐸𝑆 [𝑘] .𝑠𝑐𝑜𝑟𝑒 > 𝑏𝑒𝑠𝑡 do
(5) if isLeaf(𝑛𝑜𝑑𝑒) then
(6) for each 𝑡 in 𝑛𝑜𝑑𝑒
(7) if 𝑓 (𝑡) < 𝑅𝐸𝑆 [𝑘] .𝑠𝑐𝑜𝑟𝑒 then 𝑅𝐸𝑆.Insert(⟨𝑡, 𝑓 (𝑡)⟩)
(8) else for each child node 𝐶 of 𝑛𝑜𝑑𝑒

(9) 𝑏𝑒𝑠𝑡 := Bound(𝐶; 𝑓 )
(10) if 𝑏𝑒𝑠𝑡 < 𝑅𝐸𝑆 [𝑘] .𝑠𝑐𝑜𝑟𝑒 then 𝑃𝑄.Push(⟨𝐶,𝑏𝑒𝑠𝑡⟩)
(11) ⟨𝑛𝑜𝑑𝑒, 𝑏𝑒𝑠𝑡⟩ := 𝑃𝑄.Pop // retrieves node and loads it
(12) return 𝑅𝐸𝑆

5 EXPERIMENTS
In this section we aim to assess the effectiveness and efficiency of

Dir queries and compare them to Lin as well as other kinds of

top-𝑘 queries. We consider a number of different scenarios, and

study the effect of i) data distribution, ii) dataset size, iii) number

of dimensions, and iv) output size. For our study on effectiveness,

we also consider different values for 𝛽 in directional queries. The

relevant parameters are shown in Table 3, with defaults in bold.

Table 3: Operating parameters (defaults in bold).

Full name Tested value

Distribution synthetic: ANT; real: NBA, HOU, EMP, RES, SEN
Synthetic dataset size (𝑁 ) 5K, 10K, 50K, 100K, 500K, 1M, 5M, 10M

# of dimensions (𝑑) 2, 3, 4, 5, 6
Output size (𝑘) 1, 5, 10, 50, 100
Mean-distance trade-off (𝛽) 1/3, 1/2, 2/3, 1

Datasets.We use both real and synthetic datasets. The real datasets

we use, often adopted in the context of skylines, include after clean-

ing, normalization and attribute selection: NBA – all-time stats for

4832 NBA players from nba.com as of Oct. 2023; HOU – 127,931 6D

tuples regarding household data scraped from www.ipums.org; EMP
– 291,825 6D tuples about City employees in San Francisco [30]; RES
– real estate data from zillow.com, with 3,569,678 6D tuples; SEN –
sensor data with 7 numeric attributes and 2,049,280 tuples [19].

For synthetic datasets, we refer to the generator in [3] to produce,

for any value of 𝑑 and 𝑁 mentioned in Table 3, a 𝑑-dimensional

dataset (ANT) of size 𝑁 with values in the [0, 1] interval, anti-

correlated across different dimensions. In our experiments, we have

considered several other synthetic distributions (uniform, corre-

lated, multi-variate, exponential, normal) as well as real datasets.

However, we only focus on the main findings and refrain from

showing the entirety of our results due to space constraints.

When ambiguity may arise, we indicate the number of dimen-

sions and size as subscripts (e.g., ANT2;5𝐾 ).

5.1 Experiments on effectiveness
Here, we aim to assess the effectiveness of Dir queries in retrieving

relevant results. To this end, due to space constraints, we focus on

nba.com
www.ipums.org
zillow.com
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linear (𝛽 = 1) directional (𝛽 = 2/3) directional (𝛽 = 1/2) directional (𝛽 = 1/3)

# Name 3PM OREB Dist Name 3PM OREB Dist Name 3PM OREB Dist Name 3PM OREB Dist

1 *S. Curry 0.00 0.91 0.64 *A. Jamison 0.66 0.62 0.03 *A. Jamison 0.66 0.62 0.03 *A. Jamison 0.66 0.62 0.03

2 *R. Allen 0.12 0.82 0.49 *K. Love 0.54 0.68 0.10 *K. Love 0.54 0.68 0.10 S. Pippen 0.71 0.69 0.01

3 *M. Malone 1.00 0.00 0.71 *C. Anthony 0.49 0.71 0.15 S. Pippen 0.71 0.69 0.01 D. Marshall 0.73 0.72 0.01

4 J. Harden 0.19 0.88 0.49 *J. Kidd 0.41 0.74 0.23 D. Marshall 0.73 0.72 0.01 R. Horry 0.77 0.76 0.01

5 *V. Carter 0.33 0.75 0.30 *L. James 0.33 0.75 0.30 C. Robinson 0.63 0.72 0.07 K. Towns 0.75 0.78 0.02

6 *L. James 0.33 0.75 0.30 *V. Carter 0.33 0.75 0.30 A. Walker 0.59 0.72 0.09 C. Robinson 0.63 0.72 0.07

7 R. Miller 0.25 0.87 0.44 A. Walker 0.59 0.72 0.09 *C. Anthony 0.49 0.71 0.15 *K. Love 0.54 0.68 0.10

8 *J. Kidd 0.41 0.74 0.23 S. Pippen 0.71 0.69 0.01 R. Westbrook 0.64 0.74 0.07 B. Lopez 0.77 0.71 0.04

9 *C. Anthony 0.49 0.71 0.15 C. Robinson 0.63 0.72 0.07 R. Horry 0.77 0.76 0.01 R. Rogers 0.80 0.81 0.01

10 D. Nowitzki 0.42 0.78 0.26 *R. Allen 0.12 0.82 0.49 S. Perkins 0.75 0.65 0.07 R. Westbrook 0.64 0.74 0.07

Table 4: Results of top-10 queries on NBA with𝑤 = ⟨0.5, 0.5⟩ and distance Dist from PL(𝑤). Starred players are in Sky(NBA).
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Figure 6: Precision/recall curves on SEN.

the real SEN and NBA, and synthetic ANT datasets, but the results we
show extend to the other datasets introduced above.

In order to provide an intuition on how Lin and Dir queries

differ in ranking tuples, we consider again the NBA dataset shown
in Figure 4b and run on it both a Lin and three Dir top-10 queries

with𝑤 = ⟨0.5, 0.5⟩ and different values for 𝛽 . The results of these

queries are shown in Table 4 along with their distance from PL(𝑤).
The obtained tuples are much more balanced in the case of Dir

queries, and even more so for lower values of 𝛽 . Indeed, unlike

the Lin query, no Dir query includes in its top-10 results either S.

Curry or M. Malone, whose scores are extremely unbalanced with

respect to PL(𝑤), whereas the Lin query omits the very balanced

skyline tuples A. Jamison and K. Love, which are in the top-10

of the Dir queries. We complement this qualitative analysis on

the NBA dataset by reporting the results of a simple user study

we conducted. We asked graduate students to compare the top-5

results of Lin and Dir queries (graphically shown in Figure 16a)

and to determine which result set was better when the task was to

retrieve the best players if we give the same importance to offensive

rebounds (OREB) and 3-point field goals made (3PM). Out of around

44 answers, 29 preferred the results delivered by the Dir query and

only 15 those of the Lin query.

Precision and recall. We now try to assess the ability of Lin

and Dir queries to retrieve relevant (skyline) tuples. To this end,

we start with classical precision and recall measures. Formally, let

ST𝑘 (𝑟 ; 𝑓 ) = Sky(𝑟 ) ∩ Top𝑘 (𝑟 ; 𝑓 ). The precision pre(𝑘, 𝑓 ) and recall
rec(𝑘, 𝑓 ), for natural 𝑘 and scoring function 𝑓 , measure how many

top-𝑘 tuples (found by 𝑓 in 𝑟 ) are also in Sky(𝑟 ) and, respectively,

⛌
⛌

⛌

⛌

⛌

○
○

○

○

○

△
△

△

△

△

◇ ◇ ◇

◇

◇

1 5 10 50 100
0.00

0.05

0.10

0.15

0.20

0.25

0.30

k
cu
m
ul
.r
ec
al
l

⛌ β=1/3

○ β=1/2

△ β=2/3

◇ β=1

(a) r̂ec on SEN as 𝑘 varies

⛌ ⛌ ⛌ ⛌ ⛌○ ○ ○ ○ ○

△

△ △ △ △

◇

◇
◇

◇ ◇

1 5 10 50 100
0.0

0.2

0.4

0.6

0.8

1.0

k

cu
m
ul
.r
ec
al
l

⛌ β=1/3

○ β=1/2

△ β=2/3

◇ β=1

(b) r̂ec on NBA as 𝑘 varies

Figure 7: Cumulative recall r̂ec on SEN and NBA.

how many tuples in Sky(𝑟 ) are also top-𝑘 tuples:

pre(𝑘, 𝑓 ) = |ST𝑘 (𝑟 ; 𝑓 ) |
𝑘

; rec(𝑘, 𝑓 ) = |ST𝑘 (𝑟 ; 𝑓 ) |
|Sky(𝑟 ) |

In Figure 6, we show average precision and recall values as mea-

sured over a set of 𝑞 = 100 queries with random weight vectors on

the SEN dataset. Generally, as a consequence of their definitions,

precision decreases as 𝑘 grows, while recall increases (Figure 6a).

Precision generally improves for larger values of 𝑑 , since it is easier

for a tuple to be in the skyline in higher dimensions, but the in-

creased cardinality of the skyline also determines a heavy decrease

in recall. Figure 6b shows this for 𝑑 = 4..7 (we omit 𝑑 = 2, 3 as the

skyline of SEN consists of less than 5 tuples). In both figures, Lin

queries (𝛽 = 1) have the worst precision for almost any recall level.

A major motivation underlying the introduction of directional

queries is to allow more relevant tuples to be retrievable by top-𝑘

queries, thus increasing the effectiveness of preferences in obtaining

different results. To this end, we introduce a measure of cumulative
recall, r̂ec(𝑘, F ), where F is a set of scoring functions, defined as

the fraction of skyline tuples collectively retrieved by the functions

in F . This gives us an indication of how many tuples in the skyline

have a chance to appear in the result of at least one top-𝑘 query.

Let us denote with ST𝑘 (𝑟 ; F ) the set ∪𝑓 ∈FST𝑘 (𝑟 ; 𝑓 ). We define:

r̂ec(𝑘, F ) = |ST𝑘 (𝑟 ; F )|
|Sky(𝑟 ) |

Figure 7a shows the cumulative recall r̂ec for 𝑞 = 100 random

top-𝑘 queries on the SEN dataset, which appears to be slightly worse
in the case of Lin queries. Instead, in the small NBA dataset (Fig-

ure 7b), 100 top-𝑘 queries with 𝑘 = 5 are sufficient to retrieve the

full skyline when 𝛽 < 1, whereas Lin queries require 𝑘 = 50 to do

so, even though |Sky(NBA) | is just 14.



Conference’17, July 2017, Washington, DC, USA

⛌ ⛌ ⛌
⛌ ⛌

○
○

○
○

○

△
△

△

△ △

◇ ◇ ◇

◇
◇

1 5 10 50 100
0.0

0.2

0.4

0.6

0.8

1.0

k

cu
m
ul
.r
ec
al
l

⛌ β=1/3

○ β=1/2

△ β=2/3

◇ β=1

(a) r̂ec on ANT3;1𝑀 as 𝑘 varies

⛌

⛌
⛌ ⛌ ⛌

○

○

○ ○ ○

△

△

△ △ △

◇

◇
◇ ◇ ◇

2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

d

cu
m
ul
.r
ec
al
l

⛌ β=1/3

○ β=1/2

△ β=2/3

◇ β=1

(b) r̂ec on ANT1𝑀 as 𝑑 varies

⛌
⛌
⛌

⛌ ⛌ ⛌ ⛌

○

○ ○
○ ○ ○ ○

△
△ △

△ △ △ △◇
◇ ◇ ◇ ◇ ◇ ◇

10K 50K100K 500K1M 5M 10M
0.0

0.1

0.2

0.3

0.4

0.5

N

cu
m
ul
.r
ec
al
l

⛌ β=1/3

○ β=1/2

△ β=2/3

◇ β=1

(c) r̂ec on ANT3 as 𝑁 varies

Figure 8: Cumulative recall r̂ec on ANT.
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Figure 9: Exclusive volume êvol and grid resistance ĝres.

For synthetic datasets, Figure 8a shows that, for ANT3;1𝑀 , the

value 𝛽 = 2/3 entails a r̂ec consistently larger than the one ob-

tained with other values, reaching almost 80% of the skyline (1022

tuples). The relative performance of the different values of 𝛽 is

confirmed also on ANT1𝑀 as 𝑑 varies (Figure 8b) and on ANT3 as 𝑁

varies (Figure 8c), with 𝑘 = 10. The steep growth in the number

of skyline tuples as 𝑑 grows determines a heavy decrease in rec,

which also causes r̂ec to decrease and the impact of 𝛽 to be less

visible. An increased size also causes a larger skyline, which, in

turn, determines a decrease in rec and r̂ec. Lin queries are almost

always the worst choice.

Robustness indicators. In a similar fashion, we consider the cu-

mulative versions êvol and ĝres of our indicators of robustness, so
as to characterize the portion of the overall exclusive volume that is

covered by the extracted tuples (and similarly for grid resistance):

êvol(𝑘, F ) =
∑
𝑡 ∈ST𝑘 (𝑟,F) evol(𝑡 ; 𝑟 )∑
𝑡 ∈Sky(𝑟 ) evol(𝑡 ; 𝑟 )

ĝres(𝑘, F ) =
∑
𝑡 ∈ST𝑘 (𝑟,F) gres(𝑡 ; 𝑟 )∑
𝑡 ∈Sky(𝑟 ) gres(𝑡 ; 𝑟 )

Very similar trends are observed when studying how the cumulative

exclusive volume êvol (first column of Figure 9) and grid resistance

ĝres (second column) vary, for which r̂ec is a good proxy.

Balance. The distance Dist(𝑡, PL(𝑤)) of a tuple 𝑡 from the prefer-

ence line gives an indication of how balanced 𝑡 is with respect to

the user requirements. To better appreciate how results are spatially

distributed, Figure 10 shows the top-1000 tuples (in green) obtained

with various weight vectors on the ANT2;5𝐾 dataset with a Dir query
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Figure 10: Tuples retrieved by directional (𝛽 = 2/3) and linear
(𝛽 = 1) top-𝑘 queries on ANT2;5𝐾 with 𝑘 = 1𝐾 .
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Figure 11: Average distance from the preference line.

(𝛽 = 2/3) and Lin query (𝛽 = 1), along with the preference line (in

red). It is apparent that the results are closer to the preference line

with Dir queries, and more dispersed with Lin queries, especially

for balanced weight vectors.

Figure 11 confirms this behavior both on the real SEN and the

synthetic ANT datasets. As a general trend, the average distance

grows as 𝑘 grows (later tuples in the ranking are likely farther from

PL(𝑤), Figures 11a and 11b) or as 𝑑 grows (tuples are more sparse,

Figure 11c), while it slightly decreases as 𝑁 grows (tuples are more

dense, Figure 11d). Clearly, the lower the value of 𝛽 , the lower the

average distance, but, as shown in the figure, all considered values

of 𝛽 < 1 yield comparable performance, whereas Lin queries show

a much poorer behavior.

Another indication of the effectiveness of a query with weight

vector 𝑤 in retrieving relevant results while abiding by the pref-

erences specified by 𝑤 can be obtained by considering how the

skyline tuple closest to PL(𝑤) is ranked by the query. Here, the

difference between Lin and Dir queries is very substantial: for ex-

ample, with 𝑞 = 100 queries on ANT3;1𝑀 , we found that the median



Directional Queries: Making Top-kQueries More Effective in Discovering Relevant Results Conference’17, July 2017, Washington, DC, USA

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

β

cu
m
ul
.r
ec
al
l

k=1

k=10

k=100

(a) r̂ec as 𝛽 varies, 𝑘 ∈ {1, 10, 100}

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

β

av
er
ag
e
di
st
an
ce

k=1

k=10

k=100

(b) AvgDist as 𝛽 varies,𝑘 ∈ {1, 10, 100}

Figure 12: Effect of 𝛽 on ANT3;1𝑀 ; 𝛽∗ values circled.
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Figure 13: R-trees: CPU times for directional queries on
ANT3;1𝑀 as 𝑘 varies using two different bound strategies.

rank of the skyline tuple closest to PL(𝑤) was 1 for 𝛽 ∈ {1/3, 1/2},
2 for 𝛽 = 2/3, and 4724 for 𝛽 = 1; even the average rank of the

closest skyline tuple was a shockingly high 8330 with 𝛽 = 1, but

only 67 for 𝛽 = 2/3.

Choice of 𝛽 . Before moving to our experiments on efficiency (Sec-

tion 5.2), we now discuss how to choose an appropriate value for

𝛽 . To this end, we probe the dataset at hand with various values

of 𝛽 , checking how they affect r̂ec and average Dist; the former

accounts for the ability of directional queries to discover relevant

results and is also a good proxy for the robustness indicators, while

the latter measures the balance of results with respect to user pref-

erences. Figure 12 reports, for 𝑘 ∈ {1, 10, 100}, the corresponding
plots considering 𝑞 = 100 weight vectors on the ANT3;1𝑀 dataset.

We observe that r̂ec is maximized for a value 𝛽 = 𝛽∗ in [0.6, 0.8]
(circled in red) and that, for the same 𝛽∗, the average distance from
the preference line starts increasing more steeply. This suggests

that a value close to 𝛽∗ might be an adequate choice for 𝛽 . This

analysis can be easily performed, statically, for any dataset. We did

this on all scenarios described in Table 3 and found that 𝛽∗ always
lies in [0.6, 0.8]. In particular, choosing 𝛽 = 0.7 consistently deter-

mines at least a 64% improvement in terms of r̂ec with respect to

the case 𝛽 = 1, while being at most 10% off the maximum r̂ec value

obtained with any 𝛽 . Additionally, the choice 𝛽 = 0.7 grants an

improvement of at least 79% in terms of average Dist with respect

to 𝛽 = 1 in all tested synthetic scenarios. For these reasons, we shall

henceforth set 𝛽 = 0.7 in our experiments on efficiency.

5.2 Experiments on efficiency
In this section we evaluate the performance of Dir queries from the

point of view of efficiency, by contrasting it to classical Lin top-𝑘

queries. All reported times are averaged out over 10 executions

(and, in the case of synthetic datasets, on different instances of the

same dataset type) using a 1.80GHz 4-core Intel processor with 16

GB of RAM. We report execution (CPU) times only, since all our
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Figure 14: R-trees: accessed leaves (in orange) for directional
and linear top-k queries with𝑤 = ⟨0.5, 0.5⟩, with PL(𝑤) in red.
The green dots are the results of the query.
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Figure 15: R-trees: total execution time on ANT – all weights
(first row) vs balanced weights (second row).

datasets fit into main memory. For the experiments with R-trees,

we adopted the implementation in [1] and extended it to support

top-𝑘 queries.

Results on a sequential evaluation of top-𝑘 queries (not shown

here due to lack of space) confirm the expected𝑂 (𝑁 log𝑘) complex-

ity of such an implementation, with the effect of 𝑘 hardly noticeable

in larger datasets such as SEN and ANT3;1𝑀 . In all tested scenarios,

Dir queries incur a slight computational overhead (about 15% more

CPU time than Lin queries), due to the increased cost required

for computing the score through non-linear function (8). Yet, CPU

times are largely sub-second in all configurations up to 1M tuples.

Similar observations hold with NBA, HOU, EMP, and RES. With

default parameter values and varying 𝑘 , on EMP we obtained exe-

cution times (in ms) in the [89, 131] range with Dir queries and

in [78, 115] with Lin queries; on HOU, the ranges were [39, 75] and
[33, 64]; on RES [1158, 1262] and [895, 968]; on NBA, all times were

comparable and always < 10ms.

Figure 13 reports the CPU time spent on the ANT3;1𝑀 dataset as

𝑘 varies, for the two bounding strategies described in Section 4.1

that Dir queries can exploit when using R-trees. Results strongly

suggest that it always pays off to compute a tight bound. Indeed,



Conference’17, July 2017, Washington, DC, USA

the total CPU time with the loose strategy is 21 to 35 times higher

than with tight (although largely sub-second in all cases). The

figure also shows the composition of these times and highlights

that, while, with tight, the largest part is the bound computation

(“Bounds”, Figure 13a), the loose strategy requires virtually no time

for bound computation but needs to deal with many more tuples

(needlessly accessed due to non-I/O-optimality), and spends most of

the time for maintaining its heap (and other internal structures) and

computing scores (“Heap” and “Score”, Figure 13b). For instance,

when 𝑘 = 10, tight accesses, on average, 19 nodes and 409 tuples,

whereas loose accesses 2925 nodes and 137,035 tuples. We shall

therefore only focus on the tight strategy for Dir queries and

compare their execution times with that of Lin queries. We observe

that, with R-trees, efficiency improves on average by more than two

orders of magnitude with respect to the sequential implementation

(for instance, less than 1ms vs more than 300ms on ANT3;1𝑀 and

𝑘 = 10).

For an intuition of how R-trees work with the two query types,

Figure 14 offers a visualization of the leaves of the R-tree for an

ANT2 dataset with just 𝑁 = 100 tuples. When the weights are per-

fectly balanced, in order to find the top 10 tuples, the Dir query

(Figure 14a) only accesses the four leaves (shown in orange) closest

to the preference line and to the origin, and in total 28 tuples. The

Lin query (Figure 14b) accesses, instead, 7 leaves and 52 tuples.

Figure 15 reports the overall execution times spent by top-𝑘

queries on the ANT dataset. Besides CPU times (shown as dotted

lines), the figure also accounts for the time spent for accessing

the R-tree nodes, where we assume that each node access requires

approximately 0.1ms. This has the purpose of highlighting the

differences between the two query types in terms of node accesses,

as also exemplified in Figure 14. In lower dimensionalities, Dir

queries keep paying a small overhead in terms of increased CPU

time, due to the heavier calculation of the lower bound, but benefit

from a reduced number of accesses to nodes. Such benefits become

more visible as 𝑘 increases (Figure 15a); for instance, when 𝑘 = 100

in ANT3;1𝑀 , the Dir query accesses 44 nodes on average, while the

Lin query requires 68 nodes, which more than compensates the

difference in CPU time. This phenomenon is generally also present

in the real datasets. We also observe (Figure 15b) that 𝑑 negatively

affects the relative performance of Dir queries, in that the non-

linear problem becomes more challenging (indeed, the Dir query

spends 47ms computing the bound out of a total of 49ms CPU time,

when 𝑑 = 6 and 𝑘 = 10 on ANT1𝑀 ). Although the overall times are

always largely sub-second in all tested scenarios with R-trees, we

also observe that the focus of Dir queries on the preference line

more clearly distinguishes it from the Lin query when the weight

vector is balanced. Figures 15c and 15d show the same experiments

as Figures 15a and 15b, respectively, but with weights at most 20%

off the (perfectly balanced) value 1/𝑑 . With these weights, although

the overall times increase since more tuples are accessed by both

queries, the advantage of Dir queries becomes more evident, and

even in the most adverse scenarios (𝑑 = 6, 𝑁 = 1𝑀 , 𝑘 = 10) the

higher CPU times are compensated by the difference in accessed

tuples and nodes (15,799 out of 37,840 nodes accessed by the Lin

query vs only 4845 by the Dir query).

Finally, we also experimented with the threshold algorithm

(TA) [13], for which it is assumed that all attributes of interest

can be independently accessed in an ordered way (i.e., by having 𝑑

ordered lists or 𝑑 single-attribute indices). Scanning the lists can

be stopped when one has retrieved 𝑘 tuples whose score is bet-

ter than the threshold value 𝑇 , which is a bound on the best (i.e.,

lowest) score of the yet-to-be-seen tuples. Let 𝑙𝑖 be the last value

seen on the 𝑖-th list. Then, 𝑇 =
∑𝑑
𝑖=1

𝑤𝑖𝑙𝑖 for Lin queries, as well

as for the loose bounding strategy of Dir queries, whereas for a

tight bounding strategy one can use the same optimization ap-

proach adopted for R-trees.
7
Experiments on ANT3;1𝑀 confirm the

relative behavior observed with R-trees, in that Dir queries pay

a moderate (around 10%) overhead due to the computation of the

distance-based component. However, both types of queries require

scanning about 10% of the lists due to the anticorrelated nature of

the dataset (which negatively affects TA’s performance). In particu-

lar, Dir queries with a tight bounding strategy require between

200ms and 262ms when 𝑘 varies between 1 and 100.

5.3 Other competitors
Here we compare Dir queries with other methods besides Lin

queries.

Figure 16a shows how the top-5 tuples from Table 4 obtained

from the Lin and the Dir query with 𝛽 = 2/3 are spatially dis-

tributed. Also shown are the top-5 players according to two other

methods, namely (i) SkyTop, that first computes the skyline and

then selects from it the top-5 tuples according to a linear function,

and (ii) ORD [25]. ORD starts with a seed weight vector and then

considers the set 𝑉 of all weight vectors 𝑣 whose distance from𝑤

is at most 𝜌 . The value of 𝜌 is implicitly determined by the number

of results,𝑚, one wants to obtain. Then, a tuple 𝑠 is 𝜌-dominated
if there exists a tuple 𝑡 whose score is better than or equal to that

of 𝑠 when considering all weight vectors in 𝑉 . ORD also requires

the specification of another parameter, 𝑘 , that guarantees that all

the𝑚 results are 𝜌-dominated by less than 𝑘 tuples. In Figure 16a

we set𝑚 = 5 and 𝑘 = 1, thus ORD returns 5 𝜌-undominated tuples

(i.e., a subset of the skyline). Besides confirming that Dir queries

provide more balanced results, even with respect to SkyTop and

ORD, it is apparent that such results are quite dissimilar from those

of all the other methods. In particular, 3 out of 5 players obtained

with 𝛽 = 2/3 are not present in any of the other top-5 result sets.

For a more complete analysis, we measured the Jaccard similarity

of top-10 results over a sample of 100 random queries on ANT3;1𝑀 .

Figure 16b confirms the peculiarity of Dir queries, with all com-

peting methods sharing no more than 27% of the results with Dir

queries. Note that the highest similarities are obtained when using

non-linear functions in L2 and L3, whereas the Jaccard similarity

wrt to all the methods shown in Figure 16a is only at most 7%.

Figure 17 shows that, even with respect to ORD and SkyTop, Dir

queries are consistently better both in terms of cumulative recall

and average distance from the preference line. The same holds for

non-linear queries using L𝑝 functions (see Figure 18), for which

increasing the non-linearity (i.e., the value of 𝑝) leads to worsening

both r̂ec and average Dist. This confirms what was observed at

7
This follows from the observation that yet-to-be-seen tuples lie in a (hyper-

)rectangular region with opposite vertices ⟨𝑙1, . . . , 𝑙𝑑 ⟩ and ⟨1, . . . , 1⟩, thus arguments

used for R-trees still apply here.
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Figure 18: Cumulative recall and average distance from PL(𝑤)
for non-linear L𝑝 functions on ANT3;1𝑀 . The red dotted line
refers to directional queries.

the beginning of Section 4, in that the higher 𝑝 is, the less changing

weights can alter the result of a query.

6 RELATEDWORK
There are several lines of research that are somehow related to

our work. Some of these consider the notions of skyline queries

and top-𝑘 queries together, trying to get the best of both worlds.

In particular, given a value for 𝑘 and a family of scoring functions

F , 𝑘-regret queries [8, 28] aim to return a set 𝑆 of 𝑘 tuples such

that, for each function 𝑓 ∈ F , the ratio between the best score of

a tuple in 𝑆 and the best score in the dataset is maximized. When

F = L1, as is usually the case, the optimal 𝑆 is a subset of the

convex tuples in the skyline, thus not including any concave skyline

tuple, which is a major objective of our approach. Non-linear 𝑘-

regret queries are considered in [14], in particular extending results

of [28] to classes of functions that include L𝑝 norms. We observe,

however, that, as clearly argued in [25], approaches based on regret

are unable to accommodate user preferences, which are one of

the main ingredients of directional queries. Notice that adapting a

query to user preferences is a requirement that remains valid even

in the latest approaches to the problem of combining top-𝑘 and

skyline queries. With the common idea of extending the notion of

dominance, both theworks in [9–11, 26] and the one in [25] consider

regions in the space of weights (namely, a convex polytope or a

hyper-sphere) instead of a single weight vector. The former group

of papers deals with arbitrary families of L𝑝 functions; however,

they are unable to explicitly control the cardinality of the result.

On the contrary, [25] offers cardinality control (like top-𝑘 queries

do), yet it is limited to linear scoring functions, thereby incurring

all the limitations described in this paper.

We have already mentioned in Section 3 some of the works

that try to overcome the lack of cardinality control of skylines

(a prominent study on the cardinality of skylines is available

in [16]). This gave rise to many skyline variants, based on point-

wise ranking [29, 36, 37], subspace reference [5, 38], set-wide prop-

erties [22, 31], and more [24, 34, 35]; some of these variants are

discussed in a survey [23]. Part of these ideas inspired our work on

the indicators for robustness (evol and gres). We also mentioned the

maximum rank [27], which we extended into our brank indicator.
Our cdeg indicator builds on the analysis of the L𝑝 families of

scoring functions in [11]. The notions of stability and scale invari-

ance were introduced in [28] as a requirement for skyline-based

operators. We observe that all our indicators are scale-invariant,

and all but brank are stable.

Preliminary observations on precision and recall of top-𝑘 queries

with respect to the skyline are contained in [9, 11]. However, no

work that we are aware of has ever tried to assess the general ability

of (linear or non-linear) top-𝑘 queries to retrieve skyline tuples. As

discussed in the introduction, all the mentioned approaches have

limitations in retrieving the tuples of interest.

7 CONCLUSIONS
Based on the observation that linear top-𝑘 queries can fail to obtain

several relevant results, regardless of user preferences, and that

they also have difficulties in returning balanced results respecting

such preferences, in this paper we have first quantified this problem

through the introduction of four novel indicators. These indicators

apply to skyline tuples and measure both their robustness and the

difficulty in retrieving them. The presence of skyline tuples that

are hard to retrieve but robust is observed to occur very frequently

in all the datasets we considered.

Then, to obviate the above-mentioned limitations, we have in-

troduced a novel type of scoring functions, leading to what we call

directional queries. They complement the mean-based component

typical of linear queries with a term that accounts for the balance

of a tuple with respect to a so-called preference line, thus adhering

more faithfully to the user preferences.

Experimental results obtained on both real and synthetic datasets

indeed show the effectiveness of directional queries, with nearly no

computational overhead with respect to the classical linear queries.

As future work, we observe that balance is only seemingly op-

posed to the requirement of diversity of the tuples in the result

set [12, 15]. Indeed, the very notion of diversity is independent of
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the family of scoring functions in use, and could thus be combined

with directional queries into an integrated framework.
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