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A B S T R A C T

In a contest of climate change and increasing world population, the optimization of agricultural inputs such as
water and fertilizer is of utmost importance to assure crop quality and to limit the impact of agriculture. For
these reasons, the need for robust methods of agricultural modeling and forecasting has never been clearer. In
particular, forecasting the water budget is a key tool for reducing water wastage and maximizing agricultural
production. Although process-based models are largely used in off-line simulation and studies, their operational
use in forecasting the irrigation requirements of a specific crop remains complex and the level of accuracy
achieved is often insufficient since, if used alone, process-based simulation systems fail to capture the soil and
plant dynamic behaviors. To overcome these limitations we propose an integrated system coupling Orchard3D-
Lab, an innovative three-dimensional process-based model specifically devised for fruit trees, with a state
initialization procedure that exploits a two-dimensional probe grid. The system is capable of auto-tuning its
parameters on a specific soil and of providing a precise forecast that can support precision watering policies
on a weekly horizon. A large set of tests has been conducted on Kiwifruit in an experimental farm in Northern
Italy. Besides accuracy, tests proved the robustness of the system even in the presence of a limited set of
examples for parameter auto-tuning. This makes our approach concretely applicable in real-world settings.
1. Introduction

The possibility to accurately and precisely forecast agricultural
systems can provide significant improvement in many agricultural
issues such as irrigation demand, drought, climate change, nutrient
depletion, and soil degradation (Lv et al., 2021). Forecasts can be
obtained by running a simulation model for a specific environment.
The forecast accuracy is directly related to the type of application.
Forecasting the water budget in a prescriptive irrigation system is
among the most challenging applications since the decision to irrigate
or not to irrigate requires high accuracy. In Silva and Giller (2020),
the authors presented a series of relevant doubts regarding the ability
of pure process-based1 crop models to precisely forecast water budget
at the operational level. The uncertainty associated with process-based
crop models can be reduced by coupling such models with real-time
acquisition of relevant soil and crop variables (Ye et al., 2014). Today,
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such models consist of a set of ordinary or partial differential equations that define the essence of each process, as well as their inputs and outputs.

with digitalization and remote acquisition of real-time data it is possible
to effectively incorporate experimental data and carry out simulations
in real-time (Vitali et al., 2021).

Fruit trees are still under-represented in crop models. Their ex-
tensive leaf area, which varies dynamically throughout the season,
and root system must be explicitly taken into account for accurately
simulating soil moisture. Our study focuses on the kiwifruit (actinidia
deliciosa), often shortened to kiwi (used hereafter): an edible fruit char-
acterized by a high water demand (Judd et al., 1986). In Italy, the third
largest producer worldwide, kiwi uses every year about 5000 to 6000
cubic meters of water per hectare (Judd et al., 1986) throughout the
whole season. In the Emilia-Romagna region (Italy), the kiwi irrigation
season generally starts in May and ends in October (Villani et al., 2011),
therefore with high water demands in a period where droughts and
water scarcity are becoming more frequent due to climate change.
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Fig. 1. Schematic depicting the planting layout.
Few research papers have been published on measuring and mod-
eling kiwi water demand. Indeed, in a review on fruit tree crop mod-
els, Grisafi et al. (2022) showed that only one research was published
on modeling kiwi, but the emphasis was on the carbon budget and not
on the soil water budget. Little has also been done in terms of modeling
the plant’s water use and transpiration. Rallo et al. (2021) presented a
review of FAO56 crop coefficients of fruit trees and vines, performed
over the past twenty years, to update information and extend tabulated
single and basal standard crop coefficients. Also in this review, it
appears that kiwi is highly under-represented with only one listed
research by Silva et al. (2008), where kiwi’s transpiration was measured
with a sap flow method.

At the heart of a soil moisture forecasting system there is a robust
water budget simulation model capable of computing the Soil Water
Content (SWC) and Soil Water Potential (SWP) in the root zone and
providing the right water amount to keep the cultivated plant in
optimal conditions. A water budget model implies the measurement
and/or the computation of a variety of soil processes including surface
runoff, deep percolation into the groundwater, capillary rise from
the groundwater, subsurface lateral flow, soil evaporation, and plant
transpiration (Marshall et al., 1996). Most of the previous process-based
models in the literature (e.g., DSSAT (Sau et al., 2004), APSIM (Keating
et al., 2003)) are far from modeling these soil processes at the required
precision level, and none of them are specialized in key factors of
fruit trees such as root architecture. Forecasting the water balance
is also useful in many other soil-related applications. For example,
Bioclim (Serrano-Notivoli et al., 2022) is a software for bioclimatic
classification that computes the water balance at a very coarse grain
(i.e., month and region). Even having a specialized model at hand,
making it operational in a real-world context requires solving two
complex problems: (1) how to choose model parameters to simulate
a specific field; and (2) how to handle the inevitable model drifts.

In the majority of papers, the parameters of process-based simula-
tion models are obtained by off-line measures carried out in labora-
tories. However, these measurements are expensive, time consuming,
and rarely a feasible solution for farmers in an operational setting.
An alternative solution is to install soil probes measuring SWC or
SWP and calibrate the model through a parameter tuning procedure
that progressively aligns the simulation model to the measured data.
Obviously, given the huge size of the parameter space, it is hard to
optimize such alignment so that the simulation model can run even
with a limited set of real data.

In real-case problems, there are no error-free estimations. Many
slight errors gradually accumulate and lead the model to progressively
diverge from the expected behavior, especially for domains in which
2 
many phenomena interact and influence each other. In particular, soil
moisture is affected by weather forecasts, water tables, soil slopes,
hysteresis, and so on. In these cases, the availability of real measure-
ments sampled by the probes can be used to initialize the state of the
simulation model, reset the drift, and set the error level to zero. The
uncertainty on the soil moisture value will increase for the portions of
the soil volume that are farther from the probe. In our approach, we
exploit an innovative grid of probes (Baldi et al., 2023) rather than a
single one. This makes it possible to create a precise map of the water
content that, in turn, makes the model initialization a powerful tool.
Today many companies commercialize affordable and reliable probes
installable in orchards (Bittelli, 2010; Nagahage et al., 2019).

Summing up, in this paper we propose:

• Orchard3D-Lab, an innovative 3D process-based model specifically
devised to compute the soil water balance of an orchard. The 3D
model takes into account the non-uniform distribution of the root
system and the growth and development of orchard plants with a
full computation of the soil water budget.

• A Parameter Tuning technique to automatically calibrate the
model parameters to a specific orchard through a Bayesian hyper-
parameter tuning procedure.

• A State Initialization technique to map coarse-grained 2D/3D-
probe grid to the fine-grained 3D state of Orchard3D-Lab.

• A detailed field experiment in a commercial Kiwifruit orchard.

2. System design and techniques

Fig. 1 depicts the planting layout adopted in this paper. Trees are
arranged in lines and soil can have a slope both in the 𝑥 and 𝑦 axes.
The orchard is equipped with a watering system of different types
(e.g., single or double wing) and different distances between drippers
and lines. For each plant, we consider a soil volume that includes the
roots; typically the soil volume can be larger than the area affected by
the watering system. A mound can be present to favor draining.

The simulation approach and the required functional modules are
depicted in Fig. 2. The offline phase determines the optimal process-
based model parameters. The Parameter Tuner searches for the best
parameters by comparing data simulated by the process-based model
named Orchard3D-Lab with the Historical Data from real probes. His-
torical data must cover the period of the simulation scenario, includ-
ing watering and weather conditions (typically obtained from in-situ
weather stations or public open data) together with their effect on soil
water content (i.e., the values sampled by soil probes).
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Fig. 2. Approach overview and main system components.
The online phase requires the grid of probes to be in place. During
this phase Orchard3D-Lab, properly set with the optimal parameters,
forecasts the system behavior and exploits State Initialization to initialize
the simulation model to the real field status.

Table 1 shows the simulation parameters: in bold those automati-
cally inferable by the tuning phase, while the remaining ones must be
provided by the user. Note that if no historical values are available,
tuning cannot be run. In this case, the online phase will be based on
default values possibly taken from the literature. Similarly, if some
of the tunable parameters are known, tuning can be limited to the
remaining ones.

The following subsections describe in more details the components
reported in Fig. 2.

2.1. Orchard3D-Lab: the orchard simulation model

We present an innovative process-based simulation model specifi-
cally devised for computing the soil water budget in an orchard. The
numerical solution is based on the integrated finite difference (also
called cell-centered finite volume scheme) method. Orchard3D-Lab
builds on Criteria-3D (Bittelli et al., 2015) and introduces the following
innovative features in the computation of the soil water budget in an
orchard:

• a dynamic model for evapotranspiration that keeps into account
plant growth along the season (see Section 2.1.2);

• an advanced root’s system model that models variable root den-
sity (see Section 2.1.3);

• application of the three-dimensional computation specifically for
an orchard with land slopes and drip irrigation system; and

• state initialization from a probe grid.

Orchard3D-Lab accounts for saturated water flow, unsaturated wa-
ter flow, and surface runoff. It is also coupled with a model for soil
evaporation and plant water uptake. The soil moisture state, at a certain
3 
time 𝑡, is stored as a 3D matrix (𝑆 𝑀𝑡) where each cell represents a
portion of the soil volume along with its simulated soil moisture.

The modeling approach in Orchard3D-Lab is comparable to other
process-based models that solve the governing equation of water flow
with numerical methods, such as Hydrus-3D (Honari et al., 2017) that
was also applied in orchards (Morianou et al., 2023). However, our
model has a novel and detailed characterization of spatial and temporal
root growth and development, as detailed in the following sections of
the manuscript.

Algorithm 1 describes how a simulation is computed. Starting from
a state initialized with probe data, an iterative process computes soil
moisture given the time series of weather and irrigation data. More in
detail, Orchard3D-Lab takes as inputs the probe values at the initial
timestamp (𝑆𝑡0 ), a time series of weather forecasts at increasing times-
tamps (⃖⃖⃖⃖⃗𝑊 = [(𝑡,humidity, air temperature, solar radiation,wind speed),
… ]), a time series of irrigation at increasing timestamps ( ⃖⃗𝐼=
[(𝑡, irrigation),… ]), and the set of parameters 𝑋 from Table 1. We
assume ⃖⃖⃖⃖⃗𝑊 and ⃖⃗𝐼 to be aligned over time and to be at the same
time granularity of the simulation. First, we initialize the simulator
state (as described in Section 2.2) with the probe data mapped to the
simulator fine-grained 3D matrix (Line 1) and the time series in which
the simulated soil moisture will be accumulated (Line 2). For each
timestamp (Line 3), the current weather, irrigation, and simulator state
are leveraged to update the state of the simulator using the Richards
equation (Line 4), the new state is accumulated (Line 5) and updated
(Line 6). Finally, the time series of soil moisture over the whole period
is returned (Line 7).

Orchard3D-Lab solves Richards’ equation (Richards, 1931) to com-
pute water flow. For each cell of soil in our 3D matrix, it calculates the
change of the water potential and volumetric water content in time.
This demands information about (i) the soil hydraulic properties, (ii)
the amount of water to sink (e.g., for the root water uptake), and (iii)
the boundary conditions (i.e., behavior at the boundary of the soil
volume at hand). In the following, Section 2.1.1 provides the main
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Table 1
System parameters.

Type Parameter Description

Field Location Latitude, longitude and altitude [m] of the field
Slopes Slopes [m ⋅m−1] of the simulated field
Mound Slope [m ⋅m−1] and width [m] of the mound
Water table ∈ [1.5..5] Depth [m] of a aquifer

Soil Layera Thickness Thickness [m] of the soil layer moved from Domain
Texture Portion of sand, silt and clay [%]
Ksat ∈ [10−7 ..10−3] Saturated hydraulic conductivity
𝜽𝒔 ∈ [0.2..0.7] Saturated water content [−]
𝜽𝒓 ∈ [0.02..0.7] Residual water content [−]
𝜶 ∈ [0.5..5] Modified Van Genuchten inverse air entry suction [m−1]
𝐧 ∈ [1..2] Modified Van Genuchten pore-size distribution
he ∈ [0..15] Modified VanGenuchten/Campbell air mat. pot. [mH2O]
b ∈ [1..9] Campbell empirical retention parameter

Planta Position Position [m] of the plant (s) in the domain area
Radius ∈ [1..3] Radius [m] of the canopy
Leaf area index ∈ [3..5] Green leaf area per unit ground surface area
Roots depth ∈ [0.5..1.2] Origin and maximum depth [m] of roots
Roots deformations ∈ [0..2] Root deformation factors on x and z axes
Kc max ∈ [0.8..4] Maximum crop coefficient
fRAW ∈ [0..1] Readily available water fraction

Irrigation elema Type Irrigation type of the element (s)
Position Position of the element (s)

Model Geometry Length × Width × Depth [m] of the simulated field
Cell size Size [m] of a single parallelepipeds simulation unit
Ret. curve ∈ [𝐶 𝑎𝑚𝑝., 𝑚𝑜𝑑 𝑉 𝑎𝑛𝐺 𝑒𝑛𝑢𝑐 .] Water retention model
Conduct. mean ∈ [𝑙 𝑜𝑔 , ℎ𝑎𝑟𝑚, 𝑔 𝑒𝑜𝑚] Water conductivity averaging method
Conductivity H/V Ratio ∈ [0..1] Water conductivity horizontal/vertical ratio

Parameters in bold are targeted by the parameter tuning.
a Types can have several elements.
s
[
p
o

o

w

Algorithm 1 Orchard3D-Lab

Require: 𝑆𝑡0 : Probe-level moisture state, ⃖⃖⃖⃖⃗𝑊 : weather time series, ⃖⃗𝐼 :
irrigation time series, X: parameters from Table 1

Ensure: ⃖⃖⃖⃖⃖⃖⃖⃗𝑆 𝑀 : time series of simulated soil moisture
1: 𝑆 𝑇 ← StateInitialization(𝑆𝑡0 ) ⊳ Map probe data to the initial state
2: ⃖⃖⃖⃖⃖⃖⃖⃗𝑆 𝑀← [ ] ⊳ Initialize the accumulator
3: for each 𝑡 ∈ ⃖⃖⃖⃖⃗𝑊 , ⃖⃗𝐼 do ⊳ For each timestamp…
4: 𝑆 𝑇𝑛𝑒𝑤 ← 𝑅𝑖𝑐 ℎ𝑎𝑟𝑑 𝑠(𝑆 𝑇 , 𝑤𝑡, 𝑖𝑡, 𝑋) ⊳ … calculate the next state
5: ⃖⃖⃖⃖⃖⃖⃖⃗𝑆 𝑀← ⃖⃖⃖⃖⃖⃖⃖⃗𝑆 𝑀 ⌢ (𝑡 + 1, 𝑆 𝑇𝑛𝑒𝑤) ⊳ … append it
6: 𝑆 𝑇 ← 𝑆 𝑇𝑛𝑒𝑤 ⊳ … update it
7: return ⃖⃖⃖⃖⃖⃖⃖⃗𝑆 𝑀 ⊳ Return the time series of soil moisture

equations leveraged by Orchard3D-Lab to estimate the soil hydraulic
properties; Sections 2.1.2 and 2.1.3 describe how to obtain the root

ater uptake for each portion of soil by, respectively, calculating
he overall volume of water leaked for transpiration and splitting it
ccording to the root system; finally, Section 2.1.4 delves into the

boundary conditions.

2.1.1. Soil hydraulic properties
Richards’ equation is the solution of the mass balance for water

n a soil volume. A fundamental component in its resolution is the
description of the hydraulic properties, namely the soil water retention
and the hydraulic conductivity function.

The soil water retention curve maps the soil water potential (i.e., the
driving force for flow) to the soil water content (i.e., the amount
f water) and is used to describe the drying process of a particular
oil. For its estimation, the van Genuchten–Mualem model is currently
he most widely exploited. Yet, it has been demonstrated that it can
ead to erroneous estimates of hydraulic conductivity. For this reason
rchard3D-Lab employs the modified van Genuchten–Mualem model
4 
proposed in Ippisch et al. (2006), where an air entry value is included
in the formulation:

𝑆𝑒(ℎ) =
{ 1

𝑆𝑐
[1 + (𝛼 ℎ)𝑛]−𝑚 if (ℎ > ℎ𝑒)

1 if (ℎ ≤ ℎ𝑒)
(1)

Given the inverse air entry suction 𝛼 (i.e., the value for which we
mark the transition between saturated and unsaturated soil mechanics),
𝑚 = 1 − 1

𝑛 a shape-defining pore parameter derived from the pore-
ize distribution (depending on soil texture and structure), and 𝑆𝑐 =
1 + (𝛼 ℎ𝑒)𝑛]−𝑚 the water saturation at ℎ𝑒 the air-entry potential (i.e., the
oint at the largest pores which air can enter into the soil); the degree
f saturation 𝑆𝑒 is defined in relation to the soil water potential ℎ.

Hydraulic conductivity is the ease with which water moves through
porous spaces and fractures in soil (e.g., porous soil has a high hydraulic
conductivity if water can readily travel through it). In other words, the
flux density is regulated by the ability of the material to transfer water
under a certain gradient. Given a ‘‘tortuosity’’ factor 𝑙, it is possible to
calculate the hydraulic conductivity 𝐾 in relation to the current degree
f saturation 𝑆𝑒 as:

𝐾(𝑆𝑒) =
⎧

⎪

⎨

⎪

⎩

𝐾𝑠𝑆𝑙
𝑒

[

1−(1−(𝑆𝑒𝑆𝑐 )
1
𝑚 )𝑚

1−(1−𝑆
1
𝑚
𝑐 )𝑚

]2

if (𝑆𝑒 < 1)

𝐾𝑠 if (𝑆𝑒 ≥ 1)

(2)

The parameter 𝐾𝑠 is the saturated hydraulic conductivity, which
represents the ability of the soil to conduct water when all the pores are

ater-filled. When the soil starts to desaturate (drying), the hydraulic
conductivity decreases with respect to its value at saturation. The
parameters 𝑚 and 𝑛 allow the curve to take different slopes and shapes
in decreasing values from saturation, again depending on texture and
structure.

2.1.2. Evaporation and plant growth-aware transpiration
Leaf growth in fruit trees causes transpiration to vary greatly

throughout the season. For proper modeling of the phenomenon, it is
necessary to model this dynamicity.
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The classic approach to estimating the amount of water transpired
by the plant is to compute the overall potential evapotranspiration
and, then, calculate the plant’s transpiration based on the plant’s vigor.
The potential evapotranspiration 𝐸 𝑇0 is calculated by the Penman-
Monteith equation for the typical reference crop (Allen et al., 1998).
Given the fraction of intercepted Photosynthetically Active Radiation
 𝑃 𝐴𝑅, and the momentary Turbulence Coefficient 𝑇 𝐶, we can derive
under optimal conditions) the maximum potential transpiration 𝑇𝑝𝑜𝑡

and evaporation 𝐸𝑝𝑜𝑡:

𝑇𝑝𝑜𝑡 = 𝐸 𝑇0 ⋅ 𝑓 𝑃 𝐴𝑅 ⋅ 𝑇 𝐶 (3)

𝐸𝑝𝑜𝑡 = 𝐸 𝑇0 ⋅ (1 − 𝑓 𝑃 𝐴𝑅) (4)

The fraction of absorbed photosynthetically active radiation 𝑓 𝑃 𝐴𝑅
is defined in relation to the Leaf Area Index 𝐿𝐴𝐼 (i.e., the quantity
of unilateral green leaves per square inch of soil that estimates the
plant canopy growth) through the light extinction coefficient 𝐾 𝐸, set
at the average value of 0.6. In turn, 𝐿𝐴𝐼 varies throughout the year
according to the plant vigor; to model such dynamicity we leverage on
𝑆 𝐷 𝐷 (i.e., Sum of Day Degrees accumulated by the plant during the
growing season):

𝑓 𝑃 𝐴𝑅(𝑆 𝐷 𝐷) = 1 − 𝑒−𝐾 𝐸⋅𝐿𝐴𝐼(𝑆 𝐷 𝐷) (5)

𝐿𝐴𝐼(𝑆 𝐷 𝐷) = 𝐿𝐴𝐼𝑚𝑎𝑥 − 𝐿𝐴𝐼𝑚𝑖𝑛
1 + 𝑒(𝑎𝐿𝐴𝐼+𝑏𝐿𝐴𝐼 ⋅𝑆 𝐷 𝐷)

+ 𝐿𝐴𝐼𝑚𝑖𝑛 (6)

𝐿𝐴𝐼𝑚𝑎𝑥 and 𝐿𝐴𝐼𝑚𝑖𝑛 are the maximum and minimum 𝐿𝐴𝐼 values re-
pectively, while 𝑎𝐿𝐴𝐼 and 𝑏𝐿𝐴𝐼 are crop dependent parameters. Such
𝐴𝐼 parameters can be found in literature, and hence derive its value

only from 𝑆 𝐷 𝐷.
Finally, the turbulence coefficient 𝑇 𝐶 depends on the crop coeffi-

ient 𝐾 𝑐(𝑆 𝐷 𝐷), a fraction of the water needed for the reference high-
ater-use grass crop. Specifically, 𝑇 𝐶 is the crop coefficient for the

mid-season development stage of adequately watered crops (Driessen
nd Konijn, 1992):

𝑇 𝐶(𝑆 𝐷 𝐷) = 1 + (𝐾 𝑐𝑀 𝑎𝑥 − 1) ⋅ 𝑓 𝑃 𝐴𝑅(𝑆 𝐷 𝐷) (7)

𝐾 𝑐𝑀 𝑎𝑥 is the value of the crop coefficient when the plant has the
maximum value of LAI (Allen et al., 1998). Its value is either obtained
from the literature or calibration.

2.1.3. Root system
Fruit trees have a significant root system whose shape, extension,

and density must be considered to properly model soil volume mois-
ture. In Orchard3D-Lab, the overall potential transpiration 𝑇𝑝𝑜𝑡 is di-
vided among each portion of the soil that contains the root system. The
oot uptake in a specific point 𝑎𝑐 𝑡𝑇 𝑟𝑎𝑛𝑠(𝑥, 𝑦, 𝑧) varies according to the
espective root density 𝑘𝑟𝑜𝑜𝑡(𝑥, 𝑦, 𝑧). The greater the density, the greater
he portion of 𝑇𝑝𝑜𝑡 that is transpired in that point:

𝑎𝑐 𝑡𝑇 𝑟𝑎𝑛𝑠(𝑥, 𝑦, 𝑧) = 𝑇𝑝𝑜𝑡 ⋅ 𝑘𝑟𝑜𝑜𝑡(𝑥, 𝑦, 𝑧) (8)

By default, the root shape is the ‘‘taproot’’. Besides being a common
ree crop, this is generally assumed in kiwi trees. This is customizable
ccording to the following conditions:

• along the 𝑥 axis, the root density varies linearly w.r.t. the distance
to the dripper line, a parameter (i.e., 𝑟𝑜𝑜𝑡𝑥) allows to set a constant
density or to drop it to zero at the inter-row;

• along the 𝑦 axis, the root density is assumed to be constant, this is
consistent with the model assumptions of constant water content
along the dripper line;

• along the 𝑧 axis, the root density is non-linear, a parameter
(i.e., 𝑟𝑜𝑜𝑡𝑧) allows to set higher density either in the upper or
lower layers.
5 
The values of 𝑟𝑜𝑜𝑡𝑥 and 𝑟𝑜𝑜𝑡𝑧 can be deduced by the Parameter
Tuner.

Fig. 3 shows the root density projections on the 𝑥𝑦 and 𝑥𝑧 planes.
he parameter values shaping the figure routes are those set in the or-
hard adopted in our experimentation. Note how moving further away
rom the center, where the dripper is located, root density decreases
oth vertically and horizontally.

2.1.4. Boundary conditions
To numerically solve the partial differential equations governing

Richards water flow, boundary conditions are used to reduce the num-
ber of unknown variables. In practice, we define the behavior of the soil
t the boundaries of the simulated volume so that we can determine
he solution of the equation (i.e., the value of the flux) in the part of

interest. To properly solve the problem, the boundary conditions should
epresent the actual conditions of the experiment and, hence, be chosen
pon the available information (in this regard, details can be found
n Bittelli et al. (2015)).

Orchard3D-Lab allows to set up Dirichlet and Neumann boundary
conditions. The former defines the specific value the flux needs to take
along the boundary, the latter defines the desired derivative. As to
Dirichlet boundary conditions, we implemented: nodes (i.e., portions of
soils) with fixed hydraulic head (i.e., fixed water potential), and nodes
with prescribed flux (i.e., fixed source/sink phenomena). The water
table is a simple example of nodes with fixed hydraulic heads; when
this is present, the water potential is set to zero at the water table
depth. Atmospheric boundary conditions are examples of nodes with
prescribed flux. Positive fluxes are assigned to the surface for either
precipitation or irrigation events, and negative fluxes to the upper
soil layers and rooting depth for potential evapotranspiration. As to
Neumann boundary conditions, the model implements free drainage at
the boundaries as a bottom outflow. The gradient is determined based
on the elevation difference among computational nodes, with the first
node in a position outside the computational domain.

2.2. State initialization

The state initialization process maps in-situ probe data to a state of
Orchard3D-Lab. This is used as the initial state of Orchard3D-Lab, in
this way the forecast begins from an actual soil condition (Fig. 4(a)).

f course, the more the probes (e.g., gypsum-blocks; Fig. 4(b)), the
etter the granularity of the sampling and the accuracy of the initial

state. Such accuracy also depends on the probe layout: the higher the
dimensionality of the layout, the fewer the assumptions to be made:

• most of the approaches in the literature rely on a single probe
and assume the soil moisture to be constant over the whole soil
volume;

• a one-dimensional (1D) grid relies on a column/row of probes and
assumes the soil moisture to be constant over horizontal/vertical
planes;

• a two-dimensional (2D; Fig. 4(b)) grid relies on a 2D matrix of
probes and assumes the soil moisture to be constant over adjacent
slices;

• a three-dimensional (3D) grid measures soil moisture as is and
makes no symmetry assumptions.

Orchard3D-Lab simulations are carried out on a fine-grained 3D
rid, where the size of a single cell is 1 cm. Since it is not feasible
o have a real probe in each cell, the soil moisture for the virtual
ine-grained grid must be estimated starting from the coarse-grained

grid of real probes. In Francia et al. (2022), we introduced several
profiling functions that approximate the soil moisture sampled by a
coarse-grained 2D/3D probe grid to a refined grid with finer granularity
(Fig. 4(c)). For the sake of conciseness, we describe the linear profiling
function in a 2D scenario. Given a 2D probe grid, the profiling function
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Fig. 3. Root schematic: variation of the root density on the 𝑥𝑦 plane (on the left) and on the 𝑥𝑧 plane (on the right).
Fig. 4. Snapshot of soil moisture in a soil slice; the water drop represents a dripper.
Fig. 5. A 2D example of the profiling function.
carries out a bi-linear interpolation of soil moisture. The approach
consists of two phases (Fig. 5). For each point to be calculated: (i) we
find the four probes that determine the minimum bounding rectangle
enclosing it (Fig. 5(a)); then (ii) we interpolate along the first axis
obtaining the moisture values on intermediate points and we determine
the desired value by interpolating the intermediate values along the
second axis (Fig. 5(b)).

To ensure precise sensing, we consider 2D and 3D probe grids since
they rely on fewer symmetry assumptions. Symmetry assumptions also
depend on the dripper layout. In this work, we refer to a single-line
dripper watering system (Fig. 6) where the probe grid is orthogonal to
the dripper line (Fig. 4(b)). The 𝑆 𝑡𝑎𝑡𝑒𝐼 𝑛𝑖𝑡𝑖𝑎𝑙 𝑖𝑧𝑎𝑡𝑖𝑜𝑛 function relies on the
profiling function to obtain a refined grid from a probe grid (Fig. 4(c)),
then it applies the necessary geometric transformations to complete the
whole soil volume (i.e., the simulator state):

• given a 2D refined grid, the (3D) soil moisture state 𝑆 𝑀𝑡 is
obtained by translating the refined grid along 𝑦 axis and by
reflection on the 𝑥 axis (Fig. 6);

• given a 3D refined grid, the (3D) soil moisture state 𝑆 𝑀𝑡 is
obtained by reflection one the 𝑥 axis.
6 
Fig. 6. Transforming a 2D probe grid (left) into a state of Orchard3D-Lab (right)
through translation and reflection geometric transformations.

2.3. Parameter tuner

Due to the huge number of parameters (Table 1), manual or brute-
force tuning of Orchard3D-Lab is unfeasible. Our Parameter Tuner
automatically calibrates the model parameters to fit a specific or-
chard behavior as described by probe data. In the literature, there
are numerous optimization methods to find the best configuration
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Algorithm 2 Parameter Tuner

Require: ⃖⃖⃖⃖⃗𝑊 : weather time series, ⃖⃗𝐼 : irrigation time series, 𝑋𝑓 𝑖𝑥: fixed
parameters, 𝑏𝑢𝑑 𝑔 𝑒𝑡: maximum iterations, ⃖⃖⃗𝑆: probe soil-moisture time series

nsure: 𝑋𝑡𝑢𝑛: best parameter configuration
1: 𝐻 ← ∅ ⊳ History of explored configurations
2: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 0 ⊳ Current iterations
3: while 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑏𝑢𝑑 𝑔 𝑒𝑡 do ⊳ While some budget remains
4: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1 ⊳ … increase the iterations
5: 𝑋𝑡𝑢𝑛 ← 𝐵 𝑎𝑦𝑒𝑠𝑖𝑎𝑛𝑂 𝑝𝑡(𝐻) ⊳ … optimize the ‘‘free’’ parameters
6: ⃖⃖⃖⃖⃖⃖⃖⃗𝑆 𝑀← Orchard3D-Lab(𝑆𝑡0 , ⃖⃖⃖⃖⃗𝑊 , ⃖⃗𝐼 , 𝑋𝑡𝑢𝑛 ∪𝑋𝑓 𝑖𝑥) ⊳ … run the simulator
7: 𝑒 ← 𝑒𝑟𝑟𝑜𝑟(⃖⃖⃖⃖⃖⃖⃖⃗𝑆 𝑀 , ⃖⃖⃗𝑆) ⊳ … get the error
8: 𝐻 ← 𝐻 ∪ {(𝑋𝑡𝑢𝑛, 𝑒)} ⊳ … add the configuration to the history
9: Return ar gmin

𝑋𝑡𝑢𝑛 𝑠.𝑡. (𝑋𝑡𝑢𝑛 ,𝑒)∈𝐻
𝑒 ⊳ Return the best configuration

over huge search spaces (Luo et al., 2017). Since exhaustive search is
unfeasible, these methods operate under a budget in terms of execution
time or configurations to visit. First, they evaluate the performance
of an initial (possibly random) configuration. Then, they converge to
better configurations by selectively exploring only a portion of the
search space. We employ Bayesian Optimization (BO) (Frazier, 2018),
which constructs a surrogate model of the search space to identify
he most promising regions. We incorporate priors in the definition of
he search space through parameter distributions, such as log-scales or
gronomist-derived default values. While exploring configurations, BO
alances exploitation (seeking high predicted performance) and explo-
ation (seeking configurations with higher uncertainty), thus updating
he surrogate model as more configurations are explored. BO returns
he best configuration after the exploration budget is exhausted, along-
ide uncertainty estimates for each parameter. To enhance this process,
e utilize the Blended-search approach (Wang et al., 2021) from the

FLAML package, which augments standard Bayesian Optimization with
local search capabilities. This hybrid approach focuses additional ex-
ploration on regions with promising configurations while minimizing
computational costs associated with evaluating poor configurations,
thus addressing challenges related to parameter identifiability.

The Parameter Tuner is detailed in Algorithm 2 and takes as inputs:
eather and irrigation time series, the soil moisture time series sam-
led by probes (our ground truth), a maximum iteration budget, and
he subsets of (manually) fixed and automatically-tunable parameters
𝑋𝑓 𝑖𝑥∪𝑋𝑡𝑢𝑛 = 𝑋 and, 𝑋𝑓 𝑖𝑥∩𝑋𝑡𝑢𝑛 = ∅, with 𝑋 being the parameters from

Table 1). Algorithm 2 returns as output the configuration of parameters
that allow Orchard3D-Lab to produce the best approximation of real
probe values (i.e., of our ground truth). Given the simulation states ⃖⃖⃖⃖⃖⃖⃖⃗𝑆 𝑀
and the sampled soil moisture ⃖⃖⃗𝑆, the error of approximating ⃖⃖⃗𝑆 with ⃖⃖⃖⃖⃖⃖⃖⃗𝑆 𝑀
is computed as follows

𝑒𝑟𝑟𝑜𝑟(⃖⃖⃖⃖⃖⃖⃖⃗𝑆 𝑀 , ⃖⃖⃗𝑆) = 1
|

⃖⃖⃗𝑆|

∑

⃖⃖⃗𝑆𝑖∈ ⃖⃗𝑆
𝑅𝑀 𝑆 𝐸(⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑆 𝑀𝑖, ⃖⃖⃖⃗𝑆𝑖) (9)

𝑅𝑀 𝑆 𝐸(⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑆 𝑀𝑖, ⃖⃖⃖⃗𝑆𝑖) =
√

√

√

√

1
|

⃖⃖⃖⃗𝑆𝑖|

∑

𝑡∈⃖⃖⃗𝑆𝑖

(𝑙 𝑜𝑔(𝑆𝑖,𝑡) − 𝑙 𝑜𝑔(𝑆 𝑀𝑖,𝑡))2 (10)

⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑆 𝑀𝑖 are the soil-moisture time series of a specific probe/position
, respectively, from real probes and the simulator. Consistently, 𝑆𝑖,𝑡

and 𝑆 𝑀𝑖,𝑡 represent the soil moisture values at a time 𝑡. Finally, 𝑒𝑟𝑟𝑜𝑟()
averages the 𝑅𝑀 𝑆 𝐸() over all the sensors/positions. Soil moisture
i.e., 𝑆𝑖,𝑡 and 𝑆 𝑀𝑖,𝑡) ranges over several degrees of magnitude, thus

the same nominal variation may have a different significance (e.g., a
ariation of 50 cbar in the range of [0,−100] cbar has a higher impact

than in [−100,−1000] cbar). By computing the logarithm we make
variations comparable and their average meaningful.

Algorithm 2 initializes the history of explored configurations (Line
) and the number of iterations (Line 2). While the iteration budget is
ot exhausted (Line 3), we increase the iterations (Line 4), optimize the
7 
tunable parameters through Bayesian Optimization (Line 5), forecast
the soil moisture trend with Orchard3D-Lab (Line 6), compute the
pproximation error (Line 7), and add the explored configuration along
ith its error to the history (Line 8). Finally, when the budget is
xhausted, the best configuration is returned (Line 9). We recall that
 𝑎𝑦𝑒𝑠𝑖𝑎𝑛𝑂 𝑝𝑡() carries out a smart exploration of the parameter search

pace that finds out good configuration even with a limited budget.
To the best of our knowledge, Orchard3D-Lab is the only hydrology

process-based model that leverages this innovative family of opti-
ization methods. Other tools (e.g., HYDRUS) employed either local

(e.g., the Marquardt–Levenberg algorithm) or model-free (e.g., genetic
algorithms) optimization methods.

3. Material and methods

The system has been tested on a kiwi orchard in the hills of central-
northern Italy, part of a commercial farm that was selected to represent
the real conditions for kiwi production in the area. We verify how
accurately the system, properly tuned, can simulate the real soil behav-
ior. The tests refer to the period June-August 2022 for which weather
forecasts, planned irrigation, and real soil moisture (our ground truth)
time series were collected.

3.1. System parameters

The total length of the field is 170 m, the inter-row distance (plant
to plant) is 4.5 m, and the intra-row distance is 2 m. Table 2 reports the
system parameters for the simulated plant.

The orchard is located in Errano (Faenza, Emilia-Romagna, Italy),
aving a latitude of 44.28, a longitude of 11.92, and an altitude of 62 m.
he slopes were set based on field measurements performed with a total
tation, specifically: −1 m ⋅m−1 horizontally and 2.5 m ⋅m−1 vertically.
rom the center of the intra-row, a 1 m long mound with 20 m ⋅m−1 of
lope extends in both directions. No water table was observed.

Basic soil properties were measured at the site, a single layer of
.9 m with a loamy texture (30% sand, 30% silt, and 40% clay) based
n the International Soil Science Society (ISSS) classification system.
oil water retention parameters were obtained from the parameter
uning procedure (a saturation threshold of 0.5 𝐿3 ⋅ 𝐿−3, a residual of
.03 𝐿3 ⋅ 𝐿−3, and the related Van Genuchten parameters).

According to the orchard layout, for the simulated plant we con-
sidered three drippers in a single line (0.66 m apart from each other).
The root system has been estimated to have a radius of 1.6 m and a
depth of 0.8 m. According to Section 2.1.3, roots are taproot shaped; the
𝑟𝑜𝑜𝑡𝑥 and 𝑟𝑜𝑜𝑡𝑧 determine the shape shown in Fig. 3. The volume of the
imulated parallelepiped is 2 m⋅2 m⋅0.8 m (the product of length, width,

and depth). This allows to properly simulate the whole root system. The
domain is discretized with a dynamic cell size: both length and width
re set to 0.125 m, and depth ranges from 0.01 m to 0.04 m. Specifically,
 geometrical progression was chosen in the first 0.2 m of soil.

3.2. Weather, watering, and soil moisture time series

All data were sampled hourly. Weather and watering variables were
ollected at the site through a weather station and a water meter,

respectively. The 1-, 3-, and 7-day weather forecasts, to be provided
to the model as simulation inputs, were provided by the weather
regional service ARPAE (Environmental Prevention Agency, 2024). We
monitored the field from May to October 2022 and selected the period
of the actual irrigation season: from June 21st to August 31st. Fig. 7
depicts the trend of air humidity, air temperature, solar radiation, and
wind speed through the whole period. In general, air humidity and
temperature show a hot and damp summer, with a peak of 39 ◦C of air
temperature and 97.7% humidity. The period was poorly ventilated,
and solar radiation is typical of the area with values ranging from
about 350 in March to 750 W m−2 in July. The water balance in
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Table 2
System parameters values for our case study.

Type Parameter Value

Field Location Latitude = 44.28, Longitude = 11.92, Altitude = 62 m
Slopes Horizontal = −0.01 m ⋅m−1, Vertical = −0.025 m ⋅m−1

Mound Slope = 0.2 m ⋅m−1, width = 1 m
Water table None

Soil Layera Thickness 0.9 m
Texture Sand = 30%, Silt = 30%, Clay = 40%
Ksat 1.1 ⋅ 10−6

𝜽𝒔 0.5 m3 ⋅m−3

𝜽𝒓 0.03 m3 ⋅m−3

𝜶 1.9 m−1

𝐧 1.5
he 0.23 m H2O
b None

Planta Position First = (0.0, −0.3)
Radius 1.6 m
Leaf area index 4.5
Root depth 0.8 m
Root deformations 𝑟𝑜𝑜𝑡𝑥 = 0.0, 𝑟𝑜𝑜𝑡𝑧 = 0.8
Kc max 2.6
fRAW 0.5

Irrigation elema Type Single-line Dripper
Position First = (0.0, −0.67), Second = (0.0, 0.0), Third = (0.0, 0.67)

Model Geometry Length = 2 m, Width = 2 m, Depth = 0.8 m
Cell size min = 0.01 m, max = 0.04 m
Retention curve mod. Van Genuchten
Conductivity mean log
Conductivity H/V Ratio 1.0

Parameters in bold are targeted by the parameter tuning.
a Types can have several elements.
Fig. 7. Weather time series throughout the simulation period.
Fig. 8 provides a detailed description of the water dynamics of the
orchard. We observed an extremely dry season w.r.t. precipitation;
the only significant rain was detected around mid-August. Hence, the
drainage is present only after the rains of August and a constant amount
of irrigation was mandatory in the remainder extent of time. The
evaporation is always contained, below or around 1 mm ⋅ d−1 (which
corresponds to one liter per square meter) due to the kiwi leaf cover
which shades the ground. On the other hand, the transpiration demand
is very high, some days even over 10 mm ⋅ d−1, but irrigation amounts
and schedule are adequate for the demand—apart from the excessive
irrigation of 20 mm in June. Therefore, the plant never experienced
water stress, as can be seen from the fact that the actual transpiration
is always equal to or close to the maximum required by the weather
conditions.
8 
As to the soil moisture of the monitored tree, we installed a 2D
probe grid of 12 GB-1 Gypsum Block Sensors2 (Delmhorst Inc.) as
shown in Fig. 1. The grid was orthogonal to the 𝑦 axis (i.e., the intra-
row line), with 0.2 m of translation from the plant, with the top left
corner under the dripper. As shown in Fig. 9, probes were organized
on three different depths (0.2 m, 0.4 m, 0.6 m on the 𝑧 axis), with four
elements per level on the 𝑥 axis (≈ 0.25 m to each other). Probe values
are collected through a LoRaWan network every 15 min.

2 A Gypsum Block Sensor consists of two electrodes mounted in a small
block of porous material: as the soil dries out water is extracted from the
gypsum block and the resistance reading between the electrodes increases.
When the soil is wetted, water is drawn back into the block and the resistance
decreases.
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Fig. 8. Water balance throughout the period.
Fig. 9. Water potential time series of the 12 probes throughout the simulation period.
Fig. 10. The evaluation methodology.
3.3. Evaluation methods

Tests involve both Orchard3D-Lab and the Parameter Tuner mod-
ules. All the tests are run on an Intel Core i7 machine running at
.20 GHz with 64 GB of main memory.

As to the efficiency of the online phase, we collected the average
orecasting execution time for Orchard3D-Lab. As to effectiveness, tests
re aimed at verifying the simulation accuracy and comparing it with a
tandard baseline to better understand the improvement. We adopted
he following testing methodology (see Fig. 10):

• The available dataset has been split in two: the first two-week pe-
riod (June 21st–July 5th) is used for tuning the parameters, while
9 
the remaining samples (July 6th–August 31st) were exploited for
testing.

• Parameter Tuner is fed with ground truth weather data collected
at the site.

• We tested Orchard3D-Lab with three different forecasting hori-
zons: 1, 3, and 7 days ahead.

• For every timestamp 𝑡 in the testing period, we run the state
initialization procedure (see Section 2.2) to compute the initial
state 𝑆 𝑀𝐼 𝑛𝑖𝑡 and then we fed Orchard3D-Lab providing with ⃖⃖⃖⃖⃗𝑊
and ⃖⃗𝐼 according to the forecasting horizon. ⃖⃖⃖⃖⃗𝑊 are the weather
conditions forecasted at time 𝑡 by the weather regional service
ARPAE (Environmental Prevention Agency, 2024). Irrigation data
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⃖⃗𝐼 is instead a known input (the farmer/system decides when to
water).

For instance, given a horizon of 3 days, Orchard3D-Lab (i) initializes
the soil moisture state with the first sample, (ii) iterates the simulation
for the duration of 72 samples using as input the output of the previous
iteration, and (iii) calculates the error between observed and final
simulated samplings.

The Parameter Tuner is the data-driven process that automatically
etermines the right parameters for the current use case. The tuner
hould retain its effectiveness even when a reduced amount of examples
s available, resulting in a shorter sampling period to tune Orchard3D-
ab. To verify the Parameter Tuner robustness we progressively reduce
he tuning period (75%, 50%, and 25% of June 21st–July 5th) and
valuate the performance of the returned sets of parameters (Fig. 10).

4. Results

4.1. Orchard3D-Lab efficiency

The computation time needed for forecasting soil moisture in a
future state depends on the current water content of the soil and the
amount of irrigation/precipitation of each hour (the more the watering,
the more expensive the calculation). Throughout the whole period, we
observed an average of 2 s in forecasting the soil moisture of the next
hour, 48 s for a 1-day horizon, 144 s (≈ 2 min) for a 3-day horizon,
and 336 s (≈ 5 min) for a 7-day horizon.

4.2. Orchard3D-Lab effectiveness

Figs. 11 and 12 show a graphical representation of the measured soil
oisture profile and compare it with the forecasting results. Colors em-

phasize water potential values according to five crop-specific soil mois-
ture ranges (suggested by agronomist during the Agro.Big.Data.Science
project (The Agro.Big.Data.Science Project, 2020)): dark blue (in
0,−30) cbar) and light blue (in [−30,−100) cbar) show heavily/slightly
ortions of over-watered soil, salmon pink (in [−100,−300) cbar) repre-
ents the ideal case (Miller et al., 1998), while light red (in
−300,−1500) cbar) and dark red (in the range of [−1500,−10000) cbar)
how portions of slightly/heavily under-watered soil. Note that, as

water potential is not linear, the ranges of values are smaller when
the water potential is closer to the field capacity (i.e., the soil is more
saturated). Consequently, forecasting errors must be smaller when the
water potential is closer to 0 (i.e., very wet soil).

While Fig. 11 shows the soil moisture trend along the overall
esting period, Fig. 12 spatially details the profile at 10 am on July

26th. The fine-grained spatial grid clearly shows how moisture changes
depending on the dripper distance and according to the effect of the
root system. Forecasted profiles (sub-figures (b), (c), and (d)) are very
similar to the observed ones with slight differences appearing as the
forecasting horizon increases.

Fig. 13 is a numerical representation of Fig. 11. It reports the aver-
age water potentials of the sensor grid over time, as defined in Eq. (11),
where ⃖⃖⃖⃗𝑋𝑡 can be substituted by ⃖⃖⃖⃗𝑆𝑡 and ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑆 𝑀𝑡 at different time horizons.

𝐴𝑣𝑔 𝑃 𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙( ⃖⃖⃖⃗𝑋𝑡) = 1
|

⃖⃖⃖⃗𝑋𝑡|

∑

⃖⃖⃖⃖⃗𝑋𝑖,𝑡∈ ⃖⃖⃗𝑋𝑡

⃖⃖⃖⃖⃖⃗𝑋𝑖,𝑡 (11)

Given the very dry season and the heavy rainfall in those days, the
soil presented unexpected macropores and cracks in the sub-surface
ayers. This resulted in a non-uniform distribution and unexpected

changes in the soil moisture dynamics, which the model was unable to
fully capture due to its limitation in accounting for preferential flows.
Yet, it is worth noticing how the state initialization mechanism allows
Orchard3D-Lab to recognize such events, reset to the actual state, and
quickly reduce the error. Forecasts with shorter horizons reinitialize
earlier and react faster to changes.
10 
Table 3
Forecasting error (Eq. (9)) considering different portions of tuning data.

Percentage of Forecasting horizon

tuning period 1 day 3 days 7 days

25% 0.43 0.69 0.79
50% 0.40 0.63 0.79
75% 0.40 0.63 0.83
100% 0.38 0.59 0.73

Finally, Fig. 14 reports a scatterplot showing the correlation be-
tween observed and forecasted water content. The regression lines
show the overall trend. The closer the forecasted values are to the
observed ones, the lower the regression line diverges from the chart
diagonal (i.e., from the full correlation between the two variables).
Variables are well correlated on all time horizons with the best per-
formance being 1-day forecast. Orchard3D-Lab tends to estimate the
soil slightly over-moistured for high values of water content but is
extremely accurate for low values.

4.3. Parameter tuning effectiveness

Table 3 shows that errors slightly decrease when more tuning data
re available for every forecasting horizon. More data translates into
ore hydraulic dynamic examples, which are useful to better estimate

he parameters, and hence make the forecasts more reliable. Although
the general trend, Orchard3D-Lab achieves good performance even
with 25% and 50% of the considered period. Above all, the case of
50% does not consider the rain at the beginning of June (which brings
some fluctuations in the calculus) and achieves excellent performance.

he standard deviation remains steady along the forecasting horizon.
Overall, the insights suggest that the tuning phase of Orchard3D-Lab
s robust in suggesting soil and plant parameters for the use case at
and.

5. Discussion

An irrigation forecasting system for precision agriculture is effec-
ive if its accuracy enables an effective watering policy. According to
he agronomy researchers involved in the Agro.Big.Data.Science (The

Agro.Big.Data.Science Project, 2020), relative errors up to 50% be-
tween the predicted and the actual values are permissible because they
do not impact watering choices. For example, reminding that water po-
tential is not linear, predicting a moisture value of −300 cbar when the
ctual moisture is −200 cbar does not invalidate the agronomist evalu-
tion; the same happens if the predicted moisture value is −3000 cbar
hen the actual moisture is −2000 cbar. Fig. 15 reports the relative error

along time computed as:

𝑅𝑒𝑙 𝐸 𝑟𝑟(⃖⃖⃖⃗𝑆𝑡, ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑆 𝑀𝑡) =
𝐴𝑣𝑔 𝑃 𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(⃖⃖⃖⃗𝑆𝑡) − 𝐴𝑣𝑔 𝑃 𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑆 𝑀𝑡)

𝐴𝑣𝑔 𝑃 𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙(⃖⃖⃖⃗𝑆𝑡)
(12)

the three lines shows simulations, ⃖⃖⃖⃖⃖⃖⃖⃗𝑆 𝑀 , computed using different fore-
casting horizons. Orchard3D-Lab was able to remain well below the
0% relative error threshold during the whole season below 25% of rel-
tive error for the 93%, 87%, and 86% of the season for respectively (1-,
-, and 7-day horizons), with an exception occurred around mid-August
fter heavy rain.

To better appreciate Orchard3D-Lab performance, we compared it
with a Persistent System forecaster (i.e., the forecasted water potential
is the current one) that we use as a baseline. reports the average
prediction RMSE (see Eq. (10)) through the whole period. Orchard3D-
ab outperforms the baseline for 3 out of 4 forecasting horizons. It

should be noted that a Persistent System has an advantage when tests
are carried out on an orchard which, as a matter of cultivation policy,
is watered every day to maintain water potential constant. Limited
variations in water potential (due to constant daily irrigation) favor
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Fig. 11. Soil moisture trend over the period.
Fig. 12. 2D-spatial soil moisture profiles.
Table 4
Comparison of the RMSE (Eq. (10)) for Orchard3D-Lab and the Persistent System considering different irrigation policies and forecasting horizon.

Orchard3D-Lab ∖ Persistent
System

Forecasting horizon
1 day 3 days 7 days

Irrigation

policy

(2022) Daily 0.38 ∖ 0.44 0.59 ∖ 0.61 0.73 ∖ 0.72
(2024) Weekly 0.36 ∖ 0.54 0.56 ∖ 0.70 0.57 ∖ 0.71
the Persistent System, which will have a smaller error although the
Persistent System is unaware of irrigation (i.e., the forecasted value
is independent of values in ⃖⃗𝐼). For this reason, we also use data
collected in 2024 when, for research purposes, a weekly irrigation
11 
policy was used; this results in a sensitive fluctuation of soil moisture
and irrigation over time.

Orchard3D-Lab largely outperforms the Persistent System when a
weekly irrigation policy is adopted. The average error is 0.36 for the 1-
day horizon, 0.56 for the 3-day horizon, and 0.57 for the 7-day horizon.
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Fig. 13. Averaged (observed) water potential ⃖⃖⃗𝑆 and Orchard3D-Lab simulations ⃖⃖⃖⃖⃖⃖⃖⃗𝑆 𝑀 according to the forecasting horizons.
Fig. 14. Correlation between observed and forecasted water content (%).
Fig. 15. Water potential relative errors. The green region defines the relative error limit for which the forecast is considered reliable.
r
e
d
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The advanced prediction model of Orchard3D-Lab makes it more useful
as the forecasting horizon increases. This makes it particularly suitable
in the most critical contexts, e.g. those in which daily irrigation is not
possible due to water resource scarcity or business constraints. In these
cases, an accurate prediction of soil moisture evolution is fundamental
to provide the soil with the correct amount of water to minimize hydric
stress throughout the forecast horizon.

6. Conclusions

We presented an integrated system coupling a three-dimensional
process-based model with a state initialization procedure that exploits a
12 
two-dimensional probe grid. Forecasted soil moisture data up to a 7-day
horizon has proven to be precise enough to support precision watering.
Testing has been carried out on a real Kiwifruit orchard. Data from
eal probes are also used to auto-tune the soil parameters to achieve
ffective field-specific forecasts. Robustness tests emphasized that a few
ays of hourly samples are enough to properly set the field parameters,
aking our approach practically applicable.

We are now working towards creating a prescriptive system deliv-
ering watering advice. Orchard3D-Lab will be exploited to forecast the
combined effects of weather conditions and watering policies. Coupling
Orchard3D-Lab with an optimizer allows the testing of different policies
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and computing the watering advice that best fits an optimal soil mois-
ure profile. Working on a 7-day period, we can handle complex cases
here constraints (e.g., water availability) do not allow daily irrigation.
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