Information Systems 129 (2025) 102496

Contents lists available at ScienceDirect

Information
Systems

i P

Information Systems

journal homepage: www.elsevier.com/locate/is

VOOL: A modular insight-based framework for vocalizing OLAP sessions

Matteo Francia *, Enrico Gallinucci, Matteo Golfarelli, Stefano Rizzi
DISI, University of Bologna, Italy

ARTICLE INFO ABSTRACT

Keywords: OLAP streamlines the exploration of multidimensional data cubes by allowing decision-makers to build sessions

Vocalization of analytical queries via a “point-and-click” interaction. However, new scenarios are appearing in which

OLAP alternative forms of user-system communication, based for instance on natural language, are necessary. To

Business intelligence cope with these scenarios, we present VOOL, an extensible framework for the vocalization of the results of

Conversational OLAP sessions. To avoid flooding the user with long and tedious descriptions, we choose to vocalize only
selected insights automatically extracted from query results. Insights are quantitative and rich-in-semantics
characterizations of the results of an OLAP query, and they also take into account the user’s intentions as
expressed by OLAP operators. Firstly, they are extracted using statistics and machine learning algorithms;
then an optimization algorithm is applied to select the most relevant insights respecting a limit on the overall
duration of vocalization. Finally, the selected insights are sorted into a comprehensive description that is
vocalized to the user. After describing and formalizing our approach, we evaluate it from the points of view
of efficiency, effectiveness, and operativity, also by comparing it with LLM-based applications.

1. Introduction results through statistics and machine learning algorithms, and can be

explained to users by means of a natural language description.
The OLAP (On-Line Analytical Processing) paradigm streamlines

data exploration by allowing decision-makers — independently of their 1.1. Requirements for OLAP vocalization

ICT skills — to interactively build intuitive sessions of queries on mul-

tidimensional data cubes; each query in a session is easily formulated We start by emphasizing that, in OLAP scenarios, each query the
by applying an intuitive OLAP operator to the results of the previous user formulates within an OLAP session depends on the data (s)he
query. OLAP tools excellently support this paradigm via a “point-and- has found in the cube resulting from the previous query. Indeed, the

click” interaction, which is optimal in traditional business scenarios.
However, new scenarios are appearing in which users either request

user can get precious insights by comparing the results of consec-
utive queries. The insights emerging during analysis can be simple
hand-free interfaces [1] or they have specific visual necessities [2], (e.g., min/max) or more complex (e.g., clusters and outliers); they can
thus calling for alternative forms of communication with the system, illustrate any amount of facts in the cube, and could also depend on

for instance using natural language. In general, there is a progressive the applied OLAP operator (for instance, the roll-up operator returns
shift of user-computer communication towards voice interfaces, which a coarser view of the cube, which is very different from the goal

enable users to keep using the system even if they are distracted or of the slice-and-dice operator, i.e., focusing on a specific part of the
cannot reach for the screen and the keyboard. Interestingly, translating cube).

natural language sentences into OLAP sessions has been thoroughly The overall requirements we deem necessary for an OLAP vocaliza-
investigated [3]; however, the issues related to the vocalization of the tion framework can be listed as follows:
results of OLAP sessions have been addressed only partially. With this

paper, we aim at taking one step forward in this direction. The risk #1 Automation: it must extract data-driven insights with no techni-
when vocalizing the results of OLAP sessions is to flood the user with cal support by ICT specialists.

long and tedious descriptions; thus, we choose to vocalize only selected #2 Session-awareness: it should be aimed at describing not only the
insights. An insight is a quantitative and rich-in-semantics characteriza- results of a single query, but also the comparison of the results
tion of the results of an OLAP query. It is obtained by analyzing these of subsequent queries in a session.

* Corresponding author.
E-mail addresses: m.francia@unibo.it (M. Francia), enrico.gallinucci@unibo.it (E. Gallinucci), matteo.golfarelli@unibo.it (M. Golfarelli),
stefano.rizzi@unibo.it (S. Rizzi).

https://doi.org/10.1016/j.i5.2024.102496

Received 21 December 2023; Received in revised form 25 November 2024; Accepted 26 November 2024

Available online 2 December 2024

0306-4379/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/is
https://www.elsevier.com/locate/is
mailto:m.francia@unibo.it
mailto:enrico.gallinucci@unibo.it
mailto:matteo.golfarelli@unibo.it
mailto:stefano.rizzi@unibo.it
https://doi.org/10.1016/j.is.2024.102496
https://doi.org/10.1016/j.is.2024.102496
http://creativecommons.org/licenses/by/4.0/

M. Francia et al.

"Sales by ™

customer | ge—
and year"” "Drill down
)) to month"
\;7
"The average
saleis..."
\ "Outstanding

products are..."

\ - Insight

"Tell me \
more!”

Query
= |Querying —

\ descriptions

Information Systems 129 (2025) 102496

Previous
query result

Insight
generation

1

result

Data
Cubes

Insight
selection

MOO
OO
([

Selected
insights

Vocalization

Fig. 1. Functional view of VOOL.

#3 Intention-awareness: it should take the semantics of each OLAP
operator into account.

#4 Extensibility: it should allow an easy inclusion of new modules
via suitable interfaces.

#5 Timeliness: the vocalization process should return the results to
the user without long delays.

#6 Conciseness: the text vocalized should not be needlessly verbose.

1.2. Overview of VOOL

Inspired by the requirements above, in this paper we present a
framework for the VOcalization of OLap sessions (VOOL). In Fig. 1
we give a description of VOOL from the functional point of view; the
querying component is out of scope for this paper since it has been
described by [3].

Vocalization of an initial query. The user first formulates an initial, fully-
specified OLAP query g, (e.g., “Sales by Customer and Year”), which
returns a cube C,. This cube is sent as input to the insight generation
process, which executes a set of modules to analyze the cube data so as
to obtain different types of insights. Each insight has a natural language
description, an interest, a coverage (the number of tuples covered by
the description), and a vocalization cost (e.g., the number of words of
its natural language description or the duration of its vocalization). For
instance, an insight produced by a Top-k module could be described
in natural language as “The facts with highest Quantity are Beer with
80, Wine with 70, and Cola with 30”. Any number of modules can
be executed, and each of them can return any number of insights;
thus, a significantly large number of insights can be returned overall.
Insight selection applies an optimization algorithm to this set of insights
to isolate the most interesting ones based on a given limited budget
(related for instance to the total duration of vocalization). Vocalization
sorts the most interesting insights from the most general ones (i.e., the
ones with higher coverage) to the most specific ones and vocalizes them
using a comprehensive natural language description.

Vocalization of a refined query. The user can iteratively apply an OLAP
operator to formulate a new query ¢, i = 1,...,n (refined query).
The cube C; resulting from refined query g¢; is sent as input to in-
sight generation together with the one resulting from ¢,_;, i.e., C;_;.
Consistently with requirements #2 and #3 (Session-awareness and
Intention-awareness), the insights detected can entail not only the
description of C;, but also its comparison with C;_;. For instance,

in the sales domain, after drilling down sales from product category
to product, a user may be interested in excellent products that were
previously concealed within average-performing categories. Following
the generation of insights, vocalization is done as with an initial query.

Details-on-demand. After the selected insights have been vocalized, the
user might ask for more details. To this end, VOOL supports two means
of interactions: “Tell me more” and “Tell me more about F”, where F
is a module. The latter is a request for details specific to F (e.g., if
we returned the Top-3 products with the highest sales, a user might be
interested in expanding the description to the Top-5 products). “Tell me
more” is a generic request for additional details; given a new budget,
any insight not vocalized yet can be returned to the user.

1.3. Novel contributions and paper outline

A preliminary version of VOOL has been presented by [4]. The new
contributions we offer here are listed below:

We introduce the “Tell me more” interaction mode to let the user
ask for further insights.

We include additional modules in the framework, namely, assess,
domain variance, and skyline.

For all modules we give a formal definition of insight interest to
drive the insight selection process.

We introduce a categorization of modules.

We formalize the algorithm for insight selection.

We substantially extend the set of experiments by including more
efficiency and user tests, comparing against large language mod-
els (LLMs), and investigating the relationship between the vocal-
ization budget and the interest of the insights returned.

The paper structure is as follows. Section 2 formalizes the necessary
background. Section 3 introduces the vocalization process, including
insight generation (Section 3.1), insight selection (Section 3.2), vocal-
ization (Section 3.3), and details-on-demand (Section 3.4). Section 4
describes the basic modules we implemented to support the VOOL
framework. Section 5 presents the results of a comprehensive set of
tests aimed at assessing the effectiveness, efficiency, and operativity of
VOOL, also by comparing it with LLMs. Section 6 discusses the related
approaches and, finally, Section 7 draws the conclusions and envisions
the possible evolutions of VOOL.

M. Francia et al.

S.Country O
S.City O

Store O

O C.Country
O C.City

O Customer

Gender
Q

Family
O
Quantity

Revenue
UnitPrice

Date Month Year
O O

O O
Type Product
Category

Fig. 2. (Simplified) DFM representation of the Sales cube schema.

2. Formal background

The reader is referred to [3] for a full disclosure of formal defini-
tions. Here, we limit the discussion to the necessary background. We
start with the cube, which is a multidimensional depiction of a business
phenomenon important for decision-making.

Definition 1 (Hierarchy and Cube Schema). A hierarchy is a triple h =
(L,>,>) where:

(i) L is a set of categorical levels, each level / being coupled with a
domain of members, Dom(l);
(ii) > is a roll-up partial order of L; and
(iii) > is a part-of partial order of J,c; Dom(l).

The part-of partial order is such that, for each couple of levels / and
" such that [> I/, for each member u € Dom(l) there is exactly one
member ' € Dom(l’) such that u > u’. A cube schema is a couple
C = (H, M) where:

(i) H is a set of hierarchies;
(ii) M is a set of numerical measures, each coupled with an aggre-
gation operator op(m) € {sum, avg, min, max}.

Example 1. Let cube schema Sales = (H, M) be our working example;
Fig. 2 shows its conceptual representation according to the DFM [5]:

H = {hDate7 hCustomer’ hStore’ hProduct }
M = {Quantity, Revenue, UnitPrice}

Store > S.City > S.Country,

Date > Month > Year,

We have op(Revenue) = op(Quantity) = sum and op(UnitPrice) = min. As
to the part-of partial order we have, for instance, Venice > Italy and
2024-04-15 > 2024. [

Cubes are normally queried by aggregating their data according to
a group-by, whose formal definition is given below.

Definition 2 (Group-by and Coordinate). Given cube schema C =
(H, M), a group-by of C is a tuple G of levels. A coordinate of group-by
G is a tuple of members, one for each level of G. Let > be the partial
order of all the possible group-by’s of C, induced by the roll-up orders
of the hierarchies in H. Given coordinate y of group-by G and another
group-by G’ such that G > G’, we will say that y rolls-up to y’ if y’ is
the coordinate of G’ whose members are related to the corresponding
members of y in the part-of orders.

Definition 3 (Base Cube). Let GT be the top group-by in the >, partial
order (i.e., the finest one). A base cube over C is a partial function CT
that maps the coordinates of G to a numerical value for each measure
meM.

Information Systems 129 (2025) 102496

Each coordinate y that participates in CT, with its associated tuple
of measure values, is called a fact of CT. The value taken by measure m
in the fact corresponding to y is denoted y.m. We will also treat a cube
as the collection of coordinates corresponding to its facts, albeit with a
minor abuse of notation.

Example 2. Three group-by’s of Sales are GT = (Date, Customer,
Store, Product), G; = (Month, C.City, Gender), and G, = (Year), where
G" >y G, >y G,. Examples of coordinates of the three group-
by’s are, respectively, yT = (2024-04-15,Rossi, BigMart, Beer), y, =
(2024-04, Rome, Male), and y, = (2024), where y, rolls-up to y, and
7, rolls-up to y,. [

Definition 4 ((Cube) Query and (Derived) Cube). Given a base cube CT
over schema C, a (cube) query over C is a quadruple ¢ = (C, G, P, M)
where:

(i) G, is a group-by of C;
(ii) P, is a (possibly empty) set of selection predicates each ex-
pressed over one level of H;
(iii) M, C M.

The result of g over base cube CT, denoted ¢(CT), is called a (derived)
cube, i.e., a partial function that assigns to each coordinate y of G,
satisfying the conjunction of the predicates in P, the value computed
by applying op(m) to the values of m for all the coordinates of CT that
roll-up to y.

Note that, as a consequence of this definition, if no level of a hier-
archy 4 is included in a group-by, then facts are completely aggregated
along h.

Example 3. Let ¢ a sample query over Sales which returns the total
quantity sold by product; its formalization is ¢ = (Sales,G,, P,, M)
where G, = {Product}, P, = @ (i.e., no selection predicate is applied),
and M, = {Quantity}. [

An OLAP session is a sequence of queries, gy, ..., q,; the first query
qp is fully stated, whereas the subsequent queries are obtained as
refinements by applying an OLAP operator to the output of the pre-
vious query. We denote with w; € {roll-up, drill-down, slice-and-dice}
the OLAP operator applied to ¢;_; to obtain g;. The OLAP operators
considered in VOOL are the following:

* Roll-up: used to aggregate data (e.g., from Month to Year).

* Drill-down: used to disaggregate data (e.g., from Year to Month).

+ Slice-and-dice: used to filter data on a selection predicate (e.g., Date
= 2024-04-15).

3. The vocalization process

The VOOL framework has four steps that are each explained in the
subsections below: Insight generation, Insight selection, Vocalization, and
Details-on-demand.

3.1. Insight generation

At this point, a collection of modules (such as the Top-k function or
a clustering function) are executed to extract insights (such as the top
three facts or a pair of clusters) characterizing the results of the query.
Each of the components that make up an insight describes either a single
fact (such as one of the top three facts) or a set of facts (e.g., a cluster).

Definition 5 (Module). Let CT be a base cube, and ¢;_; and ¢; be two
consecutive queries within an OLAP session, the latter being obtained
by the former by applying OLAP operator w; (with ¢;_; = NULL when
i =0, i.e., the initial query is being vocalized). A module is a function
F(CT,q;_,q;,w;) = ST, where ST is a set of insights.

M. Francia et al.

qo=(Sales, {Product}, @, {Quantity })

Product Quantity
Beer 80
Wine 70
Cola 30
Bagel 8
Pizza 6
Bread 5

Fig. 3. The cube resulting from the (initial) query g, in Example 3, which represents
the Quantity sold by Product.

A module is executable only if certain conditions are met (possibly
related to the aggregation operator used in the query, the measures
included in the query result, and the applied OLAP operators). It should
be noted that this specification permits the application of any function
capable of extracting insights from one or two cubes, in line with
requirement #4 (Extensibility).

Definition 6 (Insight). An insight s € F(CT,q,-,l,q,.,w) is a set of
components; each component v € s describes a set of facts of ¢,(CT),
denoted as Desc(v). Insight s is characterized as follows:

(i) N L(s) is the natural language description of s.

(ii) int(s) is the interest of the insight, i.e., its estimated relevance to
the decision-making process, defined as
int(s) = z int(v)

VES

where int(v) € (0, 1] is the interest of component v.

(iii) cou(s) € (0, 1] is the fraction of cube facts covered by the insight,
called coverage:

| UUES Ul
cou(s) = —
lg;(CT)
(iv) cost(s) € N is the cost related to the vocalization of s, measured
as the number of words in N L(s).

The module-specific grammars used to construct the natural lan-
guage descriptions of insights, N L(s), are predefined. Each module has
its own definition for the interest of insight components, int(v) (see
Section 4). Intuitively, an insight with greater scope is more general
and one with less coverage is more focused.

Definition 7 (Insight Space). In the following, let 7 be the set of all
modules. Given two consecutive queries ¢;_; and ¢; in an OLAP session,
their insight space is the set of the sets of insights produced by all
modules:

S={F(C".q_.q.0:F €F}={{s].....sF} FeF}

Two assumptions are made on modules and insights in order to
enable simultaneous and efficient insight generation and selection:

1. Insights are self-contained: given an insight s, N L(s) is a self-
standing sentence containing all the information necessary for
vocalization. As a consequence, the vocalization of an insight is
independent from all the others.

2. Insights produced from the same module F are incremental,
meaning that they can be organized in a sequence where each
insight’s description expands on the one before it by adding a

Information Systems 129 (2025) 102496

new component. In the following, we will assume that the or-
dering of indices reflects the resulting inclusion (total) ordering:

F _ ((F F ; F Fy ipicoF .
St = {s1 s Sy ks with cov(suH) > cou(s,), mt(suH) > init(s,),
and cost(suFH) > cost(sf) forl <u<n-1.

Example 4. Table 1 shows some of the insights generated by various
modules based on the query result from Fig. 3. It should be noted that
an insight may, from an informative standpoint, be an extension of
another insight because it contains additional components (for instance,

sT is extended by sz with two components —which correspond to

1 ;
facts Wine and Cola— while s‘f is extended by sg with one component

—which corresponds to a cluster that includes two facts). [J
3.2. Insight selection

There must be a selection made on the insights to be vocalized
because the insight space S can be quite large. Finding the subset of
insights S such that (i) the total interest is at its greatest and (ii) the
total cost is within a specified time budget ¢, is the aim of this step
(see requirement #6, Conciseness). Budget definition is simple for users
because 7,,, is expressed in seconds. However, in order to separate the
insight cost from its vocalization, the former corresponds to the amount
of words in the textual description (depending on the target audience,
the optimal speech rate may vary). It is simple to convert ¢,,. into a
maximum number of words; for instance, 180 is the typical word rate
for English speakers and readers [6].

The one described above is unmistakably an optimization problem,
with the two extra factors of non-redundancy and right-time response
to be taken into account.

Non-redundancy. Even if it is assumed that distinct modules provide
insights with different meanings, the insights from the same module
have overlapping material (since they are built incrementally). As a
result, just one insight s € S should be chosen given a module F
and its output S¥. The multiple-choice knapsack problem (MCKP), a
generalization of the knapsack problem, can thus be used to model
insight selection. The MCKP divides the set of items (S) into classes
(the Sf’s), and the binary decision of taking or not taking an item is
replaced by the selection of no more than one item from each class [7].

Right-time response. Since the modules have varied levels of complexity
and execution timeframes and are carried out in a bag-of-task fashion, S
is progressively populated (see requirement #5, Timeliness). However,
to maintain the interactive nature of the OLAP session, vocalization
should start right away following the query execution, rather than
waiting for the termination of all modules. To this end, only a fixed time
1,.n 1S Waited to begin insight selection. In the case that some modules
take a longer time to finish and add insights to S after 7,,,, the latter
will not be included in the selection process, but will be taken into
account if the user requests further insights in the details-on-demand
stage.

The MCKP is solved through the Dyemer-Zemel greedy algorithm [8],
which considers the “slope” of pairs of insights (i.e., the ratio between
the increase in interest and the increase in cost). The algorithm, whose
pseudocode is shown in Algorithm 1, starts by considering all the
insights in S and iteratively drops some insights until the budget is
consumed. At first, for each module F, the algorithm builds cost-
ordered pairs of insights and discards the dominated insights, i.e., those
with higher cost and lower interest than another insight (Lines 4-6). If
an insight has no siblings (i.e., |S¥| = 1), that insight is selected and
copied in S (Lines 7-10). Else, the algorithm computes the slope for
each pair of insights and the median slope « of all the pairs (Lines 11—
14). For each module the algorithm computes the locally optimal slope
M, to be refined throughout the iterations (Lines 15-16); then it selects,
among the insights with slope M, those with the lowest and highest
costs (Lines 17-18). If the optimal split 7, is reached [8] the algorithm
stops (Lines 19-20). Otherwise, the insights with too high/low slope are
dropped (Lines 21-27).

M. Francia et al.

Information Systems 129 (2025) 102496

Table 1
Sample insights that describe the query result shown in Fig. 3.
Module Insight NL cost int cov
Statistics sP The average Quantity is 33.2 5 0.0 1.0
Ton-k st The fact with highest Quantity is Beer with 80 9 0.4 0.2
P s§ The three facts with highest Quantity are Beer with 80, Wine with 70, and 17 1.0 0.5
Cola with 30
. s€ Facts can be grouped into 2 clusters, the largest one has 4 facts and 12 as 18 0.8 0.7
Clustering ! -
average Quantity
sg Facts can be grouped into 2 clusters, the largest one has 4 facts and 12 as 29 1.6 1.0
average Quantity, the second one has 2 facts and 75 as average Quantity
Assess .v‘l‘ When compared to the previous query, the Quantity of Pizza is 6, tantamount 22 1.0 0.2

to the average Quantity of Food that is 6.3

Algorithm 1 Insight selection algorithm

1: S<¢
2: stop — FALSE
3: while !stop do
4: for each S¥ €S do > For each module
5: for each pair of insights (suF,sf) s.t. cosr(suF) < cost(sZF) A inr(s"F) > im(xf) do
> sI" dominates 5!
6 SF P\ s > Delete the dominated insight
7 if ¥ = {s7} then > If a single insight is left in S¥...
8: S« Su{sfy > ... select that insight...
9: Tuoe < Tuge — cost(sT) > ... decrease the budget...
10: S« s\sF > ... and remove ST
11: else
12: for each (sf'.sF) do
. int(sE)—int(sF)

13: @, < m > Compute the slope of sf wrt to sf
14: a <« median({a,;})
15: for each S € S do > For each module
16: M « argmaxxFeSF (inf(sF) —a- cost(sF))

> Select the insights with the optimal slope
17: sf - argminspeM(cost(SF)) > Get the insight with the lowest cost
18: sf - argmaxsFEM(cast(sF)) > Get the insight with the highest cost
19: if (T gregcostsh) Sty < (Tgreg cast(s:)) then > If optimal split...
20: stop— TRUE > ... stop the algorithm
21: else
22: if (Tgregcost(s)) 2 1y then
23: for each (sf,sf) s.t. o, <a do
24: SF sF\sF > Prune the insights
25: if (XgFes cost(sf)) < Iy, then
26: for each (sf',sf) s.t. o, > do
27: SF P\ sF > Prune the insights

3.3. Vocalization

The preamble of the vocalization is a description of the query, such
as “The query result shows the sum of quantity grouped by product”,
and it sets the stage for the insights that follow. No pauses will be
noticed by the user in the vocalization if it takes longer to vocalize the
preamble than 7,,,. The insights in S are spoken after the preamble.
In particular, they are sorted by descending coverage cov (from the
broadest to the narrowest), and their natural language descriptions
N L’s are then concatenated and vocalized.

3.4. Details-on-demand

Once the insights in .S have been vocalized to the user, she might
want to get more detail either in general or with reference to a specific
module. To this end, VOOL supports two means of interaction: “Tell
me more” and “Tell me more about F”. Let sf be the insight (if
any) previously selected among those generated by module F. Clearly,
the only insights eligible for subsequent selection and vocalization are
those that extend s7, i.e., the sIs with u > z. For instance, if F =“Top-
k”, the Top-3 insight is an extension of the Top-2 insight, hence, it has
higher coverage (i.e., informative content) and higher cost (since more
facts are described).

+ “Tell me more about F” concerns a specific module F. In response
to this request, VOOL selects and vocalizes the insight s* € ST,
u > z, with the highest interest among those whose cost is lower
than 7.

+ “Tell me more” is a generic request for more insights. It triggers

a recomputation of the MCKP on a subset S* of S defined as

follows:
st = J1sf estiu>z)
FeF

Example 5. Given the query result shown in Fig. 3, let those in Table 1
be the insights returned by insight generation before 7,,, expires. The
insight space is S = {{s%}, {s],s]}, {sf, sb}, {s%}}. Insight selection now
takes place; assuming that the user-provided time budget is 7., = 20
seconds, the maximum allowed number of words for vocalization is 60.
The MCKP is solved and the solution S = {ss,s;r,slc, s‘l*} with cost 51
is returned. Then, the insights in .S are sorted by descending coverage,
so the sequence to vocalize is (N L(s*), NL(sg), NL(s‘f), NL(s’l‘)). As to
details-on-demand, should the user finally ask “Tell me more about
Clustering”, the system will return sg. O

4. The modules of VOOL

We categorize the modules to be plugged into VOOL along two
orthogonal coordinates:

* Operator-agnostic vs. Operator-specific: modules of the former type
extract insights out of the result of a single query g¢;, while those
of the latter type extract insights by also considering the user’s
intention as expressed by the last OLAP operator applied, w;
(e.g., given the sales by product, characterize them also by store
type). Operator-agnostic modules can be applied to both initial
and refined queries, while operator-specific modules are always
applied to refined queries. This is because operator-specific mod-
ules also take into account the semantics of the applied OLAP
operator (see requirement #4).

Fine-grained vs. coarse-grained: in the first case each insight com-
ponent describes a single fact (e.g., one of the three facts with
the highest quantity sold), in the second it describes one group of
facts (e.g., the average quantity of the facts in a cluster).

The main set of modules that the VOOL framework currently im-
plements is summarized in Table 2; their applicability is explained
in Table 3. We selected the modules following the Intentional Ana-
lytics Model (IAM) introduced by [9], which proposes five operators
to capture the possible user’s intentions, namely, describe (describes
one or more cube measures, possibly focused on one or more level
members), assess (judges one or more cube measures with reference
to some baseline), explain (reveals some hidden information in the
data the user is observing, for instance in the form of a correlation
between two measures), predict (shows data not in the original cubes,

M. Francia et al.

Table 2
Modules currently implemented in VOOL.

Operator-agnostic Operator-specific

Bottom-k
Fine-grained Outl'iers Aggregation variance
Skyline Assess
Top-k
Clustering . .
Coarse-grained Correlation Dt'm.'lam va.r ance
. Slicing variance
Statistics
Table 3
Modules and their applicability conditions.
Module Conditions
Aggregation variance o € {drill-down, roll-up}
Assess ® € {drill-down, slice-and-dice}
Bottom-k op(m) # max
Clustering -
Correlation M| >2
Domain variance ® € {drill-down, roll-up}
Outliers -
Skyline IM,| > 1 A op(m) # min
Slicing variance ® € {slice-and-dice}
Statistics -
Top-k op(m) # min

derived for instance with regression), and suggest (shows data similar
to those similar users, have been interested in). In IAM, each of these
operators is associated to a set of model types, e.g., clustering, which
we have used in VOOL. Specifically, our Assess and Correlation modules
are related to the assess and explain IAM operators, respectively; all
the other modules are related to the describe IAM operator. We have
not considered predict (because in VOOL the user is not analyzing
future data) and suggest (because in VOOL the user, not the system,
is supposed to drive the analysis session).

Some of these modules draw their inspiration from well-known
approaches [10-13]; in the majority of situations, all we had to do was
coming up with a textual explanation of the insight and/or modify-
ing the returned measurements of interest. As previously stated, this
collection can easily be expanded with modules that adhere to the
specifications stated in Section 1.

In the remainder of this section we start by describing in detail the
Top-k module; then we will briefly describe the other modules, focusing
on how they define interest. In the following, the superscript denoting
the module will be dropped from the notation of insights for simplicity.

4.1. Top-k

This fine-grained and operator-agnostic module operates on both
initial and refined queries and returns the facts that perform best
(e.g., the sales with the highest Quantity) [14]. For simplicity, we start
by considering the case when the modules operate on a single measure.

Let ¢y = (C,Gy, Py, M) be an initial query, with M, = {m}, and
Cy = qo(CT) be the resulting cube. The goal of the Top-k module is to
describe the three facts in C, having the highest values of m, namely,
{71,273} (we will assume that y;.m > y,.m > y3.m > ---). Three insights
including from one to three components are returned:

sp={{n}}
ss={{nh{nt}
s3={{nh{nkint}

Information Systems 129 (2025) 102496

q~(Sales, {Product}, @, {Quantity})

¢:,=(Sales, {Category}, @, {Quantity}) Product _Quantity
: Beer 80
Category Quantity R
Wine 70
Beverages 180 Col 30
Food 19 o
Bagel 8
Pizza 6
Bread 5

Fig. 4. Two consecutive queries, ¢,_, and ¢;, where the latter drills-down from Category
to Product; gray lines highlight the correspondence between the facts on the two query
results.

These insights are characterized as follows:

“The fact with highest m is y, with y,.m”, ifk=1;
“The two facts with highest m are y, with y,.m and

N L(sy) = {7, with y,.m”, if k=2;
“The three facts with highest m are y, with y,.m,
7, wWith y,.m, y; with y;.m”, if k=3;

k
cou(sy) = ﬁ
0

As to the interest, for each component v, = {y, } it is
Y- = Ygm

int(uk) = k—
Zj:l (yj'm - Ypm)
where k > 3. While the coverage formula is clear, the interest of s, is
the percentage of m that is retained by the Top-k tuples (for example,
the total Quantity retained by the Top-3 products relative to the overall
units sold by the Top-k facts). Instead of adding up all the query results,
the denominator is restricted to the Top-k facts in order to prevent the
int() function from having any meaning if there is a long tail of low
values. In contrast, the interest function accurately reflects how high
the Top-3 are relative to the next ones by only taking into account
the highest non-top values (in our implementation, we set k = 6). In
order to deal with the situation of negative values (e.g., if the measure
expresses a temperature), all measure values are shifted by yr.m.
Regarding refined searches, while NL and cov remain constant, a
component’s interest varies based on the outcome of the prior query.
Given two consecutive queries g;_; and ¢;, a fact in C; = ¢;(C")
is deemed interesting (in the sense of peculiar) if its measures dif-
fer considerably from those in the corresponding fact(s) of C,_; =
qi_ I(CT) [12]. This is based on the concept of prior belief [15]; specif-
ically, the interest is the difference in belief for corresponding facts
in the cubes before and after the application of an OLAP operator,
as stated in [15]. After drilling down from Category to Product, for
example, the more the Quantity of Beer deviates from the Quantity of
Beverages, the higher its peculiarity; in other words, a user is less
likely to anticipate that a product with exceptional sales will come
from a category with average sales. This method of measuring interest
necessitates the definition of the “corresponding fact(s)” in C;_; for
each fact in C;. In order to achieve this, we employ a proxy function
called proxyc, ,(r) (with y € ;) that establishes a one-to-many (many-
to-one) mapping in the case of drill-down (roll-up) and a one-to-one
mapping in the case of slice-and-dice or addition/removal of a measure
(see Fig. 4 for an example). According to intuition, when an OLAP
operator modifies the group-by, the corresponding fact(s) of C,_; are
determined using the roll-up order; when the operator modifies the
selection predicate, the corresponding facts of C,_; are one-to-one

M. Francia et al.

mapped to the facts of C;; and when the operator modifies the measure,
the corresponding facts are the empty set. For the formal definition of
proxy and peculiarity pec(), we refer the reader to [13]. Finally, the
interest of component v, = {y, } describing the results of a refined query
is defined as for initial queries, but weighing measure values on fact
peculiarity:

int(v,) = e = 7 pecr)

X Gryom = ym) - pec(y))

Example 6. As already shown in Table 1, if C; is the cube in Fig. 3
resulting from an initial query, examples of insights are

s] = (N L = “The fact with higher Quantity is Beer with 80”,
cost =9,int = 0.44, cov = 0.20)

sg = (N L = “The three facts with higher Quantity are Beer with 80,
Wine with 70, and Cola with 307,
cost = 17,int = 0.98, cov = 0.50)

On the other hand, if C; is the result of a drill-down from Category to
Product as in Fig. 4, the interest changes as follows:

B0-5)-0.21
64.33
(80—-5)-021+(70-5)-036+(30-5)-1.0

64.33 B
According to the previous belief principle, Beer is less interesting than
Cola (which is the worst-selling beverage) even though it is the most
popular product in its category. []

int(sT) = =024

0.98

e TN
int(sy) =

In case two or more measures are included in M;, the three top facts
for each m € M, are selected, sorted by their interest, and progressively
added to the components returned. Thus, for instance, an insight could
be vocalized as “The two facts with higher Quantity are Beer with 80
and Wine with 70, the fact with higher Revenue is Truffle with 300”.

4.2. Aggregation variance

This fine-grained, operator-specific module returns the facts with
the highest variation in the values of a measure after a roll-up or drill-
down operator (similarly to [10]; e.g., after a roll-up from Product to
Category, it returns the categories showing the highest variation in the
products’ Quantity). An example of vocalization is “The categories with
the highest degree of variation of product quantity are Beverages and
Food”. In statistics, this sparsity can be measured as the number of
standard deviations (%(())).

Let ¢,_, and ¢; be two consecutive queries, C;_; and C; be the
cubes they return, and m be a measure in C;. In case of a roll-up (and
symmetrically for a drill-down), for component v; = {y;} we define
. , $1dyeproxyc () (¥ -M)
int(v;) = min(l, ————
lavg}’EPmXYC(Y/)(y'm)l

4.3. Assess

This fine-grained, operator-specific module evaluates the facts re-
sulting from the current query using those of the previous query as a
benchmark [12]. More specifically, (i) if the last OLAP operator applied
is a slice-and-dice, the comparison is made against other sibling slices
(e.g., to label the sales of a product as better or worse than those for
other products of the same type); (ii) if the last applied OLAP operator
is a drill-down, the comparison is made against more aggregated facts
(e.g., to label the sales in a given month as good or bad based on the
yearly average). An example of vocalization is “When compared to the
previous query, the quantity of Pizza is 6, tantamount to the average
quantity of Food which is 6.3”.

Information Systems 129 (2025) 102496

The interest of components is measured as the absolute difference
between a fact and its parent (or siblings) from the previous query
(normalized by the maximum deviation). For component v; = {y;} and
with M; = {m} we define

l7j-m = avg, eproxye () ¥

ini(0;) = max.,ccr|y'.m — av n(y.m)|
yec' V- 8yeproxyc(yH\Y -

4.4. Bottom-k

This fine-grained, operator-agnostic module returns the worst per-
forming facts (e.g., sales with lowest Revenue) [14]. Symmetrically to
Top-k, the most interesting insights describe the facts that retain the
highest percentage of a measure m among the Bottom-k tuples. An
example of vocalization is “The three facts with the lowest quantity
are Bread with 5, Pizza with 6, and Bagel with 8”.

Specifically, three insights are returned, including an increasing
number of components, each corresponding to one of the Bottom-3
facts. Let {y,,7,.73} be these facts, assuming that y;.m < y,.m <).
The interest of the component v; = {y;} corresponds to the percentage
of m that is retained by y; with respect to the Bottom-k tuples; formally

y;.m—y-.m

int(v;) = ;’—k
et e = y.m)

where k > 3.

4.5. Clustering

This coarse-grained, operator-agnostic module returns groups of
facts that maximize intra-group similarity and minimize inter-group
similarity (e.g., facts with similar Quantity) [16]. The most interesting
insights describe groups of facts characterized by similar measure val-
ues. An example of vocalization is “Facts can be grouped into 2 clusters;
the largest one has 4 facts and 12 as average quantity”.

For this module each component is a cluster, described by its
cardinality and by the average of the measure values for the facts it
includes. The total number of clusters is determined using the Elbow
method [17]. An internal clustering validation metric is used to de-
termine the interest of each cluster [18]. In our implementation, the
interest of a cluster is defined as its silhouette [19]: interesting clusters
are compact and well separated from the others.

4.6. Correlation

This coarse-grained, operator-agnostic module computes the degree
of Pearson correlation between pairs of measures (e.g., how Quantity
and Revenue correlate). The most interesting insights describe pairs of
measures characterized by (inversely) proportional values. An example
of vocalization is “Quantity and revenue show strong correlation”.

Let M; = {m;,m,}; a single insight including one component v = C;
is returned, described by its degree of Pearson correlation corr(m,, m,).
Its interest is int(v) = |corr(m, m,)|.

4.7. Domain variance

This coarse-grained, operator-specific module computes the degree
of variation in the cardinality of the level domains after a roll-up or
drill-down (e.g., after a roll-up from Product to Category, it describes
whether Products are uniformly distributed among the categories). An
example of vocalization is “There is a high degree of variation in the
number of products for each category”.

A single insight including one component v = C; is returned by
this module, described by the number of standard deviations in the
cardinality of the level domains after a roll-up or drill-down. In case
of a roll-up, we define

M. Francia et al.

Information Systems 129 (2025) 102496

Table 4

Evaluating the user experience.
User group Q1 Q2 Q3 Q4 Q5
Expert 4.36 +£0.63 3.76 + 0.85 3.54+0.97 3.77 + 1.01 4.07 £0.62
Non-expert 4.30 +0.67 3.75+£0.82 379+ 1.14 3.87 +£0.81 4.30+0.48

std,ec,(Iproxyc, (D)
avg,ec,(lproxyc,_ (D)

int(v) = min(1,

Intuitively, this insight is interesting if the members in C;_, are non-
uniformly aggregated in C;. Symmetrically for a drill-down.

4.8. Outliers

This fine-grained, operator-agnostic module returns the facts whose
measure values deviate from the data distribution (e.g., anomalous
sales) [20]. The most interesting insights describe the idiosyncratic
facts (i.e., outlier facts that are not similar to any others). An example
of vocalization is “Beer with 80 and Bread with 5 are two outlier facts”.

For this module each component v; represents an outlier fact, and
its interest is defined as the anomaly score [20].

4.9. Skyline

This fine-grained, operator-agnostic module, applied to at least
two measures, returns the facts that “are not worse than any other”,
i.e., those characterized by measure values that are not dominated
(e.g., sales that represent good combinations of values for Quantity and
Revenue) [13]. Specifically, a fact dominates another one if it is as
good or better in all measure values and better in at least one measure
value [21]. An example of vocalization is “The facts whose quantity
and revenue are both higher than those of all other facts are Beer and
Wine”.

For this module, each component corresponds to a fact belonging
to the skyline. For component v; = {y;} we define

int(uj) = avguem, (minMaxNorm(yj .m))

where y;.m is min-max normalized between 0 and max,¢c, (v.m).
4.10. Slicing variance

This coarse-grained, operator-specific module computes the degree
of correlation between the values of a measure in the cubes before and
after the application of a slice-and-dice operator, to describe whether
the previous and current measure values are (inversely) proportional
(e.g., how Quantity by Product changes after applying the selection
predicate StoreCity = ‘Rome’). Assuming that a user is switching the
selection predicate from Country = ‘Italy’ to Country = ‘France’, an
example of vocalization is “After slicing on country, quantity from
France and Italy are inversely correlated”.

Given measure m, we denote with C,_;.m and C;.m the values it
takes within, respectively, C;_; and C;. A single insight including one
component v = C; is returned, described by the degree of Pearson
correlation corr(C;_,.m, C;.m). Its interest is int(v) = |corr(C;_,.m, C;.m)|.

4.11. Statistics

This coarse-grained, operator-agnostic module returns general statis-
tics on the overall result (e.g., the average value of the Quantity measure
and its skewness). An example of vocalization is “The average quantity
is 33.2 and ranges between 5 and 80”.

In this case two insights are returned: the first one includes one
component v; = C; described by the average value of each measure
m € M, over the whole C;; the second one also includes component
v, = C; described by the range of values for each m € M;. For both
components, we define

sldyec’ (y.m)

int(v;) = max(0,1 - ———
/ lavgyec, (v.m)

5. Experimental evaluation

For evaluation purposes, a prototype has been developed and im-
plemented in Python and Java. We import from the scikit-learn library
the required mining models, and we rely on Google APIs to vocalize
insights through the text-to-speech functionalities. All tests were made
against the Foodmart' cube.? Our implementation and experimental
setup can be found at https://github.com/big-unibo/conversational-
olap.

5.1. User evaluation

A group of 25 users (mainly data science master students) has been
put together to assess the effectiveness of VOOL. Users were divided
into two groups depending on their knowledge of data warehousing and
business intelligence. Non-expert and expert users amounted respec-
tively to 42% and 58% of the users. Users received a brief introduction
to vocalization and VOOL; no tutorial was required because VOOL'’s use
is simple. Then, three OLAP sessions with various analysis objectives
were assigned to the users (e.g., “As a shop owner, you are analyz-
ing the sum of quantity sold in each product department”) and the
prototype vocalized the query results.

The users were asked to provide open-ended feedback and to answer
the following questions.

Q1 How familiar are you with the English language?

Q2 How accurately does the vocalization describe the query result?

Q3 How interesting are the insights produced?

Q4 To what extent does the vocalization highlight aspects that you
think are important?

Q5 How would you rate overall your user experience with VOOL?

Table 4 reports the average results on a scale from 1 (very poor/bad)
to 5 (very high/good). Both groups had the same English knowledge
(Q1) and gave the same score to the quality of the vocalization pro-
vided by each insight (Q2). As to Q3-5, although all the scores show
promising results, it turned out that non-expert users appreciated the
interest, salience, and user experience slightly more than expert users.
This shows that VOOL not only provides good results for both groups,
but also that its added value in supporting non-expert data scientists is
relevant.

Table 5 focuses on Q3 detailing the average appreciation of the
modules whose insights were returned by VOOL during the three OLAP
sessions. The majority of modules scored higher than 4 (out of 5),
with the exception of Statistics and Clustering. Thanks to the open-
ended feedback, we acknowledged that the former was sometimes too
simplistic in describing the query result, while the latter was deemed
to be repetitive over an OLAP session.

Finally, we quantitatively assessed the added value of automatic
insight generation also in terms of the user effort it saves; to this end,

I https://github.com/julianhyde/foodmart-data-mysql (accessed on 2024-
07-12)

2 We emphasize that the modules implemented in VOOL are dataset-
agnostic, hence we tested them against a single cube.

https://github.com/big-unibo/conversational-olap
https://github.com/big-unibo/conversational-olap
https://github.com/big-unibo/conversational-olap
https://github.com/julianhyde/foodmart-data-mysql

M. Francia et al.

Table 5
User evaluation of the single modules.
Module User evaluation
Correlation 4.62 +0.65
Skyline 4.46 +0.59
Aggregation variance 4.29 +0.89
Domain variance 417 +1.17
Slicing variance 4.12+£0.99
Outlier detection 4.06 +0.87
Statistics 315+1.20
Clustering 311x121
Table 6
Effort in terms of time (minutes) and code length (number of characters).
Student Skill Models Time Length
STUD-1 ADV Clustering 45 3480
STUD-2 ADV Both 50 1780
STUD-3 INT Outliers 25 940
STUD-4 ADV Both 60 1150
STUD-5 ADV Outliers 90 2630

we measured the time and complexity for manually reproducing the
results of a small subset of modules without using VOOL. Specifically,
we gave five Ph.D. students in computer science 90 min to implement
the outliers and clustering modules and extract insights from our cube
(we considered only these modules for the sake of time). Students were
allowed to use any library from the Python ecosystem (e.g., Sklearn,
Numpy, and Pandas). For each student, Table 6 shows the respective
Python skills (beginner, intermediate, or advanced), the implemented
modules, the time (in minutes) to complete the task, and the length
of the written code measured in characters length; the quality of the
modules/insights extracted is disregarded. Remarkably, implementing
both modules and extracting the insights required quite a long time,
even for skilled students, which ended up writing substantial Python
programs (even though they were asked to compute two modules only).

5.2. Budget setting

Given the insights S selected by the MCKP algorithm with budget
for a given query, we define the associated total interest int,,, as

Y int(s)

ZSFEs argmax ¢ gr (int(s))

tUOC

lnt,m =

The numerator is normalized by the maximum interest (i.e., when the
most interesting insight is selected for each module); this is necessary
to compare the insights from different query results.

We ran 10 OLAP sessions, each including 3 OLAP operations, with
varying combinations of modules (each module being invoked in a min-
imum of one session). Fig. 5 depicts how int,,, increases by increasing
the budget 7,,. (number of words). Dashed lines represent int,, for a
sample of queries,” while the red line shows the average. Since the
shape of int,,, is similar for all queries, we refer to the averaged int,,,.

Note that, since int,,, is monotonically non-decreasing and necessar-
ily reaches a plateau (the possible insights are a finite set), the following
comments can be generalized to different schemata/cubes/workloads.

The first comment is that, clearly, the lower the budget, the higher
the importance of the details-on-demand interaction since it will return
insights that sensibly increase the total interest. Roughly, for the sce-
nario in Fig. 5, we can say that the details-on-demand interaction is
fruitful when the budget is below 75 words.

Remarkably, this result also enables an adaptive management of
the budget. As the users develop OLAP sessions to VOOL, the Elbow
method [22] can be applied (as done in k-means clustering to select

3 We have not plotted int,, for all the 30 queries for the sake of readability.

Information Systems 129 (2025) 102496

100% A

80%

60% A

intor

40% A

20% A
Vg (intior)

0% —— T
25 50

75 100 125 150 175 200
tVOC

Fig. 5. Trade-off between budget and total interest.

10t

AggregationVariance
Assess

Clustering
Correlation
DomainVariance
OutlierDetection
Skyline
SlicingVariance
Statistics

Top-K

Time (s)

Frheeetits

1073 4

10?2 103 10*
Cardinality

Fig. 6. Performance scalability of the modules.

1.0 1

0.8 1

0.6

Ratio

0.4 1

0.2 1

0.0 -
107! 100 10!
Time (s)

Fig. 7. Percentage of completed modules over time.

the best number of clusters) to int,, to suggest a vocalization budget.
The Elbow-method heuristic returns a cutoff budget where the increase
in the total interest is no longer worth an additional budget, which in
this case turns out to be 7,,, = 100. Of course, VOOL should fall back
to a predefined budget when the recommended ¢,,. is too long; then,
additional insights can be retrieved by asking “tell me more”.

5.3. Efficiency

The efficiency of VOOL is evaluated by assessing (i) how each
module scales in terms of performance in relation to the query result
cardinality and (ii) the overall responsiveness of the vocalization pro-
cess. We consider the same OLAP sessions generated in Section 5.2.
The tests have been conducted on a PC with 8 GB of RAM and i7-6700
CPU @3.40 GHz. The reported results are obtained as the average of 10
executions. Fig. 6 shows, for each module, the scalability in execution
time in relation to cardinalities of query results the increase up to
10%. Since the visualization and interaction metaphors adopted by users
typically constrain the analyzed results [1], a cardinality of 10* can be

M. Francia et al.

safely considered unrealistic for OLAP. Notably, the processing of all
the modules takes less than one second for query results containing 10*
facts. Clustering is the lone exception, and it takes an average of 7 s for
query results with a cardinality of 10*.

Fig. 7 shows the percentage of modules completed within a certain
time for query results including 10* facts. Almost 90% of the modules
are completed within a few seconds, and all the insights are found
within 10 s. Since the average length of the preamble is 15 words, and
considering 180 as the average number of words per minute for English
speakers/readers [6] (i.e., 3 words per second), the preamble lasts 5 s
on average. Hence, we assumed t,,, = 5 seconds. With 10* facts, all
modules but Clustering are completed within 7,,,, and the results of
Clustering will be available in details-on-demand mode.

5.4. Comparison against LLMs and LLM-based applications

In this section we compare VOOL against three possible competitors:
GPT4o [23], Data Scientist [24], and Data Analyst [25]; the last two are
ChatGPT-based applications that perform data analysis (see Section 6
for a comprehensive discussion) and embed the capabilities to generate
and execute the code necessary for the elaboration of data and the
application of machine learning algorithms, as well as to describe the
retrieved insights. The experiment setup is the same as in Section 5.1:
we consider two OLAP sessions, each starting with an initial query
and proceeding with two refined queries that involve different OLAP
operators (roll-up, drill-down, slicing). We incrementally prompt these
sessions to GPT4o, Data Scientist, and Data Analyst.

All prompts are organized according to the guidelines from Ope-
nAlL* In particular, each prompt asks each model to adopt a specific role
(i.e., data scientist), clearly indicates where the query result starts, and
specifies the desired length of the output (i.e., the word budget). We do
not prescribe the specific steps to complete the task, since VOOL itself
has no constraints on the insight to extract. Also, we test the behavior
of the competitors with and without examples.

Example 7. Here are the prompts of an initial query:

“You are a data scientist describing the highlights of query results.
Given the following query result in CSV format, return the most
interesting quantitative insights describing it. You can use any
algorithm to compute the insights (e.g., the ones from scikit-learn).
The highlights must be 100 words at most. [Query result is added
here]”

and the one of a refined query obtained by drilling down the previous

one:

“The following is the result of a drill-down of the previous data.
Given the result in CSV format, return the most interesting quan-
titative insights describing it also in relationship with the previous
result. You can use any algorithm to compute the insights (e.g., the
ones from scikit-learn). The highlights must be 100 words at most.
[Query result is added here]”

In the following we discuss how some well-known issues of LLMs
problems can arise in different settings. We preliminarily recall that
the output of LLMs may be affected by external knowledge (learned
during their previous training phase) that is not present in the prompt.
This can introduce biases that are not supported by the data, which in
our setting results in claims inconsistent with the query results [26,27].
Besides, the output of LLMs is often unpredictable; different runs may
lead to completely different insights and errors, depending not only on
the LLM temperature parameter but also on the content of the current
user session. The complete test setup, which relies on the Foodmart

4 https://platform.openai.com/docs/guides/prompt-engineering (accessed
on 2024-07-12)

10

Information Systems 129 (2025) 102496

Table 7

Excerpt of a refined query result.
product Department Gender Quantity
Produce M 19076
Produce F 18711
Alcoholic Beverages F 16939
Snack Foods M 16859
Snack Foods F 16186
Alcoholic Beverages M 15399
Household M 13757
Frozen Foods M 13644
Household F 13278
Frozen Foods F 13011
Baking Goods M 10404
Baking Goods F 9841
Dairy M 8571
Dairy F 8500
Beverages M 6811
Beverages F 6775
Seafood F 947
Seafood M 817
Carousel M 473
Carousel F 368

dataset to ensure reproducibility and fact-checking, is available in the
above-mentioned GitHub repository.

Data input: CSV vs. prompt. Query results (i.e., tables such as Table 7)
can be given in input to the LLM either as part of the prompt or
as an external CSV file. In the former case, the insights provided by
GPT4o0, Data Scientist, and Data Analyst are enriched by the semantic
capabilities of the LLM (see Table 8 for some examples). However, the
insights are often quantitatively incorrect, subject to hallucinations,
and affected by (biased) knowledge that is not present in the query
result. For instance, males actually purchase more products from the
“Produce” department than females, but all three competitors state
the opposite. Besides, the statement “females lean towards Dairy and
Household items” produced by Data Analyst (Table 8) is wrong (it is
not a top-k) and could result from a bias created in the competitors
during their training (they are all based on GPT).

On the other hand, when uploading the query result as a CSV
file, all three competitors tend to generate Python code (mainly us-
ing Pandas and scikit-learn libraries) that reads that file and applies
machine learning algorithms (note that these features are available
without time constraints only by subscribing to ChatGPT plus). The
insights (e.g., averages and quantiles computed from the data) are
quantitatively correct when the competitors use the outcome of Python
code, but still they incorporate hallucinations and errors when the
competitors either generate semantically-wrong code or when they
freely interpret the result (as in the previous case). For instance, here
is the answer given by Data Analyst for the same query of Table 8 but
using a CSV file to input the query result (errors are highlighted in red):

“The drill-down data provides product department quantities seg-
mented by gender. Here are some quantitative insights. Gender Dis-
tribution: Female consumers dominate with significant quantities
in key departments like Produce (18,711), Snack Foods (16,186),
and Household (13,278). Top Department Shift: Produce surpasses
Dairy, becoming the highest with 18,711 units when considering
gender. Male vs Female: Male representation is significantly lower,
with the highest quantity being Carousel at just 473 units. Consis-
tency: Dairy remains a top department in overall quantity despite
gender segmentation. Total Female Quantity: Female purchases to-
tal approximately 58,282 units, indicating their dominant shopping
pattern”.

https://platform.openai.com/docs/guides/prompt-engineering

M. Francia et al.

Table 8

Information Systems 129 (2025) 102496

Insights for a refined query obtained by drilling down from departments to departments and genders (query result fed via prompt; in red hallucinations and errors, see Table 7

for fact checking).

Approach

Returned insights

VOOL

“Grouped by product department and sex the average quantity is 6699. All genders have similar quantity values. Facts can be grouped into 3
clusters, the largest has 22 facts and 1803 as average quantity, the second has 12 facts and 8187 as average quantity, the third has 10 facts and
15686 as average quantity. The 2 anomalous facts are (Produce, M) with 19076, and (Produce, F) with 18711.”

Data Analyst

“The drill-down reveals distinct gender preferences within product departments. Females predominantly purchase Produce (18,711), Snack Foods
(16,186), and Alcoholic Beverages (16,939), aligning with high overall department quantities. Males, although less dominant in these categories,
show significant purchases in Frozen Foods (13,644) and Household items (13,757). The notable split in Beverage purchases, with males and
females contributing almost equally, reflects balanced gender interest. Males prefer Baking Goods and Alcoholic Beverages more than other
categories, while females lean towards Dairy and Household items. This gender-based purchasing behavior can guide targeted marketing strategies
and inventory decisions.”

Data Scientist

“The drill-down data provides gender-based insights. Female Dominance in Key Departments: Females purchase significantly more in departments
like Produce (18,711), Snack Foods (16,186), and Alcoholic Beverages (16,939), aligning with overall high quantities in these categories from the

previous dataset. Male Preferences: Males prefer Frozen Foods (13,644), Alcoholic Beverages (15,399), and Household items (13,757).
Low-Performing Departments: Carousel and Seafood have low quantities, with slightly higher male engagement (473 vs. 368 in Carousel).
Balanced Purchases: Departments like Canned Foods and Baking Goods show relatively balanced quantities between genders. These insights
suggest tailored marketing strategies could target specific genders in top departments to boost engagement.”

GPT40

“Using a k-means clustering algorithm, we observe significant gender-based differences in quantity distribution. Females contribute more to

high-demand departments like Produce (18,711), Snack Foods (16,186), and Alcoholic Beverages (16,939), aligning with overall high-demand
trends. Males also show a strong presence in these categories but with slightly lower quantities (Produce: 19,076, Snack Foods: 16,859, Alcoholic
Beverages: 15,399). Low-demand departments like Carousel remain low for both genders. Notably, Frozen Foods exhibit balanced high demand
across genders (F: 13,011, M: 13,644). These insights can refine gender-targeted marketing and inventory strategies to enhance sales efficiency.”

The errors in this answer are mainly due Data Analyst generating
Python code that extracts insights only on the first 5 tuples of the query
results.

Domain: known vs. unknown. The Foodmart cube stores sales data
of products sold by stores and purchased by customers. Since the
product sales domain is known to LLMs, they also add knowledge that
they learned during their training but is not explicitly present in the
query result or even inconsistent with it. Conversely, if the dataset is
altered using fake strings and column names, then the competitors only
describe the distribution of the data. Here is an example from GPT4o:

“The query result contains two columns: columnA and columnB.
The columnB values range from 841 to 37787. The highest value
is 37787, associated with the entry “OO0” in columnA. On the
other hand, the lowest value is 841, associated with the entry
“VVV” in columnA. The average value in columnB is 11552.35,
with a standard deviation of 10947.48. The distribution of values
in columnB is slightly positively skewed, indicating that there are
more lower values than higher values. The top three values in
columnB are 37787, 33045, and 32338, associated with entries
“000", “Z2ZZ”, and “QQQ” in columnA, respectively”.

Prompt engineering: with vs. without examples. To ease the task of the
competitors, we added examples to their prompts to guide their an-
swers. Specifically, we use the insights provided by VOOL for the
queries of one OLAP session as examples for the queries of the other
session. The first line of Table 8 shows one of the examples pro-
vided. Unfortunately, it turns out that by providing these outputs to
the competitors, they merely mimic VOOL and do not explore other
algorithms/modules to compute their own insights. This suggests that,
if we provided hundreds of examples to the competitors, eventually we
would faithfully replicate the behavior of VOOL.

Additional considerations. Besides being subject to quantitative errors
and hallucinations, the competitors also showed the following issues:

(i) All of them generate their insights using only a few modules
(top-k, bottom-k, clustering, outlier detection), providing quite
repetitive descriptions. The tuning of cluster analysis is often sub-
optimal (i.e., the competitors do not return the “best” clusters
according to the elbow method).

(ii) When the prompt is too long, the competitors seem to forget the
word budget and tend to return longer answers.

11

(iii) When computing their insights, the competitors do not consider
the semantics of the OLAP operator connecting one query to the
following one within an OLAP session. Conversely, VOOL returns
operator-specific insights.

6. Related work

Our contribution intersects with two main areas of research, namely,
exploratory data analysis and conversational systems (we allocated an
additional section for LLMs).

6.1. Exploratory data analysis

Exploratory data analysis is an important process of knowledge
discovery, where the user explores datasets in sessions by concatenating
operations (e.g., filtering and aggregation) in sequence. In this con-
text, recommendation and insight extraction are two interesting research
directions.

As to recommendation, many studies are based on data profiling
and users’ preferences learning techniques to recommend paths to
explore [28]; for instance, discover and recommended the parts of the
cube that can surprise the user in a following query by applying the
principle of maximum entropy [29]. This line of work is orthogonal to
VOOL, as our goal is not to support users in building an exploratory
session, but to provide users with concise insights on the data returned
by their own sessions (also taking the users’ intentions into account).

As to insight extraction, insight operators are classified in the fol-
lowing categories [30]: coverage (that return insights that cover tu-
ples with certain values), information (that return insights providing
information about the distribution of measure values), and contrast
(that return insights occurring with some values but not the others).
Examples of operators for each category are given below.

» Coverage: Data Auditor [31] verifies whether data constraints
hold or fail to a specified degree on some fraction of the dataset.
MRI [10] finds patterns that cover a user-specified fraction of the
data and satisfy additional properties related to the variance of
the measure attribute within each pattern (e.g., verify whether
reviews are characterized by the gender and age of the reviewers).

+ Information: Describe [13] computes multiple mining models
(e.g., top-k and clustering) to return and highlight the most

M. Francia et al.

relevant ones. Explain [32] uses machine learning to find relation-
ships among numerical variables. In [11], user insights’ accuracy
(e.g., mean, shape, variance, ranking, and correlation of a query
result) is extracted and confirmed by the authors.

Contrast: DIFF [33] finds the rows that better explain an in-
crease/decrease in quantities aggregated at a coarser aggregation
level. Assess [34] enables custom comparison of OLAP cubes and
labels the comparison result. In [35], the authors output the
combinations of attribute-value pairs whose diversity is above a
threshold.

A recent proposal in the same direction is the Intentional Analytics
Model [9], which envisions the coupling of OLAP and analytics into
a new paradigm. There, users explore data by communicating their
analytical intentions [12,13,36], and cubes annotated with knowledge
insights are returned. All the above-mentioned insight operators are
complementary to our proposal since they can be potentially plugged
into VOOL, just as we did for [10-13].

Some recent approaches aim to automatic extraction of insights to
aid data exploration. QuickInsights [37] and Metalnsight [38] extract
insights (e.g., top-k and outliers) under the white-box assumption:
knowing how each insight is computed, both frameworks apply pruning
strategies for pattern computation and highlight selection. However,
while the white-box assumption eases the computation of the insights,
it limits expressiveness. Indeed, both frameworks require mapping the
subspaces covered by the insights. Defining such spaces is easy when in-
sights are computed on single cubes but not when multiple cubes (with
different granularities) are considered. For instance, this is necessary
to compute comparison insights during an OLAP session and not on
single queries, as done by Assess [34]. Finally, Cinecubes [39] has a
hard-coded mechanism to analyze query results: it compares the result
of a given query to results obtained over sibling values or drill-downs
to produce insight-based descriptions of such comparisons (similarly to
a recommendation system); additionally, it does not propose interest
measures to score the insights nor an optimization mechanism to
balance the vocalization cost and the interest of the returned insights.

Overall, (i) the insights computed by QuickInsights [37] and Metaln-
sight [38] are pluggable into VOOL at the cost of losing some pruning
efficiency (if the module implementation is a white box and known
to the framework, pruning techniques can be applied to constrain the
search of the insights); (ii) we provide guidelines to plug (even black-
box) modules into the insight generation process; and (iii) we introduce
an optimization approach to select the best insights and to sort them
into an organized description.

6.2. Conversational systems

To enable conversational analytics on multidimensional data (e.g., in
hand-free scenarios), three main issues have to be addressed: (i) natural-
language query formulation, (ii) summarization, and (iii) vocalization
of query results.

As to query formulation, natural language interfaces to operational
databases enable users with no prior training on formal programming
languages (e.g., SQL) and software to specify complex queries; a com-
prehensive survey on this subject is provided by [40]. Approaches that
obtain formal SQL/OLAP queries by translating natural language [3,41—
43] are out of scope since they work in the text-to-query direction
rather than in the query-to-text one.

As to summarization, besides the approaches discussed in the pre-
vious subsection, other approaches have been proposed to reduce the
cardinality of the returned results while retaining as much information
as possible. In particular, [1,44] exploit the multidimensional and
multilevel nature of query results to further shrink the returned data.
These approaches can be reused in the VOOL framework, for instance,
wrapped in a module that vocalizes a small number of facts represen-
tative of a subset of data (e.g., if the sales by product have similar

12

Information Systems 129 (2025) 102496

quantities for the ‘Beverages’ category, return their average quantity
by category).

As to vocalization, the constraints of spoken presentation are well-
understood [45,46], and some approaches have been introduced for
the vocalization of single query results. [47] uses a set of rules and
templates to translate the subset of a database into a narrative syn-
thesizing its contents. [48] leverages the provenance of tuples in the
query result to detail not only the results, but also their explanations;
the authors map the query in natural language to a dependency tree,
whose structure is used to provide the answer to the user through
the replacement of words in the question with values from the result
and provenance. A few works are then discussed in relation to OLAP
and multidimensional data. [2] samples the database to assess various
speech fragments; OLAP queries are not fully analyzed and sampling
concentrates on result features that are important for voice output.
While an end-to-end dialog system is proposed by [49], the vocalization
technique is constrained (for example, the returned answer contains
only the count of rows if the number of rows or columns to be returned
is too high).

Overall, it seems that the path to fully-fledged conversation-driven
OLAP has not yet been built in light of the aforementioned contribu-
tions. Indeed, users that are not familiar with SQL language and OLAP
tools can be aided in data exploration activities through conversational
interfaces and personal assistants. Nonetheless, in the area of analytical
sessions over multidimensional data, end-to-end conversational frame-
works are not offered. [2] is the closest contribution, however: (i) its
vocalization does not compare the query results sequentially emerging
from OLAP sessions, but it copes only with stand-alone queries; (ii)
custom user-specific modules cannot be plugged; and, (iii) vocalization
is not based on insights interest.

6.3. LLMs and LLM-based applications

Generative Al and Large Language Models (LLMs) [50,51] have
recently witnessed a huge hype even in the data science community.
LLMs are autoregressive machine learning models that act as statistical
next-word predictors [52] after being trained on huge datasets [26].
The applications leveraging LLMs, such as ChatGPT, are usually ori-
ented to general-purpose information retrieval and are not specific for
extracting, ranking, and selecting the most interesting insights out of
multidimensional query results. Thus, although LLMs are powerful tools
for broad natural language applications, they are not always the best
choice for data-intensive tasks for two main reasons.

* Data volume and cost. Since multidimensional data usually contain
sensitive business information, they are stored in private reposi-
tories (such as data warehouses) unknown to LLMs during their
training [51]. To feed data to an LLM, the main possibility is
to use the prompt. Depending on the specific model, prompts
have limits in the number of tokens shared between input and
answer, with different models having different limits® [51,53]
and pricing® on input and output tokens. Recently, LLMs began
to allow users to attach files to the prompt [51], and some
LLM-based applications can even extract succinct summaries from
these files and use them in place of the whole file content. On the
one hand, this can overcome the limits and cost of tokens. On the

5 https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-
to-count-them (accessed on 2024-07-12)

¢ The OpenAl price calculator in Microsoft Azure” estimates that using GPT-
4-32K costs around $0.06 per 10* input tokens and $0.12 per 10° output tokens
(as of 2024-06-20), where 1000 tokens correspond to almost 750 words. For
instance, prompting a table with 10° tuples (if feasible at all) could easily reach
the cost of several dollars per execution.

7 https://azure.microsoft.com/en-us/pricing/calculator/?service=openai-
service (accessed on 2024-07-12)

https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them
https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them
https://azure.microsoft.com/en-us/pricing/calculator/?service=openai-service
https://azure.microsoft.com/en-us/pricing/calculator/?service=openai-service

M. Francia et al.

other hand, if the summary process is incorrect, it will add errors
and bias to the final answer.

* Running algorithms. Algorithmic tasks such as SQL querying and
data mining are better handled by DBMSs and query engines since
(i) they are optimized for these types of operations (e.g., using R-
trees to speed up clustering in Euclidean spaces); (ii) their answers
are correct, consistent, and reproducible; and (iii) they do not
have hallucinations as LLMs do [51] (see Section 5.4).

Overall, we conclude that while (plain) LLMs have many strengths,
they are not typically suitable for data-intensive tasks. Several LLM-
based applications have been deployed to overcome these limitations.
For instance, there are applications for data analysis that are capa-
ble of generating and interpreting code (mainly Python), analyzing
datasets, and supporting data scientists in doing data elaborations
and analyses. Applications can be directly deployed by LLM providers
(e.g., Data Analyst [25] by ChatGPT) or can be deployed by third-
party users (e.g., Data Scientist [24]). Intuitively, these applications
allow the underlying LLM to invoke functions from external libraries
when appropriate (e.g., Python’s pandas, scikit-learn, and scipy) and
to generate and execute external code. Data Scientists and Data Analyst
are indeed closer to VOOL than plain LLMs, but they bear the following
differences.

« Interpretability. Thanks to our structured approach, different mod-
ules can be transparently plugged into the VOOL framework. In
LLMs, the process that leads to the computation of the insights
and their interest remains hidden and not interpretable to the
end-user, who is not aware of how insights are extracted (e.g., if
the model has added some distortion to the data before applying a
machine learning model). Indeed, the term language model mainly
refers to systems trained on the prediction of a token given its sur-
rounding context [26] without any guarantees on interpretability,
correctness, and quality [54].
Domain-specific data. The insights returned by LLM-based appli-
cations strongly depend on the context since LLMs also leverage
domain knowledge for their “reasoning”; hence, it is usually
recommended to use semantic-rich column names to enhance
data analyses (see Section 5.4). On the one hand, this domain
knowledge can introduce bias and inconsistencies with the data at
hand. On the other hand, for very specific domains and data types,
a lack of knowledge can cause issues in the interpretation of the
result. For instance, in precision agriculture, having low temper-
atures could be bad for the production rates, but good in terms of
pest control and water management. In VOOL, no attempt is made
to give an interpretation of the result (which could be subjective,
domain-dependent, and misleading), but rather extract objective
and peculiar insights out of the data.

» Domain-specific modules. Should additional modules be necessary
to produce domain-specific insights, such modules should be
embedded into the LLM through prompting or calls to (external)
third-party libraries (e.g., function calling in ChatGPT®). To this
end, the end-user should declare to the LLM the behavior of
each module as well as the interest function to rank the insights
—which would mean re-implementing a VOOL-like tool.

» Multidimensionality. While applications such as Data Scientist nor-
mally work on machine learning datasets — typically, denormal-
ized data stored in flat files, for instance in CSV format —, VOOL
is meant to operate on multidimensional data stored in data
warehouses, whose metadata express a lot of precious knowledge
(attribute hierarchies, primary/foreign keys, semantics of OLAP
operator, etc.) that cannot be expressed in plain CSV files [55].
Remarkably, VOOL natively exploits this knowledge without the

8 https://platform.openai.com/docs/guides/function-calling (accessed on
2024-11-22).

13

Information Systems 129 (2025) 102496

need for prior training, for instance to compute operator-specific
insights and their interest.

We highlight that LLMs are also exposed to a couple of additional
issues.

* Libraries. LLMs produce good results with well-known libraries
such as Python’s scikit-learn and pandas. When less-known li-
braries are required, LLMs can fail to produce the necessary code.

* Development. Many LLM-based applications are commercial (or
handcrafted) and not associated with research papers. Hence,
following their development and deeply understanding their ca-
pabilities is often hard, also due to a lack of documentation. On
the one hand, this makes non-empirical comparisons between
LLMs unfeasible. On the other, exactly reproducing the results of
empirical tests may be impossible.

7. Conclusion and future work

Conversational systems play a significant role in enhancing data
analysis capabilities by providing user-friendly interfaces for interact-
ing with data. We have presented VOOL, an approach for selecting and
vocalizing interesting insights out of the results of an OLAP session,
respecting a user-defined vocalization budget. Overall, the experiments
confirm the efficiency and effectiveness of our approach, showing that
(i) its performances are fully compatible with the level of interaction
required by an OLAP session, (ii) users appreciate the provided expe-
rience, and non-expert users also consider VOOL as an added value
to their analysis, and (iii) the returned insights are generally marked
as interesting, confirming that our interest function can appropriately
select interesting insights.

In this paper we specifically discussed the differences between
VOOL and LLMs. Based on that discussion, our claim is that applications
such as Data Scientist and Analyst, as well as GTP4o (or other LLMs),
are, at the state of the art, valid tools to support data scientists (but
not to automatically pilot the extraction of insights, as much as Copilot
is an incredible tool to support software engineers but not to replace
them [56]). However, due to hallucinations, quantitative errors, and to
the need for continuous fact-checking, their adoption as reliable end-to-
end tools for data exploration and insight extraction is still limited [57].
Conversely, VOOL focuses on automatically providing quantitatively
correct and interesting insights to describe and augment the query
results. This is important in domains such as Business Intelligence,
where query results are the core of data-driven decisions.

Besides refining and extending the modules, other directions that
can be envisioned for future research are the following. Tracking the
insights vocalized during a single OLAP session to avoid repeating them
after different queries in the session. Tuning insight selection depending
on the adoption of VOOL: if adopted atop a visualization tool such as
Tableau or PowerBI, users could prefer the highlight of idiosyncratic
patterns rather than a comprehensive description of the query result.
Finally, extending the interest of an insight also to its overlapping with
the previously selected ones.

CRediT authorship contribution statement

Matteo Francia: Writing — original draft, Software, Methodology,
Investigation, Formal analysis, Conceptualization. Enrico Gallinucci:
Writing — original draft, Software, Conceptualization. Matteo Gol-
farelli: Writing - original draft, Supervision, Methodology, Investi-
gation, Conceptualization. Stefano Rizzi: Writing — original draft,
Methodology, Investigation, Formal analysis, Conceptualization.

https://platform.openai.com/docs/guides/function-calling

M. Francia et al.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] M. Francia, M. Golfarelli, S. Rizzi, A-BI*: A framework for augmented business
intelligence, Inf. Syst. 92 (2020) 101520.

[2] I Trummer, Y. Wang, S. Mahankali, A holistic approach for query evaluation
and result vocalization in voice-based OLAP, in: Proc. SIGMOD, Amsterdam, The
Netherlands, 2019, pp. 936-953.

[3] M. Francia, E. Gallinucci, M. Golfarelli, COOL: A framework for conversational
OLAP, Inf. Syst. (2021).

[4] M. Francia, E. Gallinucci, M. Golfarelli, S. Rizzi, Insight-based vocalization of
OLAP sessions, in: Proc. ADBIS, Turin, Italy, 2022, pp. 193-206.

[5] M. Golfarelli, D. Maio, S. Rizzi, The dimensional fact model: A conceptual model
for data warehouses, Int. J. Cooperative Inf. Syst. 7 (2-3) (1998) 215-247.

[6] M. Brysbaert, How many words do we read per minute? A review and
meta-analysis of reading rate, J. Mem. Lang. 109 (2019) 104047.

[7] H. Kellerer, U. Pferschy, D. Pisinger, The multiple-choice knapsack problem, in:
Knapsack Problems, Springer, 2004, pp. 317-347.

[8] H. Kellerer, U. Pferschy, D. Pisinger, Multidimensional knapsack problems, in:
Knapsack Problems, Springer, 2004, pp. 235-283.

[9] P. Vassiliadis, P. Marcel, S. Rizzi, Beyond Roll-Up’s and Drill-Down’s: An
intentional analytics model to reinvent OLAP, Inf. Syst. 85 (2019) 68-91.

[10] M. Das, S. Amer-Yahia, G. Das, C. Yu, MRI: Meaningful interpretations of
collaborative ratings, Proc. VLDB Endow. 4 (11) (2011) 1063-1074.

[11] E. Zgraggen, Z. Zhao, R.C. Zeleznik, T. Kraska, Investigating the effect of the
multiple comparisons problem in visual analysis, in: Proc. CHI, Montreal, QC,
Canada, 2018, p. 479.

[12] M. Francia, M. Golfarelli, P. Marcel, S. Rizzi, P. Vassiliadis, Assess queries for
interactive analysis of data cubes, in: Proc. EDBT, Nicosia, Cyprus, 2021, pp.
121-132.

[13] M. Francia, P. Marcel, V. Peralta, S. Rizzi, Enhancing cubes with models to
describe multidimensional data, Inf. Syst. Front. 24 (1) (2022) 31-48.

[14] Z.W. Luo, T.W. Ling, C.H. Ang, S.Y. Lee, B. Cui, Range top/bottom k queries in
OLAP sparse data cubes, in: Proc. DEXA, 2001, pp. 678-687.

[15] T.D. Bie, Subjective interestingness in exploratory data mining, in: Proc. IDA,
2013, pp. 19-31.

[16] A. Likas, N. Vlassis, J.J. Verbeek, The global k-means clustering algorithm,
Pattern Recognit. 36 (2) (2003) 451-461.

[17] L. Rokach, O. Maimon, Clustering methods, in: Data Mining and Knowledge
Discovery Handbook, Springer, 2005, pp. 321-352.

[18] Y. Liu, Z. Li, H. Xiong, X. Gao, J. Wu, Understanding of internal clustering
validation measures, in: 2010 IEEE International Conference on Data Mining,
IEEE, 2010, pp. 911-916.

[19] P.J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis, J. Comput. Appl. Math. 20 (1987) 53-65.

[20] E.T. Liu, K.M. Ting, Z. Zhou, Isolation forest, in: Proc. ICDM, Pisa, Italy, 2008,
pp. 413-422.

[21] S. Borzsony, D. Kossmann, K. Stocker, The skyline operator, in: Proc. ICDE, IEEE,
2001, pp. 421-430.

[22] V. Satopaa, J.R. Albrecht, D.E. Irwin, B. Raghavan, Finding a “Kneedle” in a
Haystack: Detecting knee points in system behavior, in: Proc. ICDCS, 2011, pp.
166-171.

[23] OpenAl, GPT4o, 2024, https://openai.com/index/hello-gpt-40/ (Accessed 12
July 2024).

[24] P.C. Sekha, Data scientist, 2024, https://chatgpt.com/g/g-UgvIRTBjV-data-
scientist (Accessed 12 July 2024).

[25] ChatGPT, Data analyst, 2024, https://chatgpt.com/g/g-HMNcP6w7d-data-
analyst (Accessed 12 July 2024).

[26] E.M. Bender, T. Gebru, A. McMillan-Major, S. Shmitchell, On the dangers of

stochastic parrots: Can language models be too big? in: Proc. FAccT, 2021, pp.
610-623.

14

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Information Systems 129 (2025) 102496

Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen, X. Yi, C. Wang,
Y. Wang, W. Ye, Y. Zhang, Y. Chang, P.S. Yu, Q. Yang, X. Xie, A survey on
evaluation of large language models, ACM Trans. Intell. Syst. Technol. 15 (3)
(2024) 39:1-39:45.

L. Song, J. Gan, Z. Bao, B. Ruan, H.V. Jagadish, T. Sellis, Incremental preference
adjustment: A graph-theoretical approach, VLDB J. 29 (6) (2020) 1475-1500.
S. Sarawagi, User-adaptive exploration of multidimensional data, in: Proc. VLDB,
Cairo, Egypt, 2000, pp. 307-316.

L. Golab, D. Srivastava, Exploring data using patterns: A survey and open
problems, in: Proc. DOLAP@EDBT/ICDT, Nicosia, Cyprus, 2021, pp. 116-120.
L. Golab, H.J. Karloff, F. Korn, D. Srivastava, Data auditor: Exploring data
quality and semantics using pattern tableaux, Proc. VLDB Endow. 3 (2) (2010)
1641-1644.

M. Francia, S. Rizzi, P. Marcel, Explaining cube measures through intentional
analytics, Inf. Syst. 121 (2024) 102338.

S. Sarawagi, Explaining differences in multidimensional aggregates, in: Proc.
VLDB, Edinburgh, Scotland, 1999, pp. 42-53.

M. Francia, M. Golfarelli, P. Marcel, S. Rizzi, P. Vassiliadis, Suggesting assess
queries for interactive analysis of multidimensional data, IEEE Trans. Knowl.
Data Eng. 35 (6) (2023) 6421-6434.

F. Abuzaid, P. Kraft, S. Suri, E. Gan, E. Xu, A. Shenoy, A. Ananthanarayan, J.
Sheu, E. Meijer, X. Wu, J.F. Naughton, P. Bailis, M. Zaharia, DIFF: A relational
interface for large-scale data explanation, VLDB J. 30 (1) (2021) 45-70.

M. Francia, S. Rizzi, P. Marcel, The whys and wherefores of cubes, in: Proc.
DOLAP@EDBT/ICDT, loannina, Greece, 2023, pp. 43-50.

R. Ding, S. Han, Y. Xu, H. Zhang, D. Zhang, QuickInsights: Quick and automatic
discovery of insights from multi-dimensional data, in: Proc. SIGMOD, Amsterdam,
The Netherlands, 2019, pp. 317-332.

P. Ma, R. Ding, S. Han, D. Zhang, Metalnsight: Automatic discovery of struc-
tured knowledge for exploratory data analysis, in: Proc. SIGMOD, 2021, pp.
1262-1274.

D. Gkesoulis, P. Vassiliadis, P. Manousis, CineCubes: Aiding data workers gain
insights from OLAP queries, Inf. Syst. 53 (2015) 60-86.

K. Affolter, K. Stockinger, A. Bernstein, A comparative survey of recent natural
language interfaces for databases, VLDB J. 28 (5) (2019) 793-819.

F. Li, H.V. Jagadish, Understanding natural language queries over relational
databases, SIGMOD Rec. 45 (1) (2016) 6-13.

D. Saha, A. Floratou, K. Sankaranarayanan, U.F. Minhas, A.R. Mittal, F. Oz-
can, ATHENA: An ontology-driven system for natural language querying over
relational data stores, PVLDB 9 (12) (2016) 1209-1220.

M. Francia, E. Gallinucci, M. Golfarelli, Towards conversational OLAP, in: Proc.
DOLAP@EDBT/ICDT, Copenhagen, Denmark, 2020, pp. 6-15.

M. Golfarelli, S. Graziani, S. Rizzi, Shrink: An OLAP operation for balancing
precision and size of pivot tables, Data Knowl. Eng. 93 (2014) 19-41.

V. Demberg, A. Winterboer, J.D. Moore, A strategy for information presentation
in spoken dialog systems, Comput. Linguist. 37 (3) (2011) 489-539.

O.B. El, T. Milo, A. Somech, Towards autonomous, hands-free data exploration,
in: Proc. CIDR, Amsterdam, The Netherlands, 2020.

A. Simitsis, G. Koutrika, Y. Alexandrakis, Y.E. Ioannidis, Synthesizing structured
text from logical database subsets, in: Proc. EDBT, Nantes, France, 2008, pp.
428-439.

D. Deutch, N. Frost, A. Gilad, Explaining natural language query results, VLDB
J. 29 (1) (2020) 485-508.

G. Lyons, V. Tran, C. Binnig, U. Cetintemel, T. Kraska, Making the case for
query-by-voice with EchoQuery, in: Proc. SIGMOD, ACM, New York, NY, USA,
2016, pp. 2129-2132.

T.B. Brown, et al., Language models are few-shot learners, in: Proc. NeurIPS,
2020.

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F.L. Aleman, D. Almeida,
J. Altenschmidt, S. Altman, S. Anadkat, et al., GPT-4, Technical Report, 2023,
arXiv:2303.08774.

S.R. Bowman, Eight things to know about large language models, 2023, arXiv:
2304.00612.

T.B. Brown, Language models are few-shot learners, 2020, arXiv:2005.14165.
C. Spiess, D. Gros, K.S. Pai, M. Pradel, M.R.I. Rabin, A. Alipour, S. Jha, P.
Devanbu, T. Ahmed, Calibration and correctness of language models for code,
2024, arXiv:2402.02047.

M. Golfarelli, S. Rizzi, A methodological framework for data warehouse design,
in: Proc. DOLAP, 1998, pp. 3-9.

A. Ziegler, E. Kalliamvakou, X.A. Li, A. Rice, D. Rifkin, S. Simister, G. Sit-
tampalam, E. Aftandilian, Measuring GitHub Copilot’s impact on productivity,
Commun. ACM 67 (3) (2024) 54-63.

P.J. Denning, Can generative Al bots be trusted? Commun. ACM 66 (6) (2023)
24-27.

http://refhub.elsevier.com/S0306-4379(24)00154-6/sb1
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb1
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb1
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb2
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb2
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb2
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb2
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb2
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb3
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb3
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb3
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb4
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb4
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb4
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb5
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb5
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb5
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb6
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb6
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb6
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb7
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb7
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb7
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb8
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb8
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb8
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb9
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb9
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb9
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb10
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb10
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb10
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb11
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb11
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb11
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb11
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb11
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb12
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb12
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb12
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb12
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb12
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb13
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb13
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb13
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb14
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb14
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb14
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb15
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb15
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb15
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb16
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb16
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb16
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb17
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb17
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb17
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb18
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb18
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb18
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb18
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb18
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb19
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb19
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb19
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb20
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb20
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb20
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb21
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb21
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb21
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb22
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb22
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb22
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb22
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb22
https://openai.com/index/hello-gpt-4o/
https://chatgpt.com/g/g-UgvlRTBjV-data-scientist
https://chatgpt.com/g/g-UgvlRTBjV-data-scientist
https://chatgpt.com/g/g-UgvlRTBjV-data-scientist
https://chatgpt.com/g/g-HMNcP6w7d-data-analyst
https://chatgpt.com/g/g-HMNcP6w7d-data-analyst
https://chatgpt.com/g/g-HMNcP6w7d-data-analyst
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb26
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb26
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb26
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb26
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb26
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb27
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb27
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb27
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb27
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb27
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb27
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb27
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb28
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb28
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb28
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb29
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb29
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb29
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb30
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb30
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb30
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb31
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb31
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb31
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb31
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb31
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb32
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb32
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb32
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb33
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb33
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb33
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb34
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb34
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb34
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb34
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb34
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb35
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb35
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb35
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb35
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb35
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb36
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb36
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb36
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb37
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb37
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb37
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb37
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb37
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb38
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb38
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb38
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb38
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb38
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb39
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb39
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb39
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb40
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb40
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb40
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb41
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb41
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb41
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb42
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb42
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb42
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb42
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb42
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb43
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb43
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb43
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb44
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb44
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb44
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb45
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb45
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb45
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb46
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb46
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb46
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb47
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb47
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb47
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb47
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb47
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb48
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb48
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb48
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb49
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb49
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb49
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb49
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb49
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb50
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb50
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb50
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2304.00612
http://arxiv.org/abs/2304.00612
http://arxiv.org/abs/2304.00612
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2402.02047
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb55
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb55
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb55
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb56
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb56
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb56
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb56
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb56
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb57
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb57
http://refhub.elsevier.com/S0306-4379(24)00154-6/sb57

	VOOL: A modular insight-based framework for vocalizing OLAP sessions
	Introduction
	Requirements for OLAP vocalization
	Overview of VOOL
	Novel contributions and paper outline

	Formal background
	The vocalization process
	Insight generation
	Insight selection
	Vocalization
	Details-on-demand

	The modules of VOOL
	Top-k
	Aggregation variance
	Assess
	Bottom-k
	Clustering
	Correlation
	Domain variance
	Outliers
	Skyline
	Slicing variance
	Statistics

	Experimental evaluation
	User evaluation
	Budget setting
	Efficiency
	Comparison against LLMs and LLM-based applications

	Related work
	Exploratory data analysis
	Conversational systems
	LLMs and LLM-based applications

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

