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A B S T R A C T

This paper describes applications of artificial intelligence to estimate indoor carbon dioxide levels, even in the 
absence of a direct CO2 sensor, based on simply obtained indoor parameters. The aim is to develop a novel 
universal model that is easy to use in a wide range of applications and easy to replicate. The presented predictive 
models are based on experimental data collected via affordable microclimate stations. They are built with Wi-Fi- 
enabled microcontrollers similar to Arduino, designed to monitor environmental factors such as temperature, 
humidity, human presence, atmospheric pressure, and carbon dioxide levels. The experimental data used to train 
and test the models are specifically collected for this analysis in a primary school classroom in Bialystok, Poland, 
through the homemade stations that gather data minute-by-minute. Linear and non-linear models include ma
chine learning models such as SVM, random forest, decision tree, and neural networks. Among the various 
models tested, the random forest method, which relied solely on temperature, humidity, and human presence 
measurements, produced the most accurate results, achieving an R-squared value of 0.89. The use of tempera
ture, humidity, and presence sensors, which are more affordable than CO2 sensors, highlights the novelty of the 
present analysis and the cost-effectiveness of predictive modelling in environmental monitoring.

1. Introduction

Occupants of buildings are continuously subjected to various indoor 
environmental stimuli, including factors related to thermal conditions or 
air quality [1]: proper Indoor Air Quality (IAQ) is crucial for the well- 
being of buildings’ users. Recently, we have observed a tendency to 
reduce energy consumption for cooling and heating, often achieved by 
sealing the building envelope and decreasing the ventilation air ex
change rate per hour (ACH). While this trend may ensure the appro
priate indoor temperature, it may result in an undesirable increase in 
carbon dioxide concentration. This aspect is delicate and essential, 
especially regarding educational buildings, where often CO2 concen
trations higher than the limit occur [2]. Various solutions were proposed 
to improve the IAQ, starting from the use of plants that have air- 
purifying properties not only outside a building [3] but even inside 
[4,5], or by setting the maximum occupied space of 2.3 m2 per person 
[6]. Angelova et al. [7] found that it could decrease the CO2 

concentration by changing the indoor temperature in classrooms; 
however, it could influence thermal comfort. The in-situ estimation of 
dynamic air change rates for various window-opening configurations 
based on occupant metabolic CO2 emissions was proposed by Schreck 
et al. [8].

IAQ and heating energy consumption are intricately linked in 
densely occupied spaces like classrooms. Labihi et al. [9] conducted an 
experimental simulation study in a university classroom in Rennes, and 
they concluded that upgrading the controlled mechanical ventilation 
(CMV) with a double flow ensures air quality without increasing heating 
consumption. Loreti et al. [10] ran a simulation study on an Italian 
school applying different strategies to enhance energy performance. 
Regarding the installation of heat recovery, they conclude that it im
proves indoor air conditions and comfort, but the energy cost is 
increasing. To reduce the economic cost regarding the use of CMV, it is 
crucial to correctly associate renewable energy sources, such as photo
voltaic panels, and optimize the module distribution (i.e., orientation 
row distance, tilt angle, etc.) [11]. Evaluating different modelling 
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approaches for predicting levels of CO2 is crucial for the proper 
designing of HVAC systems and maintaining good IAQ. Models based on 
different indoor parameters, such as indoor temperature, pressure, 
number of users, ACH were developed by Lawrence&Braun [12], Liu 
et al. [13], Škrjanc&Šubic [14], Krawczyk et al. [15,16]. The compre
hensive study of Ma et al. [17] compared the most common thermal 
comfort models, and their variables related to steady-state and adaptive 
models. Many authors have experimentally measured the air quality 
parameters [18,19], and recently, attention has been paid to the use of 
low-cost sensors or equipment, as by Gonzales Rivero et al. [20], Bal
lerini et al [21], Tryner et al. [22]. A review of the application of low- 
cost sensing technology for indoor air quality monitoring is presented 
by Sà et al. [23].

Researchers and designers have increasingly applied artificial intel
ligence (AI) in building design, usage, and proper maintenance. Liu et al. 
[24] developed an applicable model of the insulation material consid
ering the moisture absorption and desorption process. Sari et al. [25]
developed a predictive model utilizing machine learning (ML) tech
niques that considered energy efficiency, indoor environmental quality, 
and site planning to design buildings. Yussuf et al. [26] explored using 
AI to enhance energy efficiency throughout various stages of the 
building lifecycle, including building design, construction, operation 
and control, maintenance, and retrofit. Alsalemi et al. [27] introduced 
an economical, high-performance Internet of Energy platform that col
lects, measures, and processes data on energy usage, temperature, illu
minance, humidity, and occupancy within a space to improve 
occupants’ consumption behaviour. Various researchers developed 
predictive models for heating or cooling performance to achieve the 
effective system [28–30]. Zivelonghi & Giuseppi found the idea of Smart 
Healthy Schools (SHS) as a paradigm in education buildings that merge 
together IAQ, IoT (Internet of Things) and AI to provide optimal control 
of the IAQ [31]. Tagliabue et al [32] proposed using IAQ data gathered 
by IoT sensors to activate the control of the indoor conditions according 
to the occupancy rate in the educational building located in the Smart 
Campus of the University of Brescia. Since experimental monitoring is 
not always possible, over the last few years, many artificial intelligence 
applications have been introduced in energy systems [33]. Various other 
studies focused on using Artificial Neural Networks (ANN) and IoT to 
reduce energy consumption and improve energy management in 
buildings e.g. Chou&Truong [34], A. Thangamani et al. [35], Selvaraj et 
al [36], Ngarambe et al. [37] proposed AI as a tool for predicting ther
mal comfort in buildings. Merabet et al. [38] showed known 

applications of ANN and paid attention to the necessity of future studies 
regarding the use of AI for human comfort and energy-efficiency man
agement in buildings. Zhang et al. [39] proposed an explainable Artifi
cial Intelligence model to predict energy usage and greenhouse gas 
emissions of residential buildings. Model predictive control (MPC) was 
the subject of an investigation by Yao et al. [40] and by Afram and 
Janabi-Sharifi [41], which showed various kinds of modelling tech
niques and optimization methods used.

However, a search in scientific databases has shown a limited 
number of studies related to the use of Artificial Neural Network (ANN) 
techniques in the field of carbon dioxide concentration. Ahn et al. [42]
developed a hybrid model for forecasting the varying indoor CO2 con
centration levels in a residential building by controlling the ventilation 
rates of a heat recovery system. Baghoolizadeh et al. proposed models 
for CO2 emissions developed using the GMDH type of artificial neural 
network (ANN-GMDH) in different studies. In [43] they used five design 
variables (cooling and heating set point temperature of the air condi
tioning thermostat, the level of the residents’ clothes for the hot and cold 
seasons and the amount of fresh air transferred into the building by the 
ventilation system). In [44] they introduced twelve variables (the level 
of occupants’ clothing, the air velocity, the set-point temperature of the 
cooling and heating, the volume of fresh air transported into the 
building, total heat transfer coefficient (U), thermal absorbance, visible 
absorbance and solar absorbance for roof and external wall, window 
optical properties and occupant’s activity level). Most existing studies 
have used readings from CO2 sensors to predict IAQ, while others 
developed CO2 models based on several variables connected with 
building parameters, HVAC systems, etc. Moreover, in the existing 
literature, the non-replicability to different locations or contexts often 
arises as a limitation of existing studies.

In contrast, this current work focuses on estimations of indoor CO2 
levels, even in the absence of a direct CO2 sensor, based on easily ob
tained indoor parameters, to develop a universal model, easy to use in a 
wide range of applications. The affordable microclimate station that 
employs Arduino-like Wi-Fi microcontrollers to monitor environmental 
parameters, including temperature, humidity, human presence, atmo
spheric pressure, and carbon dioxide levels was proposed. Predictive 
models are employed to estimate CO2 concentration: both linear and 
non-linear ones, including machine learning models such as SVM 
(Support Vector Machine), random forest, decision tree, and neural 
network. The analysis and modelling, presented in Section 4, are con
ducted in a Matlab environment [45] using the Statistics and Machine 

Nomenclature

Symbols
D (m) Diameter
DT (K) Temperature difference
PRESi (◦C) Presence of people (Boolean value)
RH (%) Relative humidity
t5,i (◦C) Air temperature at 0.05 m from the floor
t120,i (◦C) Air temperature at 1.20 m from the floor
tair (◦C) Air temperature
tbg (◦C) Black-globe temperature
tmr (◦C) Mean radiant temperature
U (W/(m2 K)) Total heat transfer coefficient
Udoors (W/(m2 K)) Transmittance of the doors
Uwalls (W/(m2 K)) Transmittance of the walls
Uwindows (W/(m2 K)) Transmittance of the windows
yCO2,day,i Estimated daily CO2 concentration
ε (− ) Emissivity
Δτi (s) Time difference between two consecutive measurements
Subscript i i-th value of the considered variable

Acronyms
ACH Air Exchange Rate
ADC Analog To Digital
AI Artificial Intelligence
ANN Artificial Neural Networks
CMV Controlled Mechanical Ventilation
CO2 Carbon dioxide
IAQ Indoor Air Quality
IoT Internet of Things
HVAC Heating, Ventilation and Air Conditioning
ML Machine Learning
MPC Model Predictive Control
NTC Negative Temperature Coefficient
R2 Determination Coefficient
RMSE Root Mean Squared Error
SHS Smart Healthy Schools
SVM Support Vector Machine
USB Universal Serial Bus
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Learning Toolbox [46]. The results are compared with experimental 
data, to assess the quality of the research. Results of such predictive 
models, based on easily known values such as temperature, humidity 
and people presence in rooms that make them general-purpose, easily 
replicable, and relatively cheap tools, are crucial for a proper ventilation 
profile of rooms to maintain an optimal IAQ.

2. Experimental campaign

First, let us describe the experimental campaign performed both to 
collect data and to double check the predicted results. We equipped a 
school class with measurement sensors placed in two different boxes. 
Each box contains two microcontrollers (Arduino Uno [47] and 
NodeMCU [48]) and some sensors, namely two NTCs, a DHT11 hu
midity sensor, and a BMP280 pressure and temperature sensor. In this 
configuration, the Arduino Uno is responsible for reading the tempera
ture values from the NTCs through its internal 10-bit ADC (analogue to 
digital converter) and the measurements from the DHT11 and BMP280. 
The NodeMCU, on the other hand, saves the data obtained by Arduino 
Uno via serial connection to an onboard SD card (connected to the 
NodeMCU via a logic level converter) and transmits the collected data 
via Wi-Fi.

Fig. 1 shows the schematic of the implemented data acquisition 
system. The two boxes, to which the sensors are connected, locally save 
the data collected from the sensors every 60 s on an SD card (as a backup 
measure) and simultaneously transmit the data via Wi-Fi to a Google 
Sheet [49] using a Google Script created for this purpose.

The system is portable due to its compact size and USB power supply. 
Moreover, the system is low-cost. Details regarding the composition of 
the boxes and their positioning inside a classroom are provided in Ap
pendix 1. The installed sensors, the variables measured by each, and the 
accuracies provided by datasheets or obtained following laboratory 
calibration are listed in Table 1.

The research was conducted in an educational building (primary 
school) in Bialystok, Poland, with the following geographic coordinates: 
longitude 23o15′23′’E and latitude 53o11′83′’N. A detailed description of 
the building and the local weather and climate conditions is provided in 
Appendix 2.

The experimental campaign covered part of the winter season, from 
January 26, 2024, when the sensors were installed, to March 12, 2024.

3. Experimental results

Let us first discuss the trend of carbon dioxide emissions registered 
during the experimental campaign.

In Fig. 2(a), the trend of carbon dioxide concentration during the 
staff in-service days is reported, i.e., corresponding to a period when no 
children are present in the school, only the staff. This period extends 
from the installation of the sensors on January 26 to February 4, 2024, 
aligning with a frame of the typical Polish winter vacation. The figure 
shows that on Saturdays and Sundays (January 27–28 and February 
3–4), the concentration detected by the sensor is below 500 ppm. 
However, on the other days within the considered timeframe, despite 
the lack of continuous presence in the classroom and with the class
room’s access door from the main corridor being closed, the carbon 
dioxide concentration increases due to leakages from the rise of CO2 in 
other rooms and hence in the corridor due to the presence of the staff. A 
peak concentration is observed in the evening, with values exceeding 
510 ppm, whilst a minimum is noted early in the morning between 6:00 
a.m. and 7:00 a.m. due to the absence of people in the building 

Fig. 1. Scheme of the implemented acquisition devices.

Table 1 
Data about the sensors employed.

Sensors Measured 
values

Range Accuracy

NTC (negative 
temperature 
coefficient) [50]

temperature 0–27 ◦C ±0.4 K

DHT11 [51] humidity 20–90 % ± 5 %
BMP280 [52] temperature − 10–85 ◦C ± 0.5 K

pressure 300–1100 
hPa

± 1.0 hPa

PIR 503 [53] presence (− ) − −

CO2 sensor [54] temperature − 10–60 ◦C ± 0.5 K
humidity 0–95 % ± 3 %
CO2 

concentration
0–10000 
ppm

±50 ppm + 2 % of 
the measured value
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overnight. Finally, the entrance of staff members on Friday, February 2, 
is observed, likely for the classroom preparation for the following week’s 
lessons: during the afternoon of February 2, there is an increase from 
510 ppm to 580 ppm in a few minutes. In Fig. 2(b), the detected CO2 
trend during a typical working week, when classes are held in the 
analyzed classroom, is shown. Fig. 2(b) displays a characteristic trend 
from Monday to Friday, with concentration peaks during the lessons up 
to 3200 ppm. Different relative maxima and minima are visible each 
day, mainly due to opening the windows for room ventilation purposes. 
The starting CO2 value in the morning is, nonetheless, close to 500 ppm.

Moreover, in Fig. 3, the minute-by-minute CO2 trend on February 7th 
is displayed alongside the presence of people within the room detected 
by the presence sensor. Notably, high concentration values are observed 
in the morning from 8:00 a.m. to 11:00 a.m. and, in the afternoon, from 
4:30 p.m. to 8:00 p.m., which corresponds to the presence of people in 
the classroom. In fact, the presence of people moving in the classroom is 
detected by the PIR sensor and shown with a yellow band in Fig. 3. 
Additionally, a decrease from about 2100 ppm to 1000 ppm in 5 h is 

noted during the central hours of the day when the room is unoccupied, 
and the windows are closed. Fig. 3 also clearly shows the drastic re
ductions in CO2 levels achieved when the classroom windows are 
opened. Nevertheless, the carbon dioxide values are exceedingly high 
throughout most of the working day, indicating poor air quality.

Fig. 4(a) shows the trends of humidity inside the classroom during a 
period without lessons, i.e., during the in-staff days, in the period be
tween the end of January and the beginning of February, while Fig. 4(b) 
represents the trend of relative humidity detected during a typical week 
when lessons are held inside the classroom.

In detail, Fig. 4(a) shows a stable humidity trend for the entire period 
except for Friday afternoon, corresponding to the entry of staff members 
into the classroom to prepare it for the following week’s lessons: the 
presence of people is associated with a significant increase in humidity 
from values around 35 % to 45 % (this is probably due to endogenous 
activities that involve a significant increase in relative humidity, such as 
floor washing). A humidity value close to 35 % is observed for the rest of 
the reported period.

Fig. 2. Carbon dioxide concentration during staff in-service days (a) and during a typical working week (b).
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On the other hand, Fig. 4(b) shows a vastly different humidity trend. 
Every day (from Monday to Friday, when lessons are held) features a 
highly variable humidity trend with peaks reaching 50 %. These in
creases are due to the presence of people. The humidity trend in the 
classroom during the day shows maxima and minima, and the latter is 
essentially due to windows opening for air exchange. Finally, a stabili
zation of the relative humidity value (approximately 30 %) is observed 
during the weekend when the classroom is not occupied.

Fig. 5 shows the temperature of the air and the mean radiant tem
perature. The air temperature is measured at 1.20 m from the ground, 
and the data are collected every minute; the mean radiant temperature is 
calculated using Eq. (1) [55], which is usually employed to correlate the 
black-globe temperature (the temperature measured by a sensor placed 
inside a black hollow sphere with known emissivity) and the air tem
perature to the mean radiant temperature under very low air velocity 
conditions. 

tmr =

(
(
tbg + 273

)4
+

0.25⋅108

∊

(⃒⃒tbg − tair
⃒
⃒

D

)0.25

⋅
(
tbg − tair

)
)0.25

− 273

(1) 

In Eq. (1), D represents the diameter of the sphere, which is 0.15 m in 
this case, ε represents the emissivity of the sphere considered equal to 
0.95, tbg is the temperature detected inside the globe thermometer 
(placed at 1.9 m from the ground). In comparison, tair is the average air 
temperature from the two NTCs at 2.75 m and 1.20 m. It was decided to 
use an intermediate air temperature to estimate the mean radiant tem
perature at the same height as the globe thermometer (1.90 m) due to 
the impossibility of placing an additional temperature sensor near the 
globe. As is shown in Fig. 6, stratification in the room is limited between 
1.20 m and 2.75 m from the floor (usually less than 0.5 K), so this choice 
should have a limited impact on the calculated mean radiant tempera
ture value.

Fig. 5(a), refers to the period when only the staff was present inside 
the school and there were no lessons in the considered classroom; it 
shows up until February 2 an air temperature and a mean radiant tem
perature below 18 ◦C, compatible with a reduction of the set-point inside 
the classroom. On February 2, however, an increase in temperature was 
observed with values close to 19 ◦C for both air temperature and mean 
radiant temperature: this is compatible with the entry of staff members 
into the classroom to prepare it for future lessons and with a possible 

increase in the set-point. Focusing on Fig. 5(b), an increase in average air 
and radiant temperatures is observed with maximum values of 23.5 ◦C 
and minimum values of 18 ◦C. The values of air temperature and mean 
radiant temperature are also similar during a typical week of lessons, 
with the mean radiant temperature generally higher than the air tem
perature but with a limited difference, less than 0.5 K, which is also 
attributable to the different mounting heights of the black-globe sensor 
(1.90 m from the floor) compared to the NTC at 1.20 m from the floor. 
Moreover, during Saturday and Sunday, a progressive lowering of both 
temperatures is observed with a stabilization around 20.5 ◦C, indicating 
that probably during the weekend, the heating system’s set-point is 
above 20 ◦C.

In Fig. 6, the temperature trends detected in the classroom on 
February 20, a typical working day, are shown. The temperature at 
different heights from the floor (0.05 m, 1.20 m, and 2.75 m), the mean 
radiant temperature, the temperature near the window, and the tem
perature detected by the sensor placed outside the building are reported. 
A stratification between the floor and the ceiling of 1 K is observed 
during the nighttime hours (20 ◦C at a floor level and 21 ◦C at a ceiling 
level), while the mean radiant temperature and the temperature 
measured at 1.20 m from the floor are found to be between the two 
aforementioned values. Significant fluctuations in temperatures near the 
floor (black line) are observed, especially following windows opening 
for air exchange and the temperature near the window (minimum 
temperature reached 16 ◦C). The temperature near the window is also 
lower than the temperature detected at floor level during the night, 
while it shows considerable fluctuations, up to 24.5 ◦C due to the po
sition of the NTC: it is placed near a window and above a radiator. In this 
position, the temperature during the day shows these peaks due to 
external irradiation and the operation of the radiator. The outside 
temperature, on the other hand, is found to be between 1.5 and 9 ◦C.

Finally, in Fig. 7, the daily mean values of CO2 throughout the entire 
day and during the typical 12 h of classroom occupation are reported. An 
occupancy factor for the classroom is also presented, where a value 
equal to 1 corresponds to occupancy for the 12 h of the day. It is 
observed that the CO2 values during the 12 h of occupation are much 
higher than those averaging over 24 h; the values for the 12 h on 
working days generally range between 1000 and 2000 ppm. Further
more, a correlation between the presence factor and the average 
measured CO2 is noted. However, this correlation is not always visible: 

Fig. 3. Carbon dioxide concentration February 7th, a typical working day; the yellow area represents the presence of people moving in the classroom detected by the 
PIR sensor. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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for example, considering February 21 and February 22, there is a quite 
different occupancy factor, but a very similar average daily CO2 value. 
Finally, on Saturdays and Sundays and generally, when the classroom is 
not occupied, the averages over 12 h and 24 h are similar; it is also noted 
that on February 24, the classroom was occupied for a total period of 
fewer than two hours.

4. Estimation of CO2 concentration in the environment using 
predictive methods

This section will present some predictive methods for determining 
carbon dioxide levels without carbon dioxide meters. These methods 
estimate CO2 based on environmental data collected by other sensors 
located within the classroom and then compared with the experimental 
data. Firstly, before introducing the predictive methods, let us discuss 
some qualitative correlations between the measured carbon dioxide 

concentration and the other measured values (temperature, humidity, 
and presence) will be presented.

4.1. Instantaneous CO2 concentration estimation

In Fig. 8(a), the trends of carbon dioxide concentration, humidity, 
and presence are shown on the same graph, and in Fig. 8(b), the trends of 
CO2 and the temperature difference DT between the NTC located near 
the floor and at 1.20 m from the floor are displayed. From the mentioned 
graphs, a correlation between the CO2 trend and the detected relative 
humidity value in the classroom is visible: the presence of people inside 
the room leads to an increase in CO2 and also an increase in humidity 
due to respiration and perspiration. Moreover, it is observed that the 
CO2 trend is also influenced by the presence of people in the classroom. 
From Fig. 8(b), a peculiar trend between DT and CO2 concentration is 
noted: as DT increases, indicating the opening of windows for 

Fig. 4. Relative humidity during staff in-service days (a) and during a typical working week when lessons are held in the classroom (b).
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ventilation, there is a corresponding decrease in CO2 concentration.
Therefore, we developed predictive methods for assessing the CO2 

concentration without a CO2 measuring sensor based on detected tem
perature, humidity, and presence values. If the predictive model is suf
ficiently accurate, it could be easily replicable and lead to a reduction in 
hardware costs: a device consisting of a microcontroller paired with a 
CO2 sensor indeed has a higher cost compared to an acquisition system 
that includes a microcontroller, two temperature sensors, one humidity 
sensor, and a presence sensor.

The predictive models for CO2 determination are based on variables 
that utilize data of temperature at 0.05 m from the floor (t5,i), temper
ature at 1.20 m from the floor (t120,i), humidity (RHi), and presence 
(PRESi), where the notation i represents the i-th measurement, which 
occurs at intervals of about 60 s as indicated. The new variables intro
duced based on the measured data are indicated in equations from (2) to 

(6): 

xP,i =
∑i

k=i− 50

PRESk

50
(2) 

xH,i = RHi (3) 

xT,i = t120,i − t5,i (4) 

xDT,i = xT,i

∑i

k=i− 16

1
(
t5,k/16

)
⋅Δτk

(5) 

xDH,i =
∑i

k=i− 60

(
1

xH,k/60

)
∑i

k=i− 5

xH,k

5⋅Δτk
(6) 

Fig. 5. Air temperature at 1.20 m from the floor “T_AIR_120” and mean radiant temperature “MRT” determined during staff in-service days (a) and during a typical 
working week when lessons are held in the classroom (b).
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In the aforementioned, Δτi represents the time difference in seconds 
between the i-th measurement and the previous one. The values of eqs. 
(2)-(4) represent respectively the average presence value in the previous 
50 measurements (approximately in the previous 50 min), the relative 
humidity detected from the i-th measurement, and the temperature 
difference at 1.20 m from the floor and near the floor, respectively. The 
parameters are determined by eqs. (5) and (6), and consider the varia
tion over time of the humidity and the temperature difference detected 
in the latest measurements (16 measurements for the temperature dif
ference and 60 for the humidity).

To estimate the CO2 concentration inside the classroom, six predic
tive methods were used that take as input the expressions reported in 
eqs. (2)-(6). The best fitting for each method was determined using 
MATLAB and the “Statistics and Machine Learning Toolbox” [45,46]. 
The first two methods analyzed were linear and non-linear regression 
models; the correlation coefficients and root mean square errors are 
reported in Table 2. These two models (indicated with identifiers ID1 
and ID2) are the only ones with an analytical expression; the other 
regression models used are machine learning methods: SVM, random 
decision forests, decision trees, and neural networks. The main charac
teristics of the aforementioned predictive systems are as follows: 

– SVM (Support Vector Machine): SVMs are models used for classifi
cation and regression. In the case of non-linearly separable data, 
SVMs use kernel functions to transform the input space into a higher- 
dimensional space where linear separation can be carried out [56].

– Decision trees are predictive models that map the features of objects 
to conclusions about target values. They use a tree structure with 
various levels, where the internal nodes represent tests on the fea
tures, branches represent the test outcomes, and each tree leaf rep
resents a class or value [57].

– Random decision forests combine the predictions of numerous de
cision trees to improve generalization and reduce the risk of over
fitting. Each tree in the forest is constructed from a random sample of 
the training data set, and the split points in each tree are chosen from 
a random subset of the features [58].

– Neural networks are systems of algorithms composed of nodes 
(neurons) organized into layers: an input layer, one or more hidden 
layers, and an output layer. They require substantial data for training 
and can be opaque regarding interpretability [59].

The main parameters characterizing the predictive methods indi
cated with ID 3–6 in Table 2 are as follows: 

Fig. 6. Temperature trends during February 20 (typical working day) at different heights from the floor (0.05 m, 1.20 m and 2.75 m from the floor), mean radiant 
temperature and air temperature near the window “T_AIR_WINDOW”; On the secondary axis on the right is also reported the external air temperature “T_AIR_EXT”.

Fig. 7. Daily carbon dioxide values averaged over 24 and 12 h (8:00 a.m. − 8:00 p.m.) and daily occupancy factor.
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– A Gaussian function was considered for the SVM model;
– Minimum leaf size of 25, to reduce the overfitting for the Decision 

Trees model;
– 100 trees for Random Decision Forest, to increase the accuracy and 

limit overfitting problems;
– 25 Hidden layers for neural networks.

Moreover, the methods were trained on 70 % of the available data 
(approximately 65,400 data for CO2 values from experimental measures, 
and corresponding variables determined through Eqs. (2)-(6)) and 
tested on the entire data set and the remaining 30 % of the data, as 
indicated in Table 2.

Table 2 also reports the values of the root mean squared error (RMSE) 
and the coefficient of determination (R2) obtained from the application 
of the six models, whilst Table 3 shows the values of the coefficients for 
linear regression (ID1) and nonlinear regression (ID2).

From the values reported in Table 2, it is observed that the R2 value is 
0.732 for the linear model, while it is 0.75 for the nonlinear model, with 
a limited percentage increase of the latter compared to the former (2.8 
%): thus, these regression models lead to very similar estimates of CO2 

Fig. 8. Trends of carbon dioxide concentration compared to relative humidity and presence of people (yellow area represents the presence of people in the 
classroom) (a), and temperature difference DT between 1.20 m and 0.05 m from the floor (b) on February 28th (typical working day). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2 
Correlation coefficient and root mean squared error related to the six predictive 
methods analyzed. Note: a) refers to the case where the training and test sample 
is considered (100% of the measurements taken during the data acquisition 
period), while b) refers to the indices calculated only on the test data set (the last 
30% of the dataset).

ID Type Expression RMSE 
(ppm)

R2

1 linear β1 + xH,i β2 + xT,i β3 + xP,i β4 241 0.732
2 non-linear β1 + xH,i β2 + xT,i β3 + xP,i 

β4 + xT,ixT,iβ5 

+ β6 exp(β7 xH,i + β8 xT,i)

231 0.753

3 SVM − 190.7a)/ 
195.7b)

0.830a)/ 
0.797b)

4 Random 
forest

− 162.9 a)/ 
141.7b)

0.878 a)/ 
0.893b)

5 Decision 
tree

− 189.7 a)/ 
183.5b)

0.830 a)/ 
0.821b)

6 Neural 
network

− 197.8 a)/ 
212.1b)

0.821 a)/ 
0.761b)
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concentration in the classroom, as also shown in Fig. 9(a) for March 7. 
This figure highlights the similar behaviour and values of the two pre
dictions, expecially for the two peaks during the classroom occupation. 
However, both predictions tend to underestimate the overall distribu
tion, mainly the higher peak.

Focusing on the neural predictive model and the decision tree, a 
remarkably similar determination coefficient value is observed on the 
entire data set (0.821 and 0.830, respectively); the values related to the 
two predictive methods are exposed in Fig. 9(b). In comparison to Fig. 9
(a), the neural network and the decision tree models fit the measured 
values better, especially for the occupancy period and the morning peaks 
due to the presence in the classroom. However, a slight underestimation 
is still present during the afternoon, when no occupancy together with 
some oscillations.

Finally, considering the SVM and random forest predictive methods, 
an R2 value of 0.830 and 0.878 is observed on the entire data set, 
particularly 0.893 on the test set (including March 7, reported in Fig. 9). 
Moreover, observing the RMSE, it is lower for the random decision forest 
model (141.7 on the test set and 162 on the complete data set). Fig. 9(c) 
displays the predictive models for random forest and SVM. From the 
observed data, it is clear that the best correction is obtained with the 

random forest model compared to all others; it indeed has an increase in 
the determination coefficient of 22.0 % compared to the linear regres
sion model (0.893 vs 0.732); similarly, a decrease in RMSE is observed 
compared to the linear case by 41.2 % (141.7 vs 241). The underesti
mation during the afternoon period of no occupation tends to reduce 
significantly.

Fig. 10 shows the prediction of the random forest model (ID4) 
compared to the base measured values. Thus, a correlation was found 
between the measured values (temperature difference, humidity, and 
presence of people) and the predicted CO2 values in the classroom in the 
best model (ID4) with a determination coefficient R2 of 0.893 and an 
RMSE of 141.7 ppm, against a range of measured CO2 values between 
(480 ppm and 2830 ppm).

4.2. Daily CO2 concentration estimation

In the previous section, estimates of CO2 concentration in the class
room were determined with minute-by-minute granularity; these esti
mates have an ’operational purpose’, meaning they can also be used to 
implement locally and in real-time control logics on a controlled me
chanical ventilation system for air exchange in the environment. In this 

Table 3 
Values of the coefficients indicated in Table 2 for the linear and non-linear methods.

β1 β2 β3 β4 β5 β6 β7 β8

Linear − 303.68 24.606 84.729 1349 − − − −

Non-linear 274.19 − 10.556 200.96 1261.3 − 60.952 87.029 0.052874 0.12496

Fig. 9. Representation of the approximations through the predictive models previously described for a typical day of the heating season (March 7); in (a), the 
forecasts from the linear and non-linear predictive models are reported, in (b) the predicted values from the model based on neural networks and decision trees are 
shown, while in (c) the forecast models based on SVM and random forests are reported.
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section, however, we will design and present a predictive model for 
analyzing CO2 concentration in the classroom daily based on other 
measured parameters; thus, these estimates will have a purely analytical 
purpose and will be used for predicting daily carbon dioxide concen
tration to analyze air quality in the classroom. A linear correlation was 
determined between the CO2 concentration during the typical occu
pancy hours of the classroom yCO2,day,i (generally 12 h during Monday to 
Friday, between 8:00 a.m. and 8:00p.m.) and the daily average tem
perature values at 1.20 m above the ground, t120,day,i, at 0.05 m above 
the floor t5,day,i during the 12 h of occupancy, the presence factor over 
the 12 h, pday,i, and the average relative humidity RHday,i over the 12 h: 

yCO2,day,i = α1RHday,i + α2t120,day,i +α3t5,day,i +α4pday,i +α5, (7) 

where the values of the coefficients are reported in Table 4.
This correlation shows an R2 of 0.725 and an RMSE of 199 ppm; it 

can be observed that the value of the correlation index is close to that 
determined in the linear case with minute-by-minute granularity (ID1). 
Fig. 11 shows the measured daily concentration values and the values 
estimated with the linear predictive model for the actual occupancy days 
of the classroom.

5. Conclusion

The present study develops, compares, and assesses the accuracy of 
predictive models for estimating indoor carbon dioxide concentrations, 
even without a direct CO2 sensor. An experimental campaign was con
ducted to determine environmental parameters such as temperature, 
humidity, human presence, atmospheric pressure, and carbon dioxide 
levels. For this purpose, homemade and low-cost microclimate stations 
that utilize Arduino-like Wi-Fi microcontrollers are installed in a pri
mary school classroom without mechanical ventilation in Bialystok, 
Poland. All the stations were previously calibrated for accurate data 
collection. The recorded data, collected minute-by-minute, covers part 
of the winter season, from January 26 to March 12, 2024; lessons were 
suspended during the first period (1 week), and pupils started school on 
February 5.

All the collected data are used i) to develop and evaluate the 

accuracy of predictive models for estimating indoor CO2 concentrations 
from previous carbon dioxide measurements and ii) to predict the daily 
behaviour of the carbon dioxide from the other measured parameters 
(temperature, relative humidity, and human presence). In the first case, 
linear and non-linear models were employed, including machine 
learning models such as SVM, random forest, decision tree, and neural 
network. The analysis and modelling are conducted in a Matlab envi
ronment using the Statistics and Machine Learning Toolbox. All cited 
methods are trained on 70 % of the available data, and the results are 
compared with the experimental data. In the last case, this is an 
affordable solution to reduce system cost setup through low-cost 
sensors.

To better emphasize the novelty of the paper, the following conclu
sions are drawn: 

1. The random forest model yields the most accurate correction 
compared to all the other models. In fact, it is observed that the R2 

value for the random forest model is 0.87 and 0.830 for the SVM. 
Regarding the other employed models, the neural predictive model 
and the decision tree have similar R2 coefficients: 0.821 and 0.830, 
respectively. R2 is 0.732 for the linear model and 0.75 for the 
nonlinear model; moreover, these two regression models lead to very 
similar estimates of CO2 concentration in the classroom;

2. Machine learning, compared to over deep learning, ensures that the 
model can run efficiently on some microcontrollers with limited re
sources. This approach demonstrates a replicable and cost-effective 
solution for environmental monitoring, validated through compari
sons with actual CO2 sensor data;

3. The combination of temperature, relative humidity and human 
presence measurements are suitable for predicting the daily carbon 
dioxide level inside a classroom. This leads to conclusions like those 
of employing dedicated CO2 sensors. In this case, the installation 
costs are also significantly reduced.

A limitation of the present analysis may arise from the positioning of 
the sensor. Indeed, we aim to investigate the possible effect of the 
positioning of temperature sensors on the quality of prediction models in 
future works. Moreover, future aspects of this work will include 
installing a mechanical ventilation system in a classroom, which will 
work on the correlation obtained following a comfort analysis.
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Fig. 10. Representation of the values predicted by the random forests’ method compared to those measured between February 5 and March 12.

Table 4 
Coefficients related to equation (7), a model for estimating daily concentration 
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V. Ballerini et al.                                                                                                                                                                                                                                Applied Thermal Engineering 261 (2025) 125122 

11 



interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgements

This research was carried out as a part of work no. WZ/WB-IIL/2/ 

2023 at the Bialystok University of Technology and was financed from 
the research subvention provided by the Minister responsible for 
science.

Appendix 1 

In this appendix, details regarding the experimental equipment and the positioning of the sensors are provided.
Fig. A1.1 displays the interior of BOX2 (for brevity, the interior of BOX1, which is similar, is not shown). The figure shows the connections between 

the two microcontrollers (Arduino Uno [48] and NodeMCU [49]) and the sensors, namely two NTCs, a DHT11 humidity sensor, and a BMP280 
pressure and temperature sensor. In this configuration, the Arduino Uno is responsible for reading the temperature values from the NTCs through its 
internal 10-bit ADC (analog to digital converter) and the measurements from the DHT11 and BMP280. The NodeMCU, on the other hand, handles 
saving the data obtained by Arduino Uno via serial connection to an onboard SD card (connected to the NodeMCU via a logic level converter) and 
transmitting the collected data via Wi-Fi. Fig. A1.1 shows the connections of the NTC and DHT11 sensors and the 5V USB power supply on the left. The 
system shown is, therefore, portable due to its compact size and USB power supply. Moreover, the system shown is low cost.

Fig. A1.1. Connections between sensors and microcontrollers in BOX2.

Fig. 11. Estimating daily CO2 concentration: measured values and values predicted with the linear regression given by Eq. (7).
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Fig. A1.2. Layout and position of the sensors within the classroom.

The sensors were installed in a south-facing classroom of the school. The room’s layout is shown in Fig. A1.2, while pictures of the installed sensors 
are reported in Fig. A1.3. The small size of each box is evident. The arrow at the bottom highlights the entrance to the classroom.

Precisely, one NTC sensor was placed outside the classroom to measure the external temperature. The carbon dioxide sensor and the motion sensor 
were installed on a piece of furniture inside the classroom at a height of 1.90 m from the floor. Three NTC sensors were installed at different heights 
(indicated in Fig. A1.2 with a red dot between BOX1 and BOX2): specifically, the heights of the NTC are 0.05 m, 1.20 m, and 2.75 m from the floor; 
another box was placed near the window above the radiators (visible in Fig. A1.3(a)). For calculating the mean radiant temperature, an NTC was also 
placed inside a black globe with a diameter of 0.15 m, and then positioned at a height of 1.90 m from the floor. 
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Fig. A1.3. View of the sensors positioned in the classroom (a); NTC placed next to the floor (b) and NTC placed at 1.20 m from the floor (c).

Appendix 2 

In this appendix, details regarding the building subject to experimental activity and climate conditions are provided.
The research was carried out in an educational building located in Bialystok (a city in north-eastern Poland, which is the coldest part of Poland). 

The geographic coordinates are, respectively: longitude 23o15′23′’E and latitude 53o11′83′’N. The location of the building and its immediate sur
roundings are shown in Fig. A2.1 (a). The classroom where the research equipment is placed is on the ground floor in the southeastern part of the 
building (marked in red in Fig. A2.1). The building was constructed in the 1950s. As shown, the north-west building side is connected to the adjacent 
gym building, constructed in later years than the education building. 
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Fig. A2.1. Location of the educational building and the classroom where the research was carried out (a); Weather by month in Bialystok (1991–2021) [60] (b).

The building includes three overground floors and a basement. The useful floor area is 2,681.70 m2 with a volume of 8,389 m3. The building was 
built in a traditional style. The external walls are made of 58 cm thick ceramic brick. The roof is flat, partially unventilated (above the small gym
nasium) and partially ventilated (above the rest of the building). In 2002, the building underwent thermal modernization, among others, the external 
walls were insulated with a layer of 14 cm thick Styrofoam. In general, the thermal transmittance coefficients of external partitions correspond to the 
requirements in force in Poland at that time (Uwalls = 0.23 W/(m2K)). The entire window and door joinery was replaced (Uwindows = 1.30 and 1.50 W/ 
(m2K); Udoors = 2.50 W/(m2K)). New windows with PVC frames are not equipped with air inlets. Fresh air is supplied into the building through the 
gaps obtained by thinning the rubber gaskets on the fragments of rebates of the window sashes to the frames. The building uses a two-pipe central 
heating system supplied with heat from the municipal heat network. There is no mechanical ventilation; only natural ventilation is used in all rooms.

Weather conditions in Bialystok are characterized by a moderate and chilly climate with a significant amount of rainfall during the year, even in 
the driest months. According to the Köppen-Geiger climate classification, this weather pattern is identified with the category of Dfb. According to 
meteorological records in Fig. A2.1 (b), the average annual temperature in Bialystok is 8.2 ◦C, and the annual rainfall is 715 mm.

The lowest precipitation is recorded in February, only 44 mm, while the most precipitation falls in July − 91 mm. In terms of temperature, the 
warmest month of the year is July. The average temperature during this period reaches 19.5 ◦C. The lowest average temperature of the year is recorded 
in January and is − 3.3 ◦C. It was observed that the difference in rainfall between the months with the lowest and highest levels of precipitation is 47 
mm. Average temperatures vary by 22.8 ◦C throughout the year.

In Białystok, the highest number of daily hours of sunshine are recorded in June. There is an average of 11.01 h of sunshine per day and 330.2 h of 
sunshine throughout June. The lowest number of daily hours of sunshine is recorded in January. The number of hours of sunshine is 1.75 per day and 
54.38 throughout the month, respectively [61].

More details about the climate conditions in Bialystok are given in [62]. During the measurement campaign, from January 26 to March 12, 2024, 
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the average temperature in Bialystok was 4.1 ◦C. The amount of precipitation for this period was 84.7 mm [63].

Data availability

Data will be made available on request. 
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