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A B S T R A C T

This numerical work deals with constructal design (CD) to investigate a complex isothermal double-Y-cavity 
geometry inserted for chilling a rectangular heat-generating solid body. The purpose is to minimize the 
dimensionless maximum temperature excess in the solid domain for the geometry with four constraints and 
seven degrees of freedom (DOF), giving more freedom compared with previous cavities. The optimization pro
cess is performed with exhaustive search (ES) and differential evolution (DE) from the fourth DOF onward to 
reproduce the effect of the analyzed DOFs on the performance indicator and design. For square solids, the 
optimal geometries were obtained when the branches of the investigated cavity were stretched, covering the 
solid body and distributing the hot regions more homogeneously, i.e., following the optimal distribution of 
imperfections principle. For square solids, the performance of the present cavity was 82 %, 74 %, 70 %, 45 %, 35 
%, and 25 % superior to I-, T-, Y-, X-, double T-, and H-cavities, and 1.0 % inferior to ψ configuration. For low and 
high height/length (H/L) ratios of the solid domain, the optimal configurations were obtained when the double 
Y-shaped cavity changed to double T and I configurations, respectively, showing the impact of the constraints on 
the design of the cavity.

1. Introduction

Constructal theory indicates that the designs emerging in flow sys
tems, including those noticed in nature, do not result from chance [1,2], 
resulting from an evolutionary process and following the constructal law 
of evolutionary design [1–4]. This physical principle states that for a 
finite-size flow system to remain alive over time, its design must freely 
evolve to facilitate access to the internal currents in the system [1–5]. As 
a universal design principle, constructal law has contributed to pre
dicting the design and rhythm in several fields, such as biology, medi
cine, and social dynamics [5,6–8]. The method to employ the 
constructal law in the determination of the design of flow systems is the 
constructal design (CD). Constructal design is based on constraints 
(geometrical, physical, technological, and other) and goals (perfor
mance indicators). The design (expressed by the degrees of freedom of 
the geometry) is varied to comprehend its influence on the performance 

indicators that are maximized and/or minimized [9–11]. The effec
tiveness of the method in investigating the design of several engineering 
applications such as cooling cavities, fins and porous fins, finned heat 
sinks, convective channels, “flow of stresses” in structural engineering, 
cooling of electronic packaging, heat exchangers, and renewable energy 
has been successfully demonstrated in the works of literature [11–24].

One of the most common designs seen in the flow systems is the tree- 
like pattern, as can be noticed, for example, in trees, rivers, human 
lungs, animal design, flight routes, or streets in the cities [5]. This kind 
of configuration is characteristic of point-volume (or volume-point) 
flows with low resistance pathways placed over a background of high 
resistance and for a flow system with enough flow intensity [12,25–28]. 
Studies of cavities and high-conductive pathways have been widely 
investigated in the literature [26,28–34] due to the simplicity of the 
physical problem and the possibility of solving several cases and 
studying the generation of complex configurations for the cavities and 
conductive pathways. Recently, important contributions have been also 
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made to the construction of branched pathways and using hybrid 
conductive pathways and fluid flow cooling of solids with heat gener
ation and stacked chips [35–36]. Moreover, since the design of the 
cavity problem can ideally represent the flow systems abundant in na
ture, some meaningful analogies can be performed between the cavity 
problem and real flow systems, e.g., comprehension of the influence of 
the neighborhood and constraint conditions on the design and purpose 
of the flow system [28–29]. Also, recommendations in cooling cavities 
can supply theoretical guidelines to improve performance in cooling 
systems of compact and miniaturized packages of electronics [28–29].

The pioneering work of Bejan [1] presented an investigation about 
the generation and growth of the design of high conductive pathways 
mounted in heat-generating rectangular solid walls from the elemental 
configuration (I-shaped pathway) towards a treelike network using the 
previous step to define the new level of construction. Into the cavities 
realm, Biserni et al. [28] investigated the design of elemental (I-shaped) 
and first-construct (T-shaped) cavities considering the influence of the 
first construct degree of freedom (bifurcation of T) on the configuration 
of the elemental trunk, i.e., the construct did not use a memory strategy 
for the second level of construction. This work showed that the first 
construct (T-shaped cavity) performed better than the elemental 
configuration for equivalent thermal conditions and problem con
straints. Results also indicated that the increase of the cavity intrusion 
into the solid domain contributed to an augmentation in the perfor
mance of the solid/cavity system. Over the years, several studies were 
performed to investigate other configurations of cavities intruded into 
solid walls considering only one sink point, for example, T-, Y-, H-, X-, ψ- 
and tree-shaped cavities [13,14,29,30,37–39]. In general, the exhaus
tive search (ES) was associated with constructal design (CD) to investi
gate the construction that minimizes the maximum excess of 
temperature (θmax). However, other performance indicators, such as 

entropy generation have also been employed [31]. The main purpose of 
those studies was to investigate how the insertion of new construction 
levels affected the design and performance of the system. Among the 
several investigated configurations, the H-shaped cavity studied by 
Biserni et al. [13] demonstrated that the best geometry for the second 
construct design performs much better than the previous constructions, 
i.e., the I- and T-shaped configurations. Similar performance was ob
tained later for cavities with one heat sink under the same thermal 
conditions for the ψ-, double-T-cavity, and tree-shaped configurations 
[14,26,30].

In general, it was noticed in the literature results that for isothermal 
cavities inserted into heat-generating solid walls, the increase of the 
geometric complexity (with an investigation of more DOFs) led to a 
more homogeneous distribution of hot spots and an increase of the 
thermal performance, i.e., following the optimal distribution of imper
fections principle [28–41]. Other important works evaluated the impact 
of the coefficient of convection heat transfer (h) imposed in the cavity 
surfaces on the performance indicator of the system for different cavity 
configurations (I, T, and Y), simulating the influence of neighborhood on 
the design [42–44]. These studies indicated that the optimal designs for 
cavities with low magnitudes of h had simple designs and few intrusions 
into the solid domain. This behavior is dissimilar to that observed for 
high magnitudes of h, where the cavity was more complex and had a 
deeper intrusion in the solid domain.

One limitation for the investigation of complex configurations, study 
of different parameters (e.g., boundary conditions), and adequate 
reproduction of the influence of the degrees of freedom (DOFs) over the 
performance parameters is the prohibitive number of required simula
tions (cases) for application of ES, which is the benchmark solution in 
the optimization of this problem [26]. For instance, a problem with 
seven DOFs, as studied in the present work, would require at least 107 

Nomenclature

A Area, m2

CR Crossover rate parameter
F Mutation function amplification factor
G Actual generation of optimization method
H Height of the solid wall, m
H0 Height of the cavity trunk, m
H1 Thickness of the inferior cavity branches, m
H2 Thickness of the superior cavity branches, m
k Thermal conductivity of the solid body, W•m− 1•K− 1

L Length of the solid body, m
L0 Thickness of the cavity trunk, m
L1 Length of the inferior cavity branches, m
L2 Length of the superior cavity branches, m
NP Population size (number of solutions)
NG Number of generations
OF Objective function
q Heat transfer rate, W
q’′′ Heat transfer rate per unit volume, W⋅m− 3

T Temperature, K
u Solution of the next generation of the optimization method
W Width, m
v Trial vector with candidate solution of optimization 

method
x, y Cartesian coordinates, m

Greek symbol
ΔE Difference between the cost of the objective function for 

the new and best solutions
θ Dimensionless excess of temperature

φ Cavity fraction area
α Angle of the inferior cavity branches, degrees (◦)
β Angle of the superior cavity branches, degrees (◦)

Abbreviations
CD Constructal Design
CR Crossover rate parameter of differential evolution 

algorithm
DOF Degrees of Freedom
DE Differential Evolution
ES Exhaustive Search
F Amplification factor parameter of differential evolution 

algorithm
GA Genetic Algorithm
SA Simulated Annealing

Superscripts
(̃) dimensionless variables

Subscripts
c Cavity
max Maximum
min Minimum
m Once minimized
nm n times minimized
no n times optimized
r Random index for operations with population solutions in 

the mutation function
0, 1, 2 Variable indexes of height and length for the trunk, inferior 

and superior branches, respectively
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simulations considering a discretization of search space with ten simu
lations per DOF. In this sense, recent works have attempted to associate 
computational intelligence optimization methods with CD to investigate 
more parameters as different fractions and occupation areas of the 
cavity [26,44–48]. This strategy has also been used for the geometric 
optimization of high-conductive pathways and compound channels 
[17,49]. The main concern in this kind of investigation is not seeking 
global optimal configurations but the comprehension of the behavior of 
the design and system performance, represented by the effect of DOFs on 
the performance indicator and other optimized DOFs in different opti
mization levels.

Examples related to the association between constructal design and 
computational intelligence have grown in the literature. For example, 
Lorenzini et al. [44] applied GA to investigate the impact of the coeffi
cient h on the performance of the Y-shaped cavity and optimal config
uration considering four DOFs. Lorenzini et al. [45] also studied the CD 
method combined with the genetic algorithm (GA) metaheuristic to 
evaluate a cavity in the form of Y. Later, Gonzales et al. [46] associated 
the simulated annealing (SA) heuristic with CD to investigate the ge
ometry of a cavity in the form of Y with four DOFs. The main concern 
was to increase the reliability of the prediction of the behavior of the 
DOFs over θmax at different optimization levels. Gonzales et al. [47] 
compared the SA and Luus-Jaakola (LJ) heuristic algorithms applied to 
the optimization of a few DOFs of a cavity in the form of double T. SA 
algorithm was better succeeded than LJ in the prediction of the global 
optimal configurations (for the investigated DOFs) and for determina
tion of the influence of DOFs over thermal objective function. Based on 
the study of Ref. [47], Gonzales et al. [26] performed the complete 
optimization of the cavity in the form of double T associating CD and SA 
for optimization of five DOFs, also investigating the influence of cavity 
fraction area on the thermal performance and design of the cavity. 
Gonzales et al. [48] performed the association between differential 
evolution (DE) and CD to optimize a double T-shaped cavity. DE algo
rithm was superior to the SA method for optimizing and investigating 
the geometry. Moreover, different parameters of DE were analyzed and 
compared, seeking to predict the outcome of the geometry on the θmax 
for the cavity in the form of double T. Considering the investigated 
parameters, the best results were obtained for the operator of mutation 
rand/1/bin, crossover rate (CR) equal to 0.7, and amplification factor (F) 
of 1.5. Recently, Gonzales et al. [32] investigated the use of DE for 
partial optimization of four DOFs of the double Y-shaped cavity. The 
purpose was to study the sixteen combinations of DE algorithms statis
tically, considering different mutation parameters, crossover rate (CR), 
and amplification factor (F). The goal was to identify the parameters that 
increase the efficiency of the meta-heuristic to obtain the optimal con
figurations and conduct adequate predictions about the effect of inves
tigated DOFs on the performance indicator. It is also worth mentioning 
that some recent advances in applying machine learning and artificial 
intelligence have been obtained for a better exploration of the results 
and optimization in cavity flows [50,51].

In the present study, an isothermal cavity with complex double Y- 
shaped geometry is optimized entirely using the association between 
constructal design (CD), exhaustive search (ES), and differential evolu
tion (DE) methods. More precisely, seven DOFs are optimized for varied 
fraction areas of the cavity. The focus here is dissimilar to that per
formed in Gonzales et al. [32], where the concern was restricted to 
defining the best DE parameters for a few DOF investigations. Here, the 
main contribution is to analyze the influence of a new complex cavity 
design for all seven DOFs over the thermal performance and optimal 
DOFs, using a new hybrid approach between the ES and DE algorithm as 
a tool for applying CD in the complex system. The present configuration 
represents an evolution of the double-T-cavity configuration studied in 
Ref. [22] and the tree-shaped cavity with two branches (N = 2) pre
sented in Ref. [14], since it is given freedom to the bifurcated branches 
to rotate. To the best of the authors’ knowledge, a complex configuration 
that can ideally represent a tree-shaped configuration with seven DOFs 

using CD, ES, and DE to understand the influence of the design over 
thermal performance has not been previously investigated in the liter
ature. Moreover, the analysis performed here using solely ES would be 
unfeasible since it would require more than forty hundred million 
simulations.

2. Mathematical and numerical modeling

2.1. Physical and geometrical problem statement

It is considered here a two-dimensional solid body subjected to 
constant heat generation per unit volume, q‴(Wm− 3), cooled by the 
insertion of an isothermal double Y-shaped cavity, as illustrated in 
Fig. 1. Moreover, the external surfaces of the solid domain (dashed in 
Fig. 1) are adiabatic, in such a way the heat generation in the solid can 
be removed only by the cavity at a minimum temperature (Tmin). The 
problem is subjected to the following simplifying hypothesis, as per
formed previously in the works of Refs. [13, 28–30, 32, 37]: 

- the solid domain has constant thermal conductivity (k);
- the cavity surfaces are isothermal (simulating fluid flow with con

stant high coefficient h, e.g., phase of change flow);
- the thermal field is in the steady state;
- the magnitude of q‴is uniform and constant;
- the problem is modeled as two-dimensional.

The fluid flow in the cavity is not modeled, and the convection heat 
transfer is treated as a boundary condition in the solution of conduction 
heat transfer in the solid domain. Therefore, the modeling of the tem
perature as a function of spatial coordinates, T = f(x, y), in the solid 
domain is given by the following simplified heat diffusion equation: 

∂2T
∂x2 +

∂2T
∂y2 +

qʹ́ʹ

k
= 0 (1) 

Fig. 1. Computational domain of the cavity in form of double Y intruded into a 
rectangular heat generating solid wall.
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where x and y are the coordinates in the space (m), k is the thermal 
conductivity (W•m− 1•K− 1), q‴ is the heat generated in the solid wall 
(W•m− 3), and T is the temperature (K).

The goal of the investigation is to reach the optimal DOFs of the 
cavity (H/L, H0/L0, S1/H0, α, β, H1/L1, and H2/L2) that minimizes the 
maximum excess of temperature (Tmax - Tmin)/(q”‘A). For the application 
of the CD, the problem has two constraints, the total domain and cavity 
areas, which are given, respectively, by: 

A = HL (2) 

Ac = H0L0 +2H1L1 +2H2L2 (3) 

The total area and the cavity area can be represented in their 
dimensionless form by the ratio between the cavity and total domain 
areas, as given by: 

φc =
Ac

A
(4) 

The heat diffusion equation can also be modeled in its dimensionless 
form by the following expression: 

∂2θ
∂x̃2 +

∂2θ
∂ỹ2 +1 = 0 (5) 

Here, the dimensionless temperature and spatial coordinates are 
given, respectively, by: 

θ =
T − Tmin

qʹ́ʹ.Ak
(6) 

x̃, ỹ, H̃, L̃, H̃0, L̃0, H̃1, L̃1, H̃2, L̃2, S̃1 =
x, y,H, L,H0, L0,H1, L1,H2, L2, S1

A
1
2

(7) 

The equations that represent the adiabatic boundary conditions in 
the external surfaces and the boundary condition of minimum temper
ature (θ = θmin) at the cavity surfaces are described in the following 
equations, and the boundary conditions, also are illustrated in Fig. 1. 

∂θ
∂x̃

= 0 at x̃ = −
L̃
2

or
L̃
2

and 0 ≤ ỹ ≤ H̃ (8) 

∂θ
∂ỹ

= 0 at ỹ = 0 and −
L̃
2
≤ x̃ ≤ −

L̃0

2
or

L̃0

2
≤ x̃ ≤

L̃
2

(9) 

∂θ
∂ỹ

= 0 at ỹ = H̃ and −
L̃
2
≤ x̃ ≤

L̃
2

(10) 

θ = θmin in 0 ≤ ỹ ≤ S̃1 −
H̃1

2sin(90◦
− α) and x̃ = −

L̃0

2
or x̃ =

L̃0

2
(11) 

θ = θmin in S̃1 −
H̃1

2sin(90◦
− α) ≤ ỹ ≤ L̃1sinα+ S̃1 −

H̃1

2sin(90◦
− α)

and −
L̃0

2
− L̃1cosα ≤ x̃ ≤ −

L̃0

2
or

L̃0

2
≤ x̃ ≤

L̃0

2
+ L̃1cosα (12) 

θ = θmin in x̃ = −
L̃0

2
− L̃1cosα or x̃ =

L̃0

2
+ L̃1cosα 

and L̃1sinα+ S̃1 −
H̃1

2sin(90◦
− α) ≤ ỹ ≤ L̃1sinα+ S̃1 +

H̃1

2sin(90◦
− α) (13) 

θ = θmin in −
L̃0

2
− L̃1cosα ≤ x̃ ≤ −

L̃0

2
or

L̃0

2
≤ x̃ ≤

L̃0

2
+ L̃1cosα 

and S̃1 +
H̃1

2sin(90◦
− α) ≤ ỹ ≤ L̃1sinα+ S̃1 +

H̃1

2sin(90◦
− α) (14) 

θ = θmin in S̃1 +
H̃1

2sin(90◦
− α) ≤ ỹ ≤ H̃0 −

H̃2

sin(90◦
− β)

and x̃ = −
L̃0

2
or x̃ =

L̃0

2
(15) 

θ = θmin in −
L̃0

2
− L̃2cosβ ≤ x̃ ≤ −

L̃0

2
or

L̃0

2
≤ x̃ ≤

L̃0

2
+ L̃2cosβ 

and H̃0 −
H̃2

sin(90◦
− β)

≤ ỹ ≤ H̃0 −
H̃2

sin(90◦
− β)

+ L̃2sinβ (16) 

θ = θmin in x̃ = −
L̃0

2
− L̃2cosβ or x̃ =

L̃0

2
+ L̃2cosβ 

and H̃0 −
H̃2

sin(90◦
− β)

+ L̃2sinβ ≤ ỹ ≤ H̃0 + L̃2sinβ (17) 

θ = θmin in H̃0 ≤ ỹ ≤ H̃0 + L̃2sinβ 

and −
L̃0

2
− L̃2cosβ ≤ x̃ ≤ −

L̃0

2
or

L̃0

2
≤ x̃ ≤

L̃0

2
+ L̃2cosβ (18) 

θ = θmin in ỹ = H̃0 and −
L̃0

2
≤ x̃ ≤

L̃0

2
(19) 

The constraint areas, Eqs. (2)–(3) are also represented in the 
dimensionless form by: 

H̃L̃ = 1 (20) 

φc = H̃0L̃0 +2φ1 +2φ2 (21) 

φ1 = H̃1L̃1 (22) 

φ2 = H̃2L̃2 (23) 

The performance indicator to be minimized is the dimensionless 
maximum excess of temperature, which is given by: 

θmax =
Tmax − Tmin

qʹ́ʹ⋅Ak
(24) 

To define the (θmax)7m, it is necessary to optimize the seven DOFs 
submitted to the cavity area constraints and the total area of the solid. 
Here, the subscript “Nm” represents the performance indicator (θ) N 
times minimized, and the subscript “No” is related to the DOF N times 
optimized. For example, (θmax)2m and (β)2o represent the θ and β two 
times minimized and optimized, respectively. The procedure of 
geometrical optimization is detailed in section 3.

2.2. Numerical method

The value of the θmax in Eq. (24) was reached by the prediction of the 
temperature fields with the Finite Element Method (FEM) that solves Eq. 
(5) for the computational domain of every case. The FEM was imple
mented in the PDE toolbox (Partial Differential Equation Toolbox) from 
the MATLAB® software [52]. This software package has been used in 
several works about cooled cavities in the studies of literature 
[26,28–32,37–49]. It is assumed as an initial guess for the problem so
lution that all the domain is at θmin for the first iteration step.

The mesh employed in the simulations is determined after making an 
independent mesh investigation, which consists of the simulation of the 
same case with different meshes seeking to identify the asymptotic re
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gion where the number of grid elements has little influence on the 
computational solution. The mesh independent study was based on the 
work of Ref. [32], and the employed criterion to find the correct mesh is 
determined by: 
⃒
⃒
⃒
⃒
⃒

(
θi

max − θi+1
max

)

θi
max

⃒
⃒
⃒
⃒
⃒
< 2×10− 4 (25) 

The appropriate mesh size is found when the Eq. (25) is satisfied. The 
refined mesh “i + 1” has approximately four times more finite elements 
in comparison with the previous coarse mesh “i”. The refinement process 
is repeated up to the grid independence criterion was achieved. The grid 
independent mesh is reached for 20,486 triangular elements, which is 
adequate for the present diffusive dominant problem. Fig. 2 illustrates 
the grid independence study performed for one specific configuration 
where it is varied the θmax as a function of the number of elements. It is 
shown the coarse mesh with 1265 elements and the independent grid 
with 20,486 elements. Meshes with similar configurations are employed 
in the remaining investigation. To verify the computational model, the 
present configuration (double Y) is degenerated in a cavity with a T 
configuration, allowing the comparison of the results for θmax with those 
previously predicted in the literature [26,28,39], as illustrated in 
Table 1.

To validate and verify the computational method, one additional 
case is solved and compared with the experimental and numerical study 
of Cabezas et al. [53]. The case considers a steady state condition and 
consists of a solid cylinder with a diameter d = 33 mm, a length l = 168 
mm, and a thermal conductivity in the range k = 40–45 W/(m⋅K) sub
jected to a heat flux in its inferior surface, as illustrated in Fig. 3(a). Part 
of the peripheral surface of the cylinder (− 50 mm ≤ z < 0 mm) is 
thermally insulated to direct the heat flux in the azimuth z-direction. 
The remaining peripheral surface (0 mm ≤ z ≤ 118 mm) is subjected to 
an enclosure environment with air as working fluid with Tamb measured 
experimentally. In the experiment, the temperatures T0 (z0 = 0 mm), T3 
(z3 = 118 mm), and Tamb are used as input data for the solution of the 
numerical method, while the temperatures T1 and T2, measured in po
sitions r1 = 16.5 mm, z1 = 75 mm and z2 = 95 mm, are the outcome used 

Fig. 2. Grid independence study performed for one specific case of the pre
sent work.

Table 1 
Verification of the θmax obtained with the present 
computational method for the constraints and DOFs (φc 
= 0.1; φ1 = 0.02; φ2 = 0.02; H/L = 1; H0/L0 = 20; S1/ 
H0 = 0.45; H1/L1 = 14; H2/L2 = 0.14; α = β = 0◦) 
compared with results of literature [26,28,39].

Reference θmax

Present Work 0.0756
Biserni et al. [28] 0.0755
Lorenzini et al. [39] 0.0762
Gonzales et al. [26] 0.0756

Fig. 3. Sketch of the problem used in validation of the computational method: a) experiment performed in Ref. [45] (dimensions in mm), b) computational domain 
used in the present work.
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to validate a numerical method. It is worth mentioning that the exper
iment is configured to prevent heat flux in the angular direction, and 
then a two-dimensional solution in a Cartesian coordinates system 
represents adequately the thermal field in this specific problem.

Fig. 3(b) represents the rectangular computational domain used here 
for the validation case. The problem has a height of H = 118 mm and a 
length of L = 16.5 mm. Moreover, a constant thermal conductivity k =
42.5 W/(m⋅K) is considered in all simulations. As performed in the nu
merical model used by Cabezas et al. [53], prescribed temperatures 
measured experimentally were adopted in the extremities of the cylin
der: z = 0 mm (T0) and z = 118 mm (T3). An adiabatic boundary con
dition is considered at the left surface of the rectangle (x = 0 mm). A 
convection boundary condition with prescribed convection heat transfer 
coefficient (h) and enclosure temperature (Tamb) is considered in the 
right lateral surface. The coefficient h used in the validation simulation 
is as given by: 

h =
NuHkair

H
(26) 

where kair is the thermal conductivity of the air (W/m⋅K), and NuH is the 
Nusselt number predicted for an ascending plume in an isothermal wall. 
The NuH is defined by the correlation of Churchill and Chu [46], which 
for an air flow with Prandtl number (Pr = 0.72) is given by: 

NuH =
(

0.825 + 0.325Ra1/6
H

)2
(27) 

where RaH is the Rayleigh number given by: 

RaH =
gβΔTH3

αυ (28) 

where g is the gravitational acceleration (m/s2), β is the thermal 
expansion coefficient (K− 1), ΔT is the temperature difference (ΔT = T0 – 
Tamb), α is the thermal diffusivity of the air (m2/s), and υ is the kinematic 
viscosity (m2/s).

Table 2 presents a comparison among the temperatures T1 and T2 
obtained with the present computational method and the experimental 
and numerical predictions of Cabezas et al. [53] based on the one- 
dimensional finite difference (FDM) and two-dimensional finite ele
ments methods (FEM). Three different cases, with different tempera
tures for T0, T3 and Tamb, are evaluated: Case 1 – T0 = 36.1 ◦C, T3 =

33.5 ◦C, and Tamb = 30.7 ◦C; Case 2 – T0 = 37.5 ◦C, T3 = 35.4 ◦C, and 
Tamb = 31.6 ◦C; Case 3 – T0 = 54.1 ◦C, T3 = 48.5 ◦C, and Tamb = 36.7 ◦C.

Results of Table 2 indicated that the numerical results obtained with 
the present method presented a good agreement with the experimental 
and numerical results of Ref. [53]. The mean deviation in comparison 
with experimental measurements was around 1.1 %. Regarding the 
numerical predictions of Ref. [53], the deviations were even lower. 
Additionally, all predictions obtained with the present code conducted 
to deviations lower than the uncertainty of the experiment. Based on this 
comparison, it can be assumed that the present code is validated and 
verified, being adequate for the geometric investigation performed in 
the present work.

3. Optimization methodology

3.1. Constructal design of double Y-shaped cavity

The geometry optimization consists of applying the CD method for 
defining constraints, performance indicator, DOFs, and search space. 
The DE algorithm is applied to sweep the possibilities of finding the 
optimal configurations. In several cavity studies, the ES was used to 
optimize the geometric configurations, see Refs. [28–31, 37–43]. 
However, with the increase in DOFs number, their application has been 
restricted due to the increase in computational effort. Therefore, the ES 
method was associated with DE for optimizing the fourth DOF onward 
and reproducing the effect of the DOFs over the thermal performance 
and corresponding optimal configurations. It is worth mentioning that 
the validation of the present methodology for reproducing the DOFs 
effect over θmax and corresponding optimal configurations for problems 
up to three DOFs was performed in Ref. [32].

The seven degrees of freedom (DOFs) that determine the geometry of 
a double Y-shaped cavity (H/L, H0/L0, S1/H0, α, β, H1/L1, and H2/L2) are 
varied in the optimization process seeking the optimal solution. The 
problem is subject to the area constraints φc, φ1, and φ2. The search 
space of DOFs is discrete and was generated dynamically according to 
the geometric limits. The DOFs have an interdependence between 

Table 2 
Validation/Verification of the present model with temperature fields predicted experimentally and numerically by Cabezas et al. [53].

Case T1 (r1 = 16.5 mm, z1 = 75 mm) (◦C) T2 (r2 = 16.5 mm, z2 = 95 mm) (◦C)

Present Ref. [53] Present Ref. [53]

FEM Experiment FD FEM FEM Experiment FD FEM

1 34.45 33.9 ± 0.8 33.43 34.44 34.00 33.7 ± 0.8 34.00 33.98
2 36.16 35.5 ± 0.8 36.15 36.16 35.81 35.7 ± 0.8 35.80 35.79
3 50.44 49.6 ± 0.9 50.51 50.53 49.59 49.5 ± 0.9 49.57 49.55

Fig. 4. Scheme for optimization of the cavity in form of double Y using the 
association among constructal design, exhaustive search, and differen
tial evolution.
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themselves. Then, it is necessary to calculate the maximum and mini
mum values that each DOF can assume to generate the search space. The 
equations to determine the search space of the DOFs for each optimi
zation level are presented later.

Fig. 4 shows the optimization levels in a diagram with the DOFs 
ordered according to their dependency hierarchy. The bolder pathway 
in the diagram of Fig. 4 represents the optimal geometry path among the 
geometric configuration possibilities indicated by light lines. Due to the 
investigation of many DOFs and the use of some strategies of investi
gation as the consideration of the minimal magnitudes for H1/L1 and H2/ 
L2 in the study of the first four DOFs, the diagram in Fig. 4 replaces the 
tree flowchart commonly presented in the literatures [13,26]. In Fig. 4, 
the optimization from the 1st to 7th levels is represented by horizontal 
lines, indicating the optimized DOFs for each level. The study of Gon
zales et al. [32] performed the optimization process up to the third level. 
This work considers the optimization from the fourth level onwards, i.e., 
the effect of H0/L0 over (θmax)4m considering minimum magnitudes for 
(H1/L1) and (H2/L2), (H1/L1)min and (H2/L2)min. The optimization in the 
fourth level, as shown in Fig. 4, includes the investigation of (H0/L0)o, as 

well as the search for (S1/H0)2o, (α)3o, and (β)4o, in the achievement of 
the four times minimized maximum excess of temperature, represented 
by (θmax)4m. As can be seen in Fig. 4, for the fourth level of optimization 
studied here, the DOFs H1/L1 and H2/L2 were maintained at the minimal 
magnitudes according to the following equations: 

(H1/L1)min ≅
φ1

⎛

⎜
⎝

L
2−

L0
2 − 0.01
cos|α|

⎞

⎟
⎠

2 (29) 

(H2/L2)min ≅
φ2

⎛

⎜
⎝

L
2−

L0
2 − 0.01

cos|β|

⎞

⎟
⎠

2 (30) 

Once Eqs. (29)–(30) can achieve configurations with restricted space 
between the cavity and external surfaces of the solid, degenerating the 
domain, the algorithm considers that this kind of configuration is 

Fig. 5. Effect of H0/L0 reproduced by the DE1 over: a) (θmax)3m, b) (S1/H0)o, c) (α)2o, d) (β)3o.
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invalid, generating an exception, and the magnitude of θmax associated 
with this condition is equal to infinity. The calculus of (H1/L1)min and 
(H2/L2)min is important to generate a valid search space during opti
mization. The minimal values for the branches followed recommenda
tions indicated in the results of [26,39], which seems a reasonable 
recommendation since most of the investigated isothermal cavities 
improved their performance when the cavity had a step intrusion into 
the solid domain [26,28,29,42–46]. These recommendations for H1/L1 
and H2/L2 are not employed for the fifth optimization level onward. For 
the fifth and sixth levels of optimization, the ratios H1/L1 and H2/L2 are 
free to vary and optimized, reaching the (θmax)6m and the corresponding 
optimal configurations. The results of the fifth and sixth levels of geo
metric optimization of the double Y-shaped cavity also verify if using 
minimal values for the branches is an adequate recommendation for the 
lowest optimization levels.

The complete optimization of the geometry includes the investiga
tion of the ratio of H/L, concerned with the solid domain, maintaining 
the constraints (φc, φ1, and φ2) fixed. For this optimization level, the 
objective is to reproduce the effect of H/L over the (θmax)6m and the 
corresponding optimal geometries. In the last investigation, it is repro
duced the effect of H/L over (θmax)6m and optimal geometries for 
different values of constraints φc, φ1, and φ2. Therefore, the effect of the 
constraints is investigated over the seven times minimized dimension
less maximum excess of temperature (θmax)7m.

3.2. Differential evolution algorithm approach for design optimization

The DE algorithm is associated with the CD to evaluate a double Y- 
shaped cavity in the present work. Although using the DE meta-heuristic 

reduces the computational effort, the ES method is also needed to 
reproduce the effect of the geometry variation over optimal geometries 
and performance indicator, as recommended in the previous investiga
tion of Gonzales et al. [32]. So, this work performs a hybrid methodol
ogy between ES and DE optimization methods.

The DE algorithm to be associated with CD was developed in the 
recent work of Gonzales et al. [32]. It is performed by a classical pro
posed DE algorithm, also named rand/1/bin that defines its mutation 
operator. Other alternative strategies can be used with different muta
tion operators, for example, varying the number of vectors evolved 
[54–56]. Another mutation parameter used in this work is best/2/bin, 
also proposed by Storn and Price [57]. A third mutation parameter 
applied in the optimization process is a variation of best/2/bin called 
best/1/bin. All mutation operators (rand/1/bin, best/2/bin, and best/1/ 
bin) are, respectively, represented by the following equations: 

vi,G+1 = xr1 ,G + F×
(
xr2 ,G − xr3 ,G

)
(31) 

vi,G+1 = xbest,G + F×
(
xr1 ,G + xr2 ,G − xr3 ,G − xr4 ,G

)
(32) 

vi,G+1 = xbest,G + F×
(
xr1 ,G − xr2 ,G

)
(33) 

Gonzales et al. [32] extensively investigated the parameters of the 
DE algorithm when employed in the geometrical optimization of the 
cavity in the form of double Y. Statistical methods validated the results 
of Gonzales et al. [32] and the conclusions pointed that the best per
formance of the DE algorithm was achieved when it used the following 
parameters for amplification factor and crossover rate: F = 1, CR = 0.9. 
Therefore, the present work also uses these parameters to configure 
different versions of the DE algorithm, named DE1, DE2, and DE3, which 

Fig. 6. Optimal geometries for the effect of H0/L0 over (θmax)3m: a) H0/L0 = 2.25, (S1/H0)o = 0.1, (α)2o = 43◦, (β)3o = 72◦, (θmax)3m = 0.0281; b) H0/L0 = 9.66, (S1/ 
H0)o = 0.9, (α)2o = − 38◦, (β)3o = 42◦, (θmax)3m = 0.0276; c) H0/L0 = 14.61, (S1/H0)o = 0.9, (α)2o = − 50◦, (β)3o = 10◦, (θmax)3m = 0.0225; d) (H0/L0)o = 24.50, (S1/ 
H0)2o = 0.9, (α)3o = − 62◦, (β)4o = − 29◦, (θmax)4m = 0.0182.
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use the Eqs. (31)–(33), respectively.

4. Results and discussion

4.1. Optimization of four DOFs

In this section, the optimization seeks the optimal geometries of the 
three degrees of freedom for each value of the ratio H0/L0 in the search 
space composed by discrete linear values in the interval between 2.25 ≤
H0/L0 ≤ 24.5 generated by the linspace function of MATLAB® software 
[52]. The limits in the search space of H0/L0 are defined by the height of 
the solid domain and the cavity fraction area (φc). The aim is to repro
duce the effect of H0/L0 over (θmax)3m and corresponding optimal con
figurations ((S1/H0)o, (α)2o, and (β)3o). For the fourth level optimization, 
the domain aspect ratio was kept at H/L = 1, and the area constraints 
were defined with φc = 0.1 and φ1 = φ2 = 0.015. For the investigation of 
this section, the DE1 algorithm is used, following the recommendation 
of Ref. [32], with NP = 45 and NG = 75.

Fig. 5 shows the effect of H0/L0 over the (θmax)3m and the corre
sponding optimal configurations: (S1/H0)o, (α)2o, and (β)3o, given 
respectively by Fig. 5 (a) – (d). It can be noticed for (θmax)3m a region of 
stabilization in the range 2.0 ≤ H0/L0 ≤ 8.0 followed by a step decrease 
for H0/L0 > 8.0 up to the superior limit of (H0/L0)o = 24.5, where the 
optimal configuration is reached. As noticed for S1/H0, the highest 
magnitude of H0/L0 led to the best performance, i.e., when the trunk has 
the highest intrusion into the solid domain. Fig. 5 (b) shows the effect of 
H0/L0 over the (S1/H0)o, being possible to observe that for H0/L0 ≤ 5 the 
optimal value of (S1/H0)o = 0.1, i.e., when the cavity has a smaller 
height, the optimal position of the inferior branches is in the bottom of 
the solid. When the cavity height grows, H0/L0 > 8, the optimal geom
etry of (S1/H0)o increases up to the highest possible magnitude, (S1/ 
H0)2o. This effect is only possible due to the possibility of the angle α to 
assume negative values. For H0/L0 > 8, the optimal angle of (α)2o 
changed from positive to negative magnitudes, Fig. 5(c), distributing the 

inferior branches of the cavity from the upper central region of the solid 
domain towards the inferior corners of the domain and distributing the 
temperature fields in the central and inferior regions. Fig. 5(c) also il
lustrates that when H0/L0 is small, the inferior branches have a step 
positive angle, (α)2o > 40◦, avoiding the increase of temperature in the 
central superior region of the solid domain. In the region 7 < H0/L0 < 9, 
an abrupt fall in the magnitude of (α)2o from positive to negative mag
nitudes is noticed. For the highest magnitudes of H0/L0, the rate of 
decrease of (α)2o turns to stabilize. Fig. 5(d) shows the effect of H0/L0 
over (β)3o, as well as the four times optimized angle of (β)4o. It is possible 
to see that the transition from positive to negative angles is not as steep 
as the angle (α)2o. The negative magnitudes of (β)3o are observed only 
for H0/L0 > 16. This behavior is related to the position of the superior 
branches placed in the upper region of the solid domain. Consequently, 
these branches are not used for cooling the inferior region of the solid 
domain. Despite that, the four times optimized angles (β)4o are obtained 
for negative values, being the trunk responsible for cooling the superior 
region of the solid domain.

To illustrate the effect of H0/L0 over the thermal fields and cavity 
design, Fig. 6 shows the temperature fields in the domain for four 
different magnitudes of H0/L0: H0/L0 = 2.25, Fig. 6(a), H0/L0 = 9.66, 
Fig. 6(b), H0/L0 = 14.61, Fig. 6(c), and (H0/L0)o = 24.50, Fig. 6(d). The 
configurations shown in Figs. 6(a) – (c) can represent a sort of geometric 
evolution from previous configurations investigated in the literature as 
T, X, and Y [28,29,39] with a new structure of design inserted in the 
domain, i.e., the inferior branches. Fig. 6(d) shows a configuration like 
the tree-shaped roots of leaves, with different angles α and β, thick
nesses, and lengths of the branches. It can also be observed that the 
highest difference in the thermal performance is noticed when the 
number of hot regions changed from five to six, reinforcing that the 
evolution of the design is related to the best distribution of the imper
fections, i.e., following the constructal law.

Fig. 7. Comparison of the effect of H0/L0 over the: a) (H1/L1)4o, (H2/L2)5o and (H1/L1)min, (H2/L2)min; b) (θmax)3m and (θmax)5m.
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4.2. Optimization of five and six DOFs

The geometric evaluation of five and six degrees of freedom of the 
double Y-shaped cavity comprises the optimization of the H1/L1 and H2/ 
L2 ratios for different values of H0/L0. The objective is to reproduce the 
effect of H0/L0 over the performance indicator of (θmax)5m and over the 
optimal geometries of (H1/L1)4o and (H2/L2)5o. In this section, it is also 
investigated the optimal configurations (H0/L0)o, (S1/H0)2o, (α)3o, (β)4o, 
(H1/L1)5o, (H2/L2)6o and performance indicator (θmax)6m. This section 
also aims to verify if the recommendation of the minimal values used for 
H1/L1 and H2/L2 in the previous optimization steps is adequate. 
Therefore, the problem is the same as analyzed in section 4.3, for the 
same search space of H0/L0 and using the same values for H/L and 
constraints (φc, φ1, and φ2).

The optimization process is performed by the DE algorithm versions 
DE1, DE2, and DE3. It uses the same parameters of the previous section, 
except for the parameters NP and NG, which are tested with several 
combinations, but all limited to a total number of 5000 and 6000 

simulations for the sole optimization of H2/L2 and optimization of both 
DOFs (H1/L1 and H2/L2). The first experiment is the optimization of H2/ 
L2 and keeping the H1/L1 with the minimal values, according to section 
3.1. The second experiment optimizes the sixth level, where both ratios 
(H1/L1 and H2/L2) are optimized. The choice for the parameters NP and 
NG is made based on the execution of thirty runs for three ratios of H0/ 
L0.

Fig. 7 illustrates the effects of H0/L0 over (θmax)5m, Fig. 7(a), and the 
DOFs (H1/L1)4o, and (H2/L2)5o, Fig. 7(b). These effects are reproduced 
by the DE1 version of the DE algorithm, with NP = 120 and NG = 70. 
The cross-shaped symbols in Fig. 7 represent the optimal values reached 
during the 30 runs of the algorithm for specific values of H0/L0. The 
other results represented by points are the optimal values achieved for 
just one round obtained with the algorithm DE1. The gray curves in both 
Figs. 7(a) and (b) represent the effect of H0/L0 over the (θmax)3m and the 
magnitudes of (H1/L1)min, (H2/L2)min for each H0/L0, obtained in the 
previous optimization level for four degrees of freedom, when the 
minimal values of H1/L1 and H2/L2 are established by Eqs. (1) and (2), 

Fig. 8. Effect of H/L over (θmax)6m: a) comparison among different DE versions, b) minimal values achieved for (θmax)6m.
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see Fig. 5. Fig. 7 indicates that the values reached with the DE1 algo
rithm for the effect of H0/L0 over (H1/L1)4o and (H2/L2)5o are very 
similar to that considered for (H1/L1)min and (H2/L2)min, Fig. 7(b). The 
same behavior can be observed in Fig. 7(a) for the effect of H0/L0 over 
(θmax)5m and (θmax)3m, except for H0/L0 = 19.5, when the algorithm of 
DE1 reaches a local minimum, but nearest to the optimal configuration 
that conducted to (θmax)3m. Furthermore, some values achieved by the 
DE1 version for (H1/L1)4o and (H2/L2)5o did not converge exactly to the 
same curves of (H1/L1)min and (H2/L2)min, but these errors do not 
affected significantly the values of (θmax)5m.

Finally, the optimal geometry for the cavity six times optimized is the 
same obtained in Fig. 6(d), represented by the green box in Fig. 7(b) for 
the highest magnitude of H0/L0. The optimal configuration geometry 
achieved has the following configurations: (H0/L0)o = 24.5, (S1/H0)2o =

0.9, (α)3o = − 62◦, (β)4o = − 29◦, (H1/L1)5o = 0.0156, and (H2/L2)6o =

0.0519, which lead to (θmax)6m = 0.0182. Therefore, the algorithm DE1 
converged to the same values predicted with minimal ratios of (H1/ 
L1)min and (H2/L2)min, reinforcing the suitability of the previous 
consideration, which can be used for similar cases and conditions in the 
future. The results also reinforced that, for cavities with a high capacity 
to remove heat from the solid (isothermal or high magnitudes of coef
ficient h), the highest intrusion of the cavity into the solid domain is 

beneficial for thermal performance.

4.3. Optimization of seven DOFs

The seventh optimization level consists of optimizing all degrees of 
freedom, including the ratio of the solid, H/L. The process seeks the 
optimal geometric configuration of the six DOFs (H0/L0)o, (S1/H0)2o, 
(α)3o, (β)4o, (H1/L1)5o, and (H2/L2)6o for each value of the discrete search 
space of H/L. Moreover, it aims to reproduce the effect of H/L over 
(θmax)6m and the corresponding optimal DOFs. Before performing the 
complete optimization process for all values in the search space of H/L, 
the algorithm versions of DE (DE1, DE2, and DE3) were executed for 
some ratios of H/L, and the parameters of NP and NG were adjusted to 
the problem. Each algorithm uses the same parameters of population 
size and total generation number of NP = 300 and NG = 100. Another 
stop criterion is imposed on the algorithm to reduce the number of 
simulations. More precisely, it is considered that when the standard 
deviation of (θmax)6m is lower than 1 × 10− 3, the algorithm is stopped, 
even if the number of generations is lower than the NG parameter.

Fig. 8 shows the effect of H/L over (θmax)6m. More precisely, Fig. 8(a) 
shows the experiment results that execute thirty runs for each version of 
the DE algorithm and five values of H/L. Fig. 8(a) shows the average 

Fig. 9. Effect of H/L over six times optimized geometries: a) (α)3o and (β)4o; b) (H0/L0)o, (S1/H0)2o, (H1/L1)5o,and (H2/L2)6o.
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values of (θmax)6m, represented by curves in different colors, reached for 
each DE algorithm and H/L analyzed. The gray curve represents the 
effect of H/L over the thermal performance using the minimal magni
tudes of (θmax)6m predicted among all the algorithms. Fig. 8(b) shows 
this curve in a clearer form. Fig. 8 indicates that the algorithms have 
more difficulty converging to the minimal values of (θmax)6m for H/L <
5, especially for H/L = 0.4, where a large dispersion is obtained. On the 
contrary, for H/L > 5, all algorithms converged to the minimal values or 
close to it in all thirty runs. In general, results indicated that the algo
rithm performance varies according to the search space, showing the 
importance of adapting the algorithm parameters to the problem to be 
studied. Even when executing tests to adapt the parameters, the 
computational effort is significantly reduced compared to the sole 
application of ES for optimization. According to the effect shown in 
Fig. 8(b), it can be seen that the extreme ratios in the search space of H/L 
conduct the best thermal performances of the problem, being the 
(θmax)7m = 8 × 10− 4 achieved for (H/L)o = 0.03. On the other extreme, 
for H/L = 30, the magnitude is (θmax)6m = 3.5 × 10− 3. The worst per
formance is (θmax)6m = 1.82 × 10− 2 for H/L = 1. The optimal perfor
mance for H/L = 0.03 is related to the increase in the length of the cavity 
branches towards the lateral limits of the computational domain. 
Furthermore, the angles of the cavity branches (α)3o and (β)4o are kept 
near 0◦ and assume a geometry like the cavity configured as double T 
[26]. However, for the other extreme in the search space, H/L = 30, the 
optimal cavity has a maximum height, and the bifurcated branches are 
degenerated, conducting an I-shaped configuration [28]. This behavior 
is expected since the lowest or highest ratios of H/L guide one prefer
ential cavity construction, making it difficult to distribute the cavity 
along the solid with H/L ~ 1.0. This also leads to difficulties for opti
mization since more degrees of freedom have sensibility over the ther
mal performance. Fig. 9 shows the effect of H/L over the optimal 
geometries of (H0/L0)o, (S1/H0)2o, (α)3o, (β)4o, (H1/L1)5o, and (H2/L2)6o, 
for φc = 0.1, φ1 = φ2 = 0.015. From the results of Fig. 9(a), it is possible 
to observe that the solid ratio H/L greatly influences the optimal ge
ometry of the (H0/L0)o. This DOF tends to grow proportionally to the rise 
of H/L, except for H/L = 1 where (H0/L0)o locally decreased. This effect 
shows that the cavity trunk height tries to follow the increase of the solid 

height to distribute the thermal field along the domain. A similar effect 
can be noticed for the cavity branches (H1/L1)5o and (H2/L2)6o for H/L <
1, where the cavity branches seek to stretch up to the lateral limits of the 
computational domain. The ratios (H1/L1)5o and (H2/L2)6o have the 
same magnitude up to H/L = 0.5. After this point, the values of both 
ratios diverge and have an oscillating behavior but show a mean growth 
tendency. Concerning the ratio (S1/H0)2o, Fig. 9(a), the behavior is 
almost constant with the ratio H/L with values near to (S1/H0)2o = 0.3. 
However, in the range 0.5 ≤ H/L ≤ 10, an oscillation in the magnitudes 
of (S1/H0)2o can be noticed, The effect of H/L over (α)3o and (β)4o, Fig. 9
(b), presented optimal values for H/L ≤ 0,5 near (α)3o = (β)4o = 0◦, 
which means that the optimal geometry of the cavity assumes a 
configuration of double T [26]. However, for H/L > 0.5, the angles of the 
cavity branches have more influence over the thermal performance of 
the system, mainly for H/L = 1. For H/L > 5, the angles (α)3o and (β)4o 
presented a strong variation and did not influence the thermal resistance 
in comparison with other ratios, as (H0/L0)o, (S1/H0)2o, (H1/L1)5o, and 
(H2/L2)6o. For the highest values of H/L, the cavity assumed an I-shaped 
geometry [24], and the angles did not show sensibility over (θmax)6m.

Fig. 10 shows the optimal geometries achieved for some ratios of H/L 
≤ 0.5, H/L = 0.5, Fig. 10(a), H/L = 0.26, Fig. 8(b), H/L = 0.03, Fig. 8(c). 
All configurations for this range of H/L are like the optimal configura
tions reached for a double T configuration [26], which can be attested 
for the optimal angles (α)3o and (β)4o obtained near 0◦. The trunk is more 
robust for the lowest magnitudes of H/L, and the bifurcated branches are 
thin and slender, having a higher intrusion into the solid domain. For 
ratios of H/L > 1, some optimal geometries are represented in Fig. 11, as 
follows: H/L = 3.77, Fig. 11(a), H/L = 10.33, Fig. 11(b), and H/L = 30, 
Fig. 11(c). The first optimal geometry shown in Fig. 11(a) reaches a 
thermal performance like the cavity geometry achieved for H/L = 1 and 
assumes a tree-shaped pattern, widely seen in natural configurations as a 
leaf. The treelike pattern is not the most efficient for slender and tall 
solids, as the cavity degenerated into an I-shaped configuration. Figs. 10 
and 11 also demonstrate that for the lowest and highest ratios of H/L, the 
point-to-volume flow is degenerated point-to-point by the solid 
constraint, affecting the design of the flow system. Moreover, in the 
present investigation, the treelike-shaped configuration tends to be 

Fig. 10. Optimal geometries for different ratios of H/L ≤ 0.5: a) H/L = 0.5, (H0/L0)o = 7.84, (S1/H0)2o = 0.3, (α)3o = 1◦, (β)4o = − 2◦, (H1/L1)5o = 0.0343, (H2/L2)6o 
= 0.0343, (θmax)6m = 0.0138; b) H/L = 0.26, (H0/L0)o = 3.78, (S1/H0)2o = 0.3, (α)3o = 1◦, (β)4o = 0◦, (H1/L1)5o = 0.0176, (H2/L2)6o = 0.0177, (θmax)6m = 0.0075; c) 
(H/L)o = 0.03, (H0/L0)2o = 0.43, (S1/H0)3o = 0.3, (α)4o = 0◦, (β)5o = 0◦, (H1/L1)6o = 0.002, (H2/L2)7o = 0.002, (θmax)7m = 0.0008.
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optimal for solids in the 1.0 ≤ H/L ≤ 3.77 range.

4.4. Optimization for different cavity constraints

The evaluation of the constraints φc, φ1, and φ2 consisted of the 
complete optimization process for all DOFs varying the applied value for 
the cavity fraction area, φc = [0.01, 0.05, 0.15, 0.2]. The DE algorithm 
versions, DE1 and DE2, perform the complete optimization for different 
defined constraint values. The same optimization methodology pre
sented in section 4.3 for complete optimization for φc = 0.1 was repeated 
for the different investigated constraints in this section. The DE2 algo
rithm version is chosen for the search space of H/L < 1, while DE1 is 
used for H/L ≥ 1. Thirty runs were executed, and the minimum value 
reached is considered. The parameters of population numbers and total 
generations used were NP = 100 and NG = 300.

Fig. 12 shows the effect of φc over (θmax)7m, as well as the seven times 
optimized geometry, composed by (H/L)o, (H0/L0)2o, (S1/H0)3o, (H1/ 
L1)6o and (H2/L2)7o. The optimal angles of the branches, (α)4o and (β)5o, 
were equal to 0◦ for all constraints evaluated and, for brevity, are not 
shown in Fig. 12. The degrees of freedom (H/L)o and (S1/H0)3o are also 
insensible to the variations of constraints, assuming the magnitudes (H/ 
L)o = 0.03 and (S1/H0)3o = 0.3. The same behavior noticed for φc = 0.1, 
Fig. 8, concerned with the optimal configurations when H/L < < 1, is 
also achieved for the other magnitudes of φc, i.e., the double-Y-cavity 
degenerated in a double T configuration. The effect of φc over (H0/ 
L0)2o, (H1/L1)6o, and (H2/L2)7o in Fig. 12 represents the growth of the 
thickness of the stem and branches of the double T-shaped cavity.

The optimal geometries achieved for each φc evaluated are shown in 
Fig. 13. Fig. 13(a) shows the optimal geometry achieved for φc = 0.01, 
and the optimal geometry for the last constraint simulated, φc = 0.2, are 
shown in Fig. 13(e). Figs. 13(b) - 13(d) show the optimal configurations 
for intermediate magnitudes of φc = 0.05, φc = 0.1 and φc = 0.15, 
respectively. The optimal DOFs (H/L)o, (S1/H0)3o, (α)3o, and (β)4o are 
the same regardless of the magnitude of φc, assuming a double T 
configuration. Due to the area distribution between the cavity branches, 
the trunk of the cavity has 40 % of the cavity area and the branches 60 % 
for all configurations investigated until this point. Once the area of the 
trunk is constant, the decrease in the H/L ratio necessarily leads to an 
increase in the trunk thickness. To investigate different percentages of 
distribution between the trunk and branches of the cavities, considering 
φ1 = φ2, the same investigation performed in Figs. 12 and 13 is repeated 
for other percentages of the area of the branches, φ1+2/φc(%) = 100•
(φ1 + φ2/ φc), of 80 %, 90 %, and 95 %. Fig. 14 shows the new distri
bution of the shape for the different percentages of the area of the 
branches related to the cavity area: φ1+2/φc(%) = 60 %, Fig. 14(a), 80 %, 
Fig. 14(b), 90 %, Fig. 14(c), and 95 %, Fig. 14(d). In the present 
investigation, the distribution with the highest percentage for the 
branches leads to the best performance, i.e., (θmax)7m = 6.7 × 10− 4, 
Fig. 14(d), which is almost 13 % superior to that reached for the 
configuration with 60 %, Fig. 14(a).

4.5. Comparison with other configurations studied in the literature

Finally, this section compares the performance obtained with the 
best shapes predicted with those obtained in the literature for different 
configurations investigated with constructal design. The purpose here is 
just to illustrate the differences in the global thermal performance for 
the several investigated configurations, showing how freedom can 
benefit the performance of isothermal cavities.

Table 3 compares the θmax obtained for the double-Y-cavity config
uration with others in the literature. For H/L = 1.0, commonly investi
gated in the literature and for the same conditions, significant 
differences of 81 %, 74 %, 70 %, 44 %, and 25 % are obtained when 
comparing the performance of double-Y-cavity with the H-, I-, T-, X-, and 
Y-shaped cavities [13,28,29,35–44]. For the square solid, the double-Y- 
cavity has a performance nearly 30 % superior to the double T 

Fig. 11. Optimal geometries for different ratios of H/L > 0.5: a) H/L = 3.77, 
(H0/L0)o = 18.13, (S1/H0)2o = 0.1, (α)3o = 67◦, (β)4o = 80◦, (H1/L1)5o = 0.0466, 
(H2/L2)6o = 0.0124, (θmax)6m = 0.0181; b) H/L = 10.33, (H0/L0)o = 254.27, 
(S1/H0)2o = 0.3, (α)3o = 73◦, (β)4o = − 80◦, (H1/L1)5o = 20.432, (H2/L2)6o =

2.229, (θmax)6m = 0.0101; c) H/L = 30, (H0/L0)o = 747.26, (S1/H0)2o = 0.4, 
(α)3o = − 80◦, (β)4o = − 75◦, (H1/L1)5o = 37.75, (H2/L2)6o = 5.48, (θmax)6m 
= 0.0035.

Fig. 12. Effect of φc over (θmax)7m and the optimal configurations.
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configuration. Compared with the Ψ-shaped cavity [30], the perfor
mance is nearly 1.0 % inferior. For H/L ∕= 1, the performance increased 
significantly, especially for small ratios of H/L and a high percentage of 
cavity area (φ1+2 = 95 %φc) distributed to the cavity branches. More
over, when compared with a tree-shaped configuration, the results of a 
double Y-shaped cavity behaved better than the configurations with one 
and two branches (N = 1 and 2) and worse than the cases with three and 
four branches (N = 3 and 4).

In general, results indicated that the increase in complexity benefits 
the thermal performance of isothermal cavities. This complexity can be 
obtained by the addition of more freedom to the branches of the cavity, 
which can be observed from the double T and tree-shaped configuration 
with N = 2 towards the double Y, where the angles of the branches are 
the new DOFs. Another possibility is the increase in the number of 
branches, as noticed from double-Y-shaped cavity towards the tree- 

shaped configuration with N = 3. A recent study using wavy-shaped 
branches [58] obtained thermal performances varying from θmax =

0.0163 for N = 1 to θmax = 0.0026 for N = 4, corroborating the previous 
observation about the complexity of the cavities. This study is not more 
explored here because it is restricted to a geometrical optimization of the 
cavity, not concerned with the influence of the degrees of freedom over 
the thermal performance, which is the main purpose in of the present 
work.

5. Concluding remarks

This work performed a geometrical investigation of a complex cavity 
(double-Y) with seven DOFs inserted into a rectangular solid body for 
chilling the domain subject to heat generation. Constructal design is 
associated with a differential evolution heuristic algorithm to predict the 

Fig. 13. Optimal geometries for different values of φc: a) φc = 0.01, (H0/L0)2o = 4.13, (H2/L2)6o = (H1/L1)7o = 0.00018, (θmax)7m = 1.01 × 10− 3; b) φc = 0.05, (H0/ 
L0)2o = 0.84, (H2/L2)6o = (H1/L1)7o = 0.0009, (θmax)7m = 9.4 × 10− 4; c) φc = 0.10, (H0/L0)2o = 0.43, (H2/L2)6o = (H1/L1)7o = 0.002, (θmax)7m = 8.8 × 10− 4; d) φc 
= 0.15, (H0/L0)2o = 0.29, (H2/L2)6o = (H1/L1)7o = 0.003, (θmax)7m = 8.1 × 10− 4; e) φc = 0.2, (H0/L0)2o = 0.22, (H2/L2)6o = (H1/L1)7o = 0.004, (θmax)7m = 7.7  
× 10− 4.
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global optimal configurations to define the points of investigation of the 
dependent DOF analyzed. The reduction in the computational effort 
allowed the investigation of the influence of the cavity fraction area (φc) 
over the (θmax)7m and corresponding optimal DOFs. The complex 
configuration studied here had not been wholly optimized before in the 
literature.

The results of the present work allowed the achievement of the 
following conclusions:

- the insertion of the new angles for the bifurcated branches (α and β) 
in comparison with the double T configuration was beneficial to mini
mize (θmax) for square solid domains (H/L = 1.0), as well as, for the 
investigated ratio H/L = 3.77. Configurations in the form of treelike 
(similar to that observed, for example, in leaves) increased the number 
of hot regions of temperature, which improves the performance by ho
mogenization of temperature fields, i.e., following the optimal distri
bution of imperfections principle;

- for the lowest and highest extremes of H/L, the optimal configu
rations changed to double-T- and I-cavity configurations, i.e., degener
ating the double-Y-cavity configuration into more straightforward 
configurations. This behavior can be associated with the degeneration of 
the flow system from volume-to-point to point-to-point configuration 
and shows the importance of the solid domain constraint over the design 
of the cavity;

- results obtained for the double-Y-cavity configuration were 
compared with other shapes previously studied in the literature. It was 
noticed that, for H/L = 1.0, the double-Y-cavity presented a significant 
improvement in the thermal performance in comparison with several 
configurations as I-, T-, Y-, X-, H-, various I- and double-T-cavity 
[13,26,28,40,44,45], for the same thermal conditions, being a possible 
evolution of these configurations. The double-Y-cavity configuration 
had a similar performance to the ψ configuration [30] with a difference 
of 1.0 % and an intermediate performance between N = 2 and N = 3 for 
the tree-shaped configuration studied in Hajmohammadi [14];

Fig. 14. Optimal geometries for different values of φc = 0.2, (H/L)o = 0.03 (S1/H0)3o = 0.3, and (H2/L2)6o = (H1/L1)7o, with different area constraint distribution for 
φ1 = φ2: a) φ2 = 0.03 (60 %), (H0/L0)2o = 0.2266, (H2/L2)6o = 45.07× 10− 4, (θmax)7m = 7.7 × 10− 4; b) φ2 = 0.04 (80 %), (H0/L0)2o = 0.4566, (H2/L2)6o = 53.71 ×
10− 4, (θmax)7m = 7.5 × 10− 4; c) φ2 = 0.045 (90 %), (H0/L0)2o = 0.9566, (H2/L2)6o = 57.21 × 10− 4, (θmax)7m = 6.9 × 10− 4; d) φ2 = 0.0475 (95 %), (H0/L0)2o = 1.9, 
(H2/L2)6o = 58.87 × 10− 4, and (θmax)7m = 6.7 × 10− 4.

Table 3 
Comparison between the θmax obtained for the cavity with double-Y-shaped 
configuration and other geometries presented in the literature.

Configuration \ 
condition

φc = 0.1 
and H/L =
1.0

φc = 0.1 
and H/L >
1.0

φc = 0.1, H/L 
< 1.0 and φ1+2 

= 60 %φc

φc = 0.2; 
φ1+2 =

0.95φc

I [28] 0.1008 NA NA NA
T [28] 0.0710 NA NA NA
H [13] 0.0245 NA NA NA
Y [44,45] 0.0611 0.0038 NA NA
Various I [40] 0.0064 NA NA NA
X [29] 0.0330 NA NA NA
ψ [30] 0.0180 NA NA NA
double T [26] 0.0281 0.0034 9 × 10− 4 NA
Tree [14] – N = 1 0.0657 NA NA NA
Tree [14] – N = 2 0.0241 NA NA NA
Tree [14] – N = 3 0.0114 NA NA NA
Tree [14] – N = 4 0.0065 NA NA NA
double Y 0.0182 0.0035 8.8 × 10− 4 6.7 × 10− 4

NA – Not Applicable (configuration not studied in the literature).
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- results also indicated that the distribution of the area between the 
trunk and bifurcated branches could have a significant influence over 
the thermal performance, which was demonstrated by the change in the 
distribution of φ1+2 = 60 %φc to φ1+2 = 95 %φc for φc = 0.2 that allowed 
to an improvement of nearly 12 % in the thermal performance.

The combination of ES and DE methods applied in this work not only 
led to the achievement of optimal geometries and allowed the repro
duction of DOF effects over thermal performance for a complex geom
etry with seven degrees of freedom, but also reduced drastically the 
computational effort. The efficiency of the methodology reassures its 
potential for future studies of complex branched designs. Moreover, 
other boundary conditions for the double-Y-cavity can be investigated, 
showing the influence of the magnitude of the cooling capacity of the 
cavity (measured by coefficient h) over the design of complex cavities.
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