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Appendix A: Preparation of the Dicke states

In this section we provide additional details on the preparation of the Dicke states. Denoting by N and M the
number of qubits and excitations, respectively, and by |WN (M)⟩ the Dicke state, we provide a full proof for the
following statement:

Proposition 1. For any ε > 0, there exists a (non-deterministic) protocol which prepares a state |ΨN ⟩ with

|1− | ⟨WN (M)|ΨN ⟩ |2| ≤ ε . (SA.1)

The protocol is successful with probability

Psucc ≥
1√
8πM

, (SA.2)

it uses Na = 1 ancilla per site, D = O(ℓ) and ℓ additional ancillas where

ℓ = max

{
ln(4M)/ ln 2, 1 +

ln ln(
√
8πM/ε)

ln 2

}
, (SA.3)

independent of N .

Note that, because the probability of success is O(1/
√
M), the protocol needs to be repeated, on average, O(

√
M)

times, which is the result announced in the main text.

Proof. As in the main text, we set p =M/N and start with the initial state (ommitting the dependence on N)

|Ψ(p)⟩ = (
√
1− p |0⟩+√

p |1⟩)⊗N =

N∑
e=0

[(
N

e

)
pe(1− p)N−e

]1/2
|W (e)⟩ . (SA.4)

Choose ℓ as in (SA.3), and define Πℓ
j =

∑
i∈T ℓ

j
Πi, where Πi is a projector onto the eigenspace with i excitations,

while

T ℓ
j = {i : i ≡ j (mod 2ℓ)}. (SA.5)
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We perform a measurement with respect to the projectors {Πℓ
j} and repeat the precedure until we obtain the outcome

M . In case of success, the state reads

|Ψ(ℓ)⟩ = 1

Zℓ

∑
e∈T ℓ

M

[(
N

e

)
pe(1− p)N−e

]1/2
|W (e)⟩ , (SA.6)

where Zℓ is a normalization factor. According to Result 2, this measurement can be performed using a circuit with
D = O(ℓ), Na = 1, and ℓ additional ancillas.
We need to estimate the success probability and the distance between |Ψ(ℓ)⟩ and |WN (M)⟩. The former is

Psucc = Z2
ℓ =

∑
e∈T ℓ

M

[(
N

e

)
pe(1− p)N−e

]

≥
(
N

M

)
pM (1− p)N−M ≥ 1

2

(
N

2πM(N −M)

)1/2

≥ 1√
8πM

, (SA.7)

where we used

1

2

(
N

2πM(N −M)

)1/2

<

(
N

M

)
pM (1− p)N−M < 2

(
N

2πM(N −M)

)1/2

, (SA.8)

which holds for 0 < M < N and can be proved using known inequalities for the factorial [1].
For the overlap, we write∑

e∈T ℓ
M

(
N

e

)
(1− p)N−epe ≤

(
N

M

)
pM (1− p)N−M + Pr[e ≤M − 2ℓ] + Pr[e ≥M + 2ℓ] . (SA.9)

Since 2ℓ > M , we have Pr[e ≤M − 2ℓ] = 0. Let us analyze Pr[e ≥M + 2ℓ]. The Chernoff inequality gives [2]

Pr[e ≥M + 2ℓ] ≤ exp

[
−ND

(
M + 2ℓ

N

∥∥∥M
N

)]
, (SA.10)

where D(·||·) is the relative entropy

D(a∥p) = a ln
a

p
+ (1− a) ln

1− a

1− p
. (SA.11)

We have

lim
N→∞

ND

(
M + 2ℓ

N

∥∥∥M
N

)
= −2ℓ + (2ℓ +M) ln[(2ℓ +M)/M ] , (SA.12)

d

dN
ND

(
M + 2ℓ

N

∥∥∥M
N

)
< 0 . (SA.13)

Eq. (SA.13) implies that ND
(

M+2ℓ

N

∥∥∥M
N

)
is always larger than its asymptotic value. Therefore

ND

(
M + 2ℓ

N

∥∥∥M
N

)
≥ −2ℓ + (2ℓ +M) ln[(2ℓ +M)/M ] . (SA.14)

Since 2ℓ ≥ 4M , we have

−2ℓ + (2ℓ +M) ln[(2ℓ +M)/M ] ≥ 2ℓ−1 . (SA.15)

Setting CN,M =
(
N
M

)
pM (1− p)N−M , and putting all together, we get

| ⟨WN (M)|Ψ(ℓ)⟩ |2 =
CN,M

Z2
ℓ

≥ 1− P [e ≥M + 2ℓ]

CN,M

≥ 1−
√
8πMe−2ℓ−1

, (SA.16)
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where we used 1/(1 + x) ≥ 1− x.

Finally, using

ℓ ≥ 1 +
ln ln(

√
8πM/ε)

ln 2
. (SA.17)

we get || ⟨WN (M)|Ψ(ℓ)⟩ |2 − 1| ≤ ε. Therefore, setting |ΨN ⟩ = |Ψ(ℓ)⟩ we obtain the statement. ■

Next, we prove that the protocol can be slightly modified to trade the depth with the number of ancillas.

Proposition 2. For any ε > 0, there exists a (non-deterministic) protocol which prepares a state |ΨN ⟩ with

|1− | ⟨WN (M)|ΨN ⟩ |2| ≤ ε . (SA.18)

The protocol is successful with probability

Psucc ≥
1√
8πM

, (SA.19)

it uses D = O(1), Na = O(ℓ) ancilla per site, and ℓ additional ancillas, where ℓ is defined in Eq. (SA.3).

Proof. Compared to the protocol explained in Prop. 1, we need to reduce the depth of the circuit to D = O(1). To this
end, we need to remove the inverse of the quantum Fourier transform (QFT) in the measurement of the excitations
(which requires a depth scaling with the number of ancillas) and parallelize the application of the operators U (1)(x).
Our parallelization scheme is closely related to the one of Ref. [3].

We proceed as follows. We define ℓ as in Eq. (SA.3), and append ℓ−1 ancillas per site, plus ℓ−1 additional ancillas
to the first site (so, in the first site we have ℓ− 1+ ℓ = 2ℓ− 1 ancillas). All ancillas are initialized in |0⟩. Suppose the
initial state of the system is

|ψ⟩ =
∑
{jk}

cj1...jN |j1 . . . jN ⟩ . (SA.20)

We perform a controlled operations in each local set consisting of one system qubit and ℓ− 1 ancilla qubits, mapping

|jk⟩ ⊗ |0⟩⊗(ℓ−1) 7→ |jk⟩ ⊗ |jk⟩⊗(ℓ−1)
, (SA.21)

yielding the state

|Ψ⟩ =
∑
{jk}

cj1...jN |j1 . . . jN ⟩⊗ℓ
. (SA.22)

The step (SA.21) corresponds to parallel application of fan-out gates and takes constant depth using LOCC [4]. Next,
we apply a Hadamard transformation to each of the ℓ ancillas in the first site. Then, for each of the ℓ ancillary
systems, we apply a unitary V (x) which acts on the x-th copy of the system and the x-th ancilla in the first site. Each
unitary is of the form (2) with U (0) = 11 and

U (1) = U (1)(x) = e2iπ(Ne−M)/2x , (SA.23)

where x = 1, . . . , ℓ corresponding to each ancilla. These operations can be performed in parallel as they act on distinct
qubits. Next, we act with the inverse of (SA.21), apply a Hadamard transformation to each ancilla and measure them
in the Z-basis. The protocol is successful if we obtain the outcome 0 for all ancillas. In this case, it is easy to see that
the state after the measurement is proportional to the state (SA.6). Note that the unitary (SA.23) is different from
that used in the measurement procedure explained in the main text (Result 2). Indeed, while the final state in the
case of success is the same as in the previous Proposition, Eq. (SA.6), the outcome is not equal to a projection onto
Πℓ

j for different measurement outcomes.

It is immediate to show that the probability of success and the infidelity of the output state are the same as
computed in Prop. 1, which proves the statement. ■
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Appendix B: Dicke states from amplitude amplification

In this section we provide additional details for the preparation of the Dicke state using the amplitude-amplification
protocol. We start by recalling the precise statement of the latter.

Lemma 1 (Amplitude amplification). Let

|ψ⟩ = sinα |ψ1⟩+ cosα |ψ2⟩ , (SB.1)

where |ψ1⟩ and |ψ2⟩ are orthogonal states, and |ψ̃⟩ be the state orthogonal to |ψ⟩ in the subspace generated by |ψ1⟩,
|ψ2⟩. Let S1(ω), S2(ω) be two families of unitary operators such that

S1(ω) |ψ⟩ = eiω |ψ⟩ , S1(ω) |ψ̃⟩ = |ψ̃⟩ , (SB.2)

S2(ω) |ψ1⟩ = eiω |ψ1⟩ , S2(ω) |ψ2⟩ = |ψ2⟩ , (SB.3)

and define

Q(ϕ, φ) = −S1(ϕ)S2(φ) . (SB.4)

Then, if the number m∗ = π/(4α)− 1/2 is an integer, we have

Qm∗
(π, π) |ψ⟩ ∝ |ψ1⟩ . (SB.5)

Otherwise, there exist two values ϕ∗, φ∗ ∈ R such that

Q(ϕ∗, φ∗)Q⌊m∗⌋(π, π) |ψ⟩ ∝ |ψ1⟩ , (SB.6)

where ⌊·⌋ is the integer floor function.

Proof. The proof can be found in Refs. [5–7], see in particular Sec. 2.1 in Ref. [7]. Note that the lemma states that
we can deterministically obtain the state |ψ1⟩, provided that we can implement the operators Q(ϕ, φ). They need to
be applied a number of times growing as ∼ 1/α. ■

Next, we show that the amplitude amplification protocol may be carried out even when the unitaries S1(ω) and
S2(ω) can only be implemented approximately.

Lemma 2 (Approximate amplitude amplification). Let

|ψ⟩ = sinα |ψ1⟩+ cosα |ψ2⟩ , (SB.7)

where |ψ1⟩ and |ψ2⟩ are orthogonal states, and |ψ̃⟩ be the state orthogonal to |ψ⟩ in the subspace generated by |ψ1⟩,
|ψ2⟩. Fix 1 > δ > 0 and let T1(ω), T2(ω) be two families of unitary operators such that

T1(ω) |ψ⟩ = eiω |ψ⟩ , T1(ω) |ψ̃⟩ = |ψ̃⟩+ ε1 |v⟩ , (SB.8a)

T2(ω) |ψ1⟩ = eiω |ψ1⟩ , T2(ω) |ψ2⟩ = |ψ2⟩+ ε2 |w⟩ , (SB.8b)

where 0 < |ε1|, |ε2| < δ/2, while |v⟩, |w⟩ are normalized states. Finally, set

P (ϕ, φ) = −T1(ϕ)T2(φ) . (SB.9)

If the number m∗ = π/(4α)− 1/2 is an integer, define

|χ⟩ = Pm∗
(π, π) |ψ⟩ , (SB.10)

otherwise, define

|χ⟩ = P (ϕ∗, φ∗)P ⌊m∗⌋(π, π) |ψ⟩ , (SB.11)

where ⌊·⌋ is the integer floor function and ϕ∗, φ∗ are chosen as in Lemma 1. Then

|| ⟨ψ1|χ⟩ |2 − 1| ≤ 4(⌊m∗⌋+ 1)δ. (SB.12)
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Proof. First, note that

P (ϕ, φ) |ψ1⟩ = −eiφT1(ϕ) |ψ1⟩ = −eiφT1(ϕ)
[
ζ1 |ψ⟩+ ζ2 |ψ̃⟩

]
= −ζ1eiφeiϕ |ψ⟩ − ζ2e

iφ |ψ̃⟩ − ζ2e
iφε1 |v⟩

= Q(ϕ, φ) |ψ1⟩+ δ1 |v⟩ , (SB.13)

where |δ1| ≤ δ/2 < δ, while Q is defined in (SB.4). Here we introduced the coefficients ζ1 = ⟨ψ|ψ1⟩, ζ2 = ⟨ψ̃|ψ1⟩.
Similarly,

P (ϕ, φ) |ψ2⟩ = −T1(ϕ)(|ψ2⟩+ ε2 |w⟩) = −T1(ϕ)(ξ1 |ψ⟩+ ξ2 |ψ̃⟩)− ε2T1(ϕ) |w⟩
= −ξ1eiϕ |ψ⟩ − ξ2 |ψ̃⟩ − ε1ξ2 |v⟩ − ε2T1(ϕ) |w⟩ = Q(ϕ, φ) |ψ2⟩+ δ2 |u⟩ . (SB.14)

Here |u⟩ is a normalized vector, while

|δ2| ≤ (|ε1ξ2|2 + |ε2|2 + 2|ε1ε2ξ2 ⟨v|T1(ϕ)|w⟩ |)1/2 ≤ δ . (SB.15)

Therefore, we have

n∏
j=1

P (ϕj , φj) |ψ⟩ =
n∏

j=1

Q(ϕj , φj) |ψ⟩+
n∑

k=1

ck k−1∏
j=1

P (ϕj , φj) |u⟩+ dk

k−1∏
j=1

P (ϕj , φj) |v⟩

 , (SB.16)

where |cj | ≤ δ, |dj | ≤ δ. The statement then follows immediately using Lemma 1 and that || ⟨ψ1|χ⟩ |2 − 1| ≤
2|| ⟨ψ1|χ⟩ | − 1|. ■

We will also use the following result

Lemma 3. Consider the unitary operation defined by

F [ℓ;m]
φ |i1 . . . iN ⟩ = eiφfℓ,m(i1...iN ) |i1 . . . iN ⟩ , (SB.17)

where

fℓ,m(i1 . . . iN ) =

{
1 if (

∑N
j=1 ij)−m ≡ 0 (mod 2ℓ)

0 otherwise .
(SB.18)

Then, F
[ℓ;m]
φ can be implemented using ℓ total ancillas and a circuit of depth O(ℓ2).

Proof. We attach all ℓ ancillas to the first site. We prepare them in the state |+⟩, and apply to each of them,
sequentially, the unitary operation V in Eq. (2) with U0 = 11 and U1 = eiπ(N−m)/2x , where x = 1, . . . , ℓ corresponding
to each ancilla. This can be done by a circuit of depth O(ℓ). After that, we apply an inverse QFT to the ℓ ancillas,
which requires depth D = O(ℓ) [8]. This transforms an input state |ψ⟩ as

W : |+ . . .+⟩ ⊗ |ψ⟩ →
1∑

i1,...,iℓ=0

|i1, . . . , iℓ⟩ ⊗Πℓ
i+m|ψ⟩ (SB.19)

where Πℓ
i+m is the projector onto the subspace with a number of excitations e (namely, a number of values for which

ik = 1) satisfying e ≡ i+m mod(2ℓ), namely e−m ≡ i mod(2ℓ), and where i1 . . . iℓ is the binary decomposition of i.
We can now apply a unitary to the ancillas in the first site mapping |0 . . . 0⟩ 7→ eiφ |0 . . . 0⟩ and acting as the identity
on the other basis states. This operation can be implemented by a local circuit of depth O(ℓ2) [9]. We can finally
apply the inverse W † of the unitary (SB.19), yielding the desired result. ■

Finally, we prove our main result of this section.

Proposition 3 (Preparation of Dicke states). Let N ≥ 4M and M ≥ 1. For any 0 < δ < 1, there exists an efficient
preparation protocol to realize a state |Φ⟩ such that

|| ⟨Φ|WN (M)⟩ |2 − 1| ≤ 4δ . (SB.20)
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The protocol applies a sequence of 2nM unitary operators which are either F
[ℓ,0]
ω V † or F

[ℓ,M ]
ω , where V = e−iθSy is a

product of local unitaries (which can be implemented in parallel),

nM ≤ π(8πM)1/4

2
, (SB.21)

while

ℓ = log2

{
1

ln(4/3)

[
2M(ln 2M + 9/2) + ln

(
Poly(M)

δ2

)]}
, (SB.22)

with

Poly(M) =
8πe2(8πM)1/2

M ln(4/3)
(
1− [8/(3πM)]1/2

) . (SB.23)

Proof. Define

|θ⟩ = V |0⟩⊗N
, (SB.24)

V = e−iθSy with cos(θ) =
√
1− p and

p =M/N . (SB.25)

We start with the identity

|θ⟩ = sinα |W (M)⟩+ cosα |R⟩ . (SB.26)

Here, |W (M)⟩ is the normalized Dicke state with M excitations, while

|R⟩ = 1

ZR

∑
e ̸=M

[(
N

e

)
pe(1− p)N−e

]1/2
|W (e)⟩ , (SB.27)

where ZR is a normalization factor, and

sinα =

[(
N

M

)
pM (1− p)N−M

]1/2
. (SB.28)

Choose ℓ as in (SB.22) and define

T1(ω) = F [ℓ,0]
ω V † T2(ω) = F [ℓ,M ]

ω . (SB.29)

Note that V (and hence V †) is a product of local unitaries, while F
[ℓ,m]
ω can be implemented efficiently thanks to

Lemma 3. In the following, we will show

T1(ω) |θ⟩ = eiω |θ⟩ , T1(ω) |θ̃⟩ = |θ̃⟩+ ε1 |v⟩ , (SB.30a)

T2(ω) |W (M)⟩ = eiω |W (M)⟩ , T2(ω) |R⟩ = |R⟩+ ε2 |w⟩ , (SB.30b)

where we denoted by |θ̃⟩ the state orthogonal to |θ⟩ generated by |W (M)⟩ and |R⟩, while |v⟩, |w⟩ are normalized
states, with

|ε1|, |ε2| ≤
δ

π(8πM)1/4
. (SB.31)

Combining Lemmas 1 and 2, we see that this is enough to prove the statement. Indeed, if (SB.31) holds, we can
implement the approximate amplitude amplification algorithm applying T1(ω) and T2(ω) a number of times

nM ≤ π

4α
+

1

2
≤ π(8πM)1/4

4
+

1

2
≤ π(8πM)1/4

2
, (SB.32)
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where we used sinα ≤ α for 0 ≤ α ≤ 1, and (sinα)−1 ≤ (8πM)1/4 [which follows from Eqs. (SA.8) and (SB.28)]. By
Lemma 2, this gives us the desired state |W (M)⟩ up to an infidelity I = ε with

ε ≤ 4

(
π

4α
+

1

2

)
2δ

π(8πM)1/4
≤ 4δ . (SB.33)

Let us prove (SB.30), starting with the action of T2(ω). First, it is obvious that T2(ω) |W (M)⟩ = eiω |W (M)⟩.
Next, we have

T2(ω) |R⟩ =
1

ZR
T2(ω)

 ∑
e∈T ℓ

M\{M}

[(
N

e

)
pe(1− p)N−e

]1/2
|W (e)⟩+

∑
j ̸=0

∑
e∈T ℓ

M+j

[(
N

e

)
pe(1− p)N−e

]1/2
|W (e)⟩


=

1

ZR

eiω ∑
e∈T ℓ

M\{M}

[(
N

e

)
pe(1− p)N−e

]1/2
|W (e)⟩+

∑
j ̸=0

∑
e∈T ℓ

M+j

[(
N

e

)
pe(1− p)N−e

]1/2
|W (e)⟩


= |R⟩+ |w⟩ . (SB.34)

where T ℓ
M is defined in Eq. (SA.5), while

|w⟩ = (eiω − 1)

ZR

∑
e∈T ℓ

M\{M}

[(
N

e

)
pe(1− p)N−e

]1/2
|W (e)⟩ . (SB.35)

We can bound the norm of |w⟩ using

Z2
R = 1−

(
N

M

)
pM (1− p)N−M , (SB.36)

and the results of Appendix A, cf. Eqs. (SA.9), (SA.10). Using N ≥ 4M , we obtain

⟨w|w⟩ ≤ 4
e−2ℓ−1

Z2
R

≤ 4e−2ℓ−1

1−
(

8
3πM

)1/2 ≤ δ2

π2(8πM)1/2
, (SB.37)

This inequality holds if

ℓ ≥ 1 + log2

ln

 4π2(8πM)1/2

δ2
(
1−

(
8

3πM

)1/2)
 , (SB.38)

which is true if ℓ is chosen as in (SB.22) (this is easily established with the help of numerical inspection).
Next, let us consider T1(ω). Again, it is obvious that T1(ω) |θ⟩ = eiω |θ⟩. To prove the second identity in

Eq. (SB.30a), we start from

V † |θ̃⟩ = 1

Z
V †(1− |θ⟩ ⟨θ|) |W (M)⟩ , (SB.39)

where

Z2 = 1− | ⟨W (M)|θ⟩ |2 . (SB.40)

It follows from the results of Appendix C that

V † |W (M)⟩ =
N∑
s=0

cs |W (s)⟩ , (SB.41)

cf. Eq. (SC.8). Therefore, we can write

V † |θ̃⟩ = 1

Z

 2ℓ∑
s=0

cs |W (s)⟩+ ⟨θ|W (M)⟩ |0⟩⊗N

+ |w̃⟩ , (SB.42)
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where |w̃⟩ has more than 2ℓ excitations. Using the results of Sec. C and N ≥ 4M , we can bound its norm as

⟨w̃|w̃⟩ = 1

Z2

∑
s≥2ℓ+1

|cs|2 ≤ 1

1− [8/(3πM)]1/2
2e2

Mπ ln(4/3)
exp

[
−2ℓ ln(4/3) + 2M(ln(2M) + 9/2)

]
≤ δ2

4π2(8πM)1/2
, (SB.43)

where we used that

2ℓ ≥ 1

ln(4/3)

[
2M(ln 2M + 9/2) + ln

(
Poly(M)

δ2

)]
, (SB.44)

with

Poly(M) =
8πe2(8πM)1/2

M ln(4/3)
(
1− [8/(3πM)]1/2

) . (SB.45)

Now, in the space generated by states with at most 2ℓ excitations, F
[ℓ,0]
ω only multiplies the phase eiω to the state

|0⟩⊗N
, leaving the rest of the basis states invariant. Therefore, we arrive at the final result

T1(ω)] |θ̃⟩ = F [ℓ,0]
ω V † |θ̃⟩ = |θ̃⟩+ |v⟩ , (SB.46)

where |v⟩ = (−11 + F
[ℓ,0]
ω |w̃⟩), and therefore

⟨v|v⟩ ≤ δ2

π2(8πM)1/2
. (SB.47)

■

Appendix C: Technical computations

The goal of this section is to analyze the state

V † |W (M)⟩ (SC.1)

where |W (M)⟩ is the normalized Dicke state with M excitations, while V = e−iθSy with cos(θ) =
√
1− p and

p =M/N . Throughout this section, we will assume N ≥ 4M .

We start by introducing the unnormalized Dicke states

|U(M)⟩ =
∑

i1<...<iM

σ+
i1
· · ·σ+

iM
|0⟩⊗N

, (SC.2)

and note that we can also write

|W (M)⟩ = 1√(
N
M

) 1

(N −M)!M !

∑
π∈SN

|1 . . . 1︸ ︷︷ ︸
M

0 . . . 0︸ ︷︷ ︸
N−M

⟩ , (SC.3)

where the sum is over all permutations of qubits. Therefore, we can compute

V † |W (M)⟩ = 1√(
N
M

) 1

(N −M)!M !

∑
π∈SN

e+iSyθ |1 . . . 1︸ ︷︷ ︸
M

0 . . . 0︸ ︷︷ ︸
N−M

⟩

=
1√(
N
M

) 1

(N −M)!M !

∑
π∈SN

(
√
p |0⟩+

√
1− p |1⟩)⊗M (

√
1− p |0⟩ − √

p |1⟩)⊗(N−M) (SC.4)
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We can rewrite ∑
π∈SN

(
√
p |0⟩+

√
1− p |1⟩)⊗M (

√
1− p |0⟩ − √

p |1⟩)⊗(N−M)

=
∑

π∈SN

[
M∑
e=0

p(M−e)/2(1− p)e/2 |U(e)⟩

]N−M∑
f=0

(1− p)(N−M−f)/2(−p1/2)f |U(f)⟩


=

M∑
e=0

N−M∑
f=0

p(M−e)/2(1− p)e/2(1− p)(N−M−f)/2(−p1/2)f
∑

π∈SN

|U(e)⟩ |U(f)⟩ (SC.5)

Next, we use ∑
π∈SN

|U(e)⟩ |U(f)⟩ =
(
M

e

)(
N −M

f

) ∑
π∈SN

|1 . . . 1︸ ︷︷ ︸
e+f

0 . . . 0︸ ︷︷ ︸
N−e−f

⟩

=

(
M

e

)(
N −M

f

)√(
N

e+ f

)
(e+ f)!(N − e− f)! |W (e+ f)⟩ (SC.6)

Introducing the variable s = e+ f , we finally get

V † |W (M)⟩ =
N∑
s=0

|W (s)⟩
√
s!(N − s)!√
M !(N −M)!

×
M∑
e=0

N−M∑
f=0

δf+e,s

(
M

e

)(
N −M

f

)
p(M−e)/2(1− p)e/2(1− p)(N−M−f)/2(−p1/2)f . (SC.7)

Therefore,

V † |W (M)⟩ =
N∑
s=0

cs |W (s)⟩ , (SC.8)

where

cs =

√
s!(N − s)!√
M !(N −M)!

×
M∑
e=0

(
M

e

)(
N −M

s− e

)
p(M−e)/2(1− p)e/2(1− p)(N−M−(s−e))/2(−p1/2)s−e . (SC.9)

Next, we bound |cs| for s ≥ 3M . We have

|cs| ≤
√
s!(N − s)!√
M !(N −M)!

M∑
e=0

(
M

e

)(
N −M

s− e

)
p(M+s−2e)/2(1− p)(N−M−(s−2e))/2 . (SC.10)

Using (
N −M

s− e

)
≤ (N −M)s−e

(s−M)!
, (SC.11)

we obtain

|cs| ≤
√
s!(N − s)!√
M !(N −M)!

1

(s−M)!
p(s−M)/2 (N −M)s

(N −M)M
(1− p)(N−M−s)/2

M∑
e=0

(
M

e

)
(N −M)M−epM−e(1− p)e

=

√
s!(N − s)!√
M !(N −M)!

1

(s−M)!
p(s−M)/2 (N −M)s

(N −M)M
(1− p)(N−M−s)/2

[
(M + 1)

(
1− M

N

)]M
. (SC.12)

Taking the square, using Stirling’s inequality
√
2πn

(
n
e

)n
< n! <

√
2πn

(
n
e

)n
e

1
12n and rearranging, we arrive at

|cs|2 ≤
(
1 +

1

M

)2M
1

π

(
s(N − s)

M(N −M)(s−M)2)

)1/2 (
sM(N −M)

N − s

)s (
1− s

N

)N

exp [2(s−M)(1− ln(s−M)] .

(SC.13)



10

Now we use that for s ≥ 3M one has(
sM(N −M)

N − s

)s (
1− s

N

)N

exp [2(s−M)(1− ln(s−M)] ≤ eM (2M)2M
[
3(N −M)

4(N − 3M)

]s
. (SC.14)

This inequality can be established as follows. Denoting the lhs by g(s), we note that the logarithmic deriva-
tive d ln g(s)/ds is a monotonically decreasing function of s. Therefore, for s ≥ 3M , we have d ln g(s)/ds ≤
d ln g(s)/ds|s=3M =: Γ. This implies g(s) ≤ g(3M)esΓ, from which the above inequality follows. Finally, we have(

s(N − s)

M(N −M)(s−M)2)

)1/2

=

[
s

M

(
1

(s−M)2
− 1

(s−M)(N −M)

)]1/2
≤ 2

M
, (SC.15)

and also [
(N −M)

(N − 3M)

]s
=

(
1 +

2M

N − 3M

)s

≤ exp

[
2Ms

N − 3M

]
≤ e8M , (SC.16)

where we used N ≥ s and N ≥ 4M . Putting all together, we obtain

|cs|2 ≤ 2e2

πM
e9M (2M)2M

[
3

4

]s
= Poly(M) exp [−s ln(4/3) + 2M(ln(2M) + 9/2)] . (SC.17)

Therefore, we arrive at the final result∑
k≥s

|ck|2 ≤
∫ ∞

s−1

dk|ck|2 =
2e2

Mπ ln(4/3)
exp [−(s− 1) ln(4/3) + 2M(ln(2M) + 9/2)] . (SC.18)

Appendix D: Eigenstates of the XX chain

We consider the XX Hamiltonian with open boundary conditions

H = −
N−1∑
k=1

(σx
kσ

x
k + σy

kσ
y
k) . (SD.1)

Introducing the fermionic modes via the Jordan-Wigner mapping

ak =

k−1∏
j=1

σz
j

σ−
k , a†k =

k−1∏
j=1

σz
j

σ+
k , (SD.2)

the Hamiltonian (SD.1) can be rewritten as

H = −
N−1∑
k=1

(a†jaj+1 + h.c.) . (SD.3)

Note that

{a†j , ak} = δj,k . (SD.4)

Based on this mapping, a standard result states that the eigenstates of the model read

|ΨM ⟩ = A†
M · · ·A†

1 |0⟩
⊗N

(SD.5)

with

Aα =

N∑
k=1

cαk

k−1∏
j=1

σz
j

σ−
k , (SD.6)
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where {cαk} are pairwise distinct sets of numerical coefficients, {cαk} ≠ {cβk}. These operators satisfy the canonical
anticommutation relations

{Aα, Aβ} = 0 , {A†
α, Aβ} = δα,β , (SD.7)

and so one has the constraint

N∑
j=1

cαj c
β
j = δα,β . (SD.8)

We prove the following statement

Proposition 4. The eigenstates |ΨM ⟩ can be prepared by a circuit (with LOCC) of depth O(NM) and a single ancilla
per site.

Proof. First, note that

|ΨM ⟩ = ei
π
2 (AM+A†

M )|ΨM−1⟩ . (SD.9)

This is because (AM + A†
M )2 = 1 and also AM |ΨM−1⟩ = 0. The last equality follows from the anticommutation

relations (SD.7) and the fact that AM ̸= Aj for j < M .
Next, let A and B two anticommuting operators, such that {A,A†} = {B,B†} = 1. Then, for α, θ ∈ R, we have

the identity

eiα[cos(θ)(A+A†)+sin(θ)(B+B†)] = eiβ(B+B†)eiγ(A+A†)eiβ(B+B†) , (SD.10)

where

cos(2β) cos(γ) = cos(α) , (SD.11)

sin(2β) cos(γ) = sin(α) sin(θ) , (SD.12)

sin(γ) = sin(α) cos(θ) , (SD.13)

which can be simply derived expanding the exponential functions. Note that the third equation can be derived from
the first two, so that there is always a solution to the above system. By applying iteratively this relation, we obtain

eiθ(AM+A†
M ) = RN . . . R2R1R2 . . . RN , (SD.14)

where Rj = eiθj(c
M
j a†

j+h.c.), where θj can be easily computed through iteration of (SD.10). Note that the coefficients
cMj are in general complex, but Eq. (SD.10) can be applied as the phases are reabsorbed in the definition of the
operators A and B.
Finally, we notice that

Rj = VjXjV
†
j , (SD.15)

where, Xj = eiθj(c
M
j σ+

j +h.c.) and

Vj = |0⟩j⟨0| ⊗
(
⊗j−1

k=1U0,k

)
+ |1⟩j⟨1| ⊗

(
⊗j−1

k=1U1,k

)
, (SD.16)

with U0,k = 1 and U1,k = σz. It is easy to see that it performs the Jordan Winger transformation, i.e.

Vjσ
+
j V

†
j = σz

1 ⊗ · · · ⊗ σz
j−1 ⊗ σ+

j . (SD.17)

Note that Eq. (SD.16) is of the form (2), where the control qubit is at site j, and can thus be implemented with a
circuit of depth D = O(1) using LOCC.

Finally, using

XN . . . Xj+1Vj = VjXN . . . Xj+1 , (SD.18)

VjXj+1 . . . XN = Xj+1 . . . XNVj , (SD.19)
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and that Vj = V †
j , [Vj , Vk] = 0, we obtain

eiθ(AM+A†
M ) = TLNLN−1 . . . L1L̃2 . . . , L̃NT, (SD.20)

where T =
[∏N

j=1 Vj

]
, and

LN = XN , LN−1 = VNXN−1, . . . , L2 = V3X2, L1 = V2X1V2, (SD.21)

L̃N = XN , L̃N−1 = XN−1VN , . . . , L̃2 = X2V3 . (SD.22)

Therefore, putting together all the excitations, and denoting by Lk = LNLN−1 . . . L1L̃2 . . . , L̃N the operator corre-
sponding to the k-th excitation (i.e., depending on the parameters ckj ), we have

|ΨM ⟩ = TLM . . .L1|0 . . . 0⟩. (SD.23)

Since each Lj and Vj can be implemented by a circuit of depth D = O(1), we immediately obtain the statement. ■
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