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We introduce protocols to prepare many-body quantum states with quantum circuits assisted by local
operations and classical communication. We show that by lifting the requirement of exact preparation, one
can substantially save resources. In particular, the so-called W and, more generally, Dicke states require a
circuit depth and number of ancillas per site that are independent of the system size. As a by-product of our
work, we introduce an efficient scheme to implement certain nonlocal, non-Clifford unitary operators. We
also discuss how similar ideas may be applied in the preparation of eigenstates of well-known spin models,

both free and interacting.
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Introduction—The preparation of many-body quantum
states plays a pivotal role in quantum simulation [1]. On
the one hand, some of those states are required to exploit
the field of quantum sensing [2], quantum communication
[3], or play a crucial role in quantum information theory
[4]. On the other, they allow to investigate quantum many-
body systems, extracting properties that otherwise are
difficult to compute. Furthermore, some of them can be
useful to initialize quantum algorithms that prepare ground
states [5—7] or thermal states [8—12].

As current noisy intermediate-scale quantum (NISQ)
devices [13] are limited in the number of qubits and the
coherence time, it is very important to devise efficient
preparation schemes making use of the minimum amount
of resources. Following early ideas [14,15], an emerging
theme is that preparation protocols using unitary circuits
can be improved by making use of additional ancillas,
measurements, and feed-forward operations, notably in the
context of topological order [16-29]. These ingredients are
very natural from the point of view of quantum informa-
tion, where they are called local operations and classical
communication (LOCC) [4].

The goal of this work is to introduce protocols that save
additional resources as compared to existing schemes. As
we show, this is achieved by relaxing the condition of
preparing the states exactly and deterministically. This
does not cause any disadvantage since for any realistic
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device exact preparation will never be possible. A corner-
stone of our schemes is a nonlocal unitary operation that
can be efficiently implemented and that, in contrast to
those introduced in Ref. [16], is not Clifford [30,31]. We
also show how this operation can help to save resources by
creating one-by-one excitations in spin systems.

In this Letter, we identify as resources the depth D of the
quantum circuit (QC), the number of experimental repeti-
tions N,, and the number of ancillas per qubit N, needed in
order to produce an infidelity / = e It is important to
carefully define the depth of the circuit, which will be done
later. We anticipate that, contrary to some of the protocols
in Ref. [16], we will only allow for LOCC where all the
measurements are executed in parallel. We also note that, in
our schemes, one can trade among different resources, but
we will be mostly concerned with saving N, and D, which
are arguably more important for the first generation of
quantum computers.

Our main result is to show how to prepare the N-qubit
Dicke states [32]

(W(M)) = Zy/ (SH)¥]0...0). (1)
where $* = "N _ 6, Z), is a normalization factor, while
o are the ladder operators at position m. The states (1) are
eigenstates of the Dicke Hamiltonian Hy, = STS~ + S5,
where M € [0, N] is the number of excitations. They were
defined in the Dicke model of superradiance [32,33], and
are expected to be useful in different kinds of quantum
simulations of that model, see, e.g., Ref. [34]. Our interest in
these states is twofold. On the one hand, they play a
fundamental role in quantum information science and in
particular in metrology. As a consequence, a significant
amount of experimental [35-38] and theoretical [39-42]
work has studied protocols for their preparation in digital
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TABLE I. Summary of our results and comparison with
previous work [M: number of excitations; &: infidelity]. The
resources are the depth D (including LOCC, if applicable) the
number of ancillas per site NV, and of repetitions N,.. A trade-off is
possible in some cases, and we give variants optimizing either D,
N,,or N, [£y, is defined in Egs. (4) and (6) for Results 3 and 5,
respectively]. Ref. [44] allows for M = O(v/N), while, for
arbitrary M, N, = O(Poly(N)), D = O(InN).

Ref. D N, N,

w Result 3 O(lnln1/e) 1 o(1)
Result 3 o(1) O(nin1/e)  0(1)
Result 4 o(1) 1 0(1//?)
Ref. [44] o(1) O(InN) 1

Dicke  Result 3 o(1) O(Cye) O(VM)
Result 3 O(Cye) 1 O(VM)
Result 5 oM'*¢3,,) 1+ €ye/N 1
Ref. [44] o(1) O(NInN) 1

and analog quantum platforms. On the other hand, Dicke
states have resisted previous attempts to devise preparation
schemes using finite-depth circuits and a finite number of
ancillas per site [16,21,43], raising the question of whether
there are some fundamental limitations to achieve this task.

The preparation of Dicke states with LOCC has been
previously considered in the literature. In Ref. [16] a
protocol was proposed to prepare the W state that uses a
QC with D = O(1) but requires sequential use of LOCC,
i.e., a O(N) preparation time. In Ref. [44] an ingenious
approach was introduced to deterministically prepare the W
and Dicke states with constant depth but N, scaling with N.
Instead, the protocols developed in this work allow, for any
fixed desired infidelity and a constant number of excitations,
N-independent resources (Table I). Our approach is very
different from that of Ref. [44] and arguably simpler. The
physical intuition behind our protocol is that the Dicke state
may be obtained by measuring the total number of exci-
tations, starting from some suitable unentangled (and thus,
easily prepared) initial state. This strategy is very natural, as
it relies on the interpretation of Dicke states as made of
quasiparticle excitations. In fact, we note that a similar idea
has been first followed in Ref. [45], in a very different
analog setting. In our work we solve the nontrivial problem
of implementing this idea using finite-depth circuits and
LOCC.

We also discuss how similar ideas may be useful to
prepare certain states of interest in many-body physics. We
consider the eigenstates of the XX Hamiltonian and present
a deterministic preparation protocol with D = O(MN),
where M is the number of excitations. While our protocol is
less efficient than the state-of-the-art unitary algorithm
requiring O(N) depth [46-48], our method is of interest as
it is in principle applicable to more general states and could
lead to further improvement or generalizations. Finally, we
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FIG. 1. Quantum circuit implementing the unitary in Eq. (2)
(the exchange of bits via classical communication is not shown).
Physical and ancillary input qubits are denoted by blue and
orange circles, respectively. X and Z are Pauli operators, whose
exponents @;, p;, and p are defined in the main text, together with
V ;. All measurements are in the Z basis.

also discuss how extension of our ideas may allow one to
prepare eigenstates of interacting spin chains, including the
so-called Richardson-Gaudin model [49,50].

Non-Clifford unitaries from QCs and LOCC—We con-
sider N qubits in one spatial dimension. The associated
Hilbert space is H = H?N , with H, ~ C?, while we denote
by {|0),|1)} the computational basis. We attach to each
qubit N, ancillas. Then, we define the local QCs as the
unitaries W = W,...W,W,, where each “layer” W, con-
tains quantum gates acting on disjoint pairs of nearest-
neighbor qubits and possibly the associated ancillas.
In between each layer, we allow for LOCC consisting
of a round of measurements executed in parallel, classical
processing of the outcomes and local corrections (executed
in parallel). We define the circuit depth as the total number
of unitary layers and LOCC steps.

We begin by showing how to implement non-Clifford
operations of the form

V =10),(0l ® U + 1), (1] ® UV, (2)

where UK :®j.vzl Uy; and Uy ; act on system qubit j,

with k = 0, 1. Here, |+) = (|0) £ |1))/+/2, while b is the
ancilla placed at position 1. The form (2) includes quantum
fan-out gates, which are useful in quantum computing
[44,51,52]. We prove the following:

Result I—V can be implemented deterministically (i.e.
by a single repetition N, = 1), using N, =1 and D = 6.
Given the (unnormalized) joint input state |0),|yq)+
|1),|w1), the QC implementing V is depicted in Fig. 1
and detailed below. In the first layer, the circuit creates
maximally entangled pairs between neighboring ancillas
|@F)y0j01 G=1,2,...,N/2=1). Second, CNOT,;_; ,;
gates are applied over pairs of ancillas, except for the last
one, j=1,...,(N/2—1). This layer is followed by a
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FIG. 2. Quantum circuit with D = O(¢) implementing the
measurements corresponding to {Hf };- The bottom thick line
corresponds to the physical Hilbert space of N qubits, while 7
ancillas are attached to the first qubit. Each control-U operation is
implemented with depth O(1) via the unitary V in Eq. (2). All
measurements are performed in the Z basis.

LOCC step: we measure all even ancillas in the Z basis,
obtaining measurement outcomes a,; € {0, 1}, and apply
local Pauli corrections Xt* over all odd ancillas k > 3,
where py = )5, ay;. At the same time, the decoupled
even ancillas are rotated to the |0),; state. We then apply
another layer of CNOT,;_; ,;, j = 1, ..., N/2 to all ancilla
pairs, yielding the joint state [0)®V|yq) + |1)®V|y;), and
proceed by applying to each ancilla and system qubit the
control unitary V;=1[0)(0|® Uy ;+|[1)(1|® U, ;. Finally,
we perform a LOCC step: we measure all ancillas except
b in the |+) basis, yielding the outcomes {ﬂj}yzz and
apply Z7, where p is the parity of >_;B;. This yields
10), U yro) + [1), U [yry) [53].

Measuring the number of excitations—The unitary (2)
is the key ingredient to our preparation protocol for the
Dicke state, as it allows for an efficient measurement of
the number of excitations. Consider the state |y) and let
us define the excitation number N, = ZJ- n;, where
n; = (1 —07)/2. Denoting by II; the projector onto the
eigenspace of N, associated with the eigenvalue j, we wish
to implement the corresponding measurement. It turns out
that it is possible to implement a closely related measure-
ment using shallow QCs and LOCC, corresponding to the
projectors I17 = EieTj. IT;, where 77 is the set of indices

i such that i = j (mod 27). In particular, we obtain the
following:

Result 2—The measurement corresponding to the set
{Hf }; can be implemented using a circuit with D = O(#),
N, =1 and ¢ additional ancillas.

The circuit implementing this measurement is represented
in Fig. 2. Attaching all # ancillas, initialized in |0), to the
first site, the circuit applies to each of them, sequentially, a
controlled operator consisting of the unitary operation V
in Eq. (2) with U® =1 and U = UV (x) = e2Ne/7,
where x = 1, ..., £ corresponding to each ancilla. At the
end of the circuit, an inverse quantum Fourier transform
(QFT) is applied to the ¢ ancillas. This unitary requires
depth D =0(¢) [54] (even assuming 1D locality

constrains). It is easy to see that these operations map a
state  [y) into D! glit, .. ip) @ I [y), where
iy---ip is the binary representation of i. The desired
measurement, with the expected probability distribution,
is then achieved by performing a projective measurement
onto the # ancillas. Note that UV (x) = [U(D(£)]*, and
thus the protocol is the same of the phase estimation
algorithm [55], with the difference that |w) is not an
eigenstate for U))(#). We note that a similar construction
to measure the number of excitations was first given
in Ref. [45].

Preparation of Dicke states—We are now in a position to
describe our protocol for the preparation of the Dicke state
|W(M)). Fixing M <N/2, set p=M/N and define
W(p)) = (vT=p|0) + /p|1))®" which can be trivially
prepared with D = 1. Now, if we could perform a meas-
urement of the number of excitations and force the outcome
to M, then we would obtain |W(M)). This is because of the
identity

N N 1/2
e =3[ ()rra-pr=| Tween. @)
e=0

which implies IT),|¥(p)) « |[W(M)). Based on this obser-
vation and our previous results, it is easy to devise a
preparation scheme. The idea is to perform a measurement
corresponding to the projectors {Hf } ; for sufficiently large
¢, and repeat the procedure N, times until we get
the desired measurement outcome M. At the end of this
procedure we obtain a final state |y,) o I15,|¥(p)). The
accuracy of the protocol is controlled by the infidelity
[ =1-|(W(M)[w?)|?|, while the number of repetitions
depends on the probability P,, of obtaining the outcome
M. By inspection of the state (3), we find I ~ e‘zf, Py~
M~1/2 [56], and we arrive at the following:

Result 3—Preparation of Dicke states. Up to an infidelity
I = ¢, the Dicke state |W(M)) can be prepared with
N, = 0(V/M), N, =1, D = O(¢);,) and #),, additional
ancillas, where

£, = max {10g2(4M), 1 +log, ln(\/SﬂM/e)}. (4)

Alternatively, by slight modifications of the protocol, it is
not difficult to show that one can trade the depth with the
number of ancillas, realizing a circuit with N, = O (%)),
N, = O(vV/M), D = O(1) [56]; cf. Table L. Note that both
the number of repetitions and the depth of the circuit do not
scale with the system size. In addition, note that we
assumed that 7, is smaller than log,(L). Indeed, for
D =log, (L) the circuit in Fig. 2 performs a measurement
of N,, so the Dicke state is prepared exactly.

We stress that a small infidelity (independent of N)
automatically guarantees an accurate description of cor-
relation functions. Indeed, denoting by (O), = (w|Oly),
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we have [(O),, = (O),| <2(1 = [{w|#)*)*[|O] o, Where
[|O|| is the operator norm. Since the latter equals one for
any product of Pauli matrices, we obtain that correlation
functions in the prepared state will be arbitrarily close to
those of the Dicke state. Finally, in some cases one may
need to obtain the Dicke state up to an exponential accuracy.
In this case, as mentioned, we can run our protocol
implementing the measurement of N, exactly, leading to
an overall depth O(log L).

The W state—For M = 1, the above construction gives
us an efficient protocol for the W state. In this case,
there exists an alternative construction which, while less
efficient, is simpler and could be of interest for implemen-
tation in NISQ devices. The idea is to prepare the product
state (1/1 —&/N|0) + /5/N|[1))®" and simply measure
the parity of the excitations. The protocol is successful if
the outcome is odd, in which case it yields a state which we
call |®(6)). Denoting by |W) the W state, it is easy to see
that |1 — [(W|®(8))|*> < 6*/4 and that the probability of
success is larger than §/2. On the other hand, the
measurement of the parity corresponds to the set {Hf b
with # =1, so it can be done efficiently using Result 2.
Therefore, we have the following:

Result 4—Up to an infidelity I = ¢, the W state can be
prepared with N, = O(1/+/¢), N, =1, D = O(1).

Improved scheme via amplitude amplification—Using
our previous protocol, the average preparation time of the
Dicke state scales as N, = O(v/M), because we have to do
this number of repetitions to have a high probability of
success. The reason is that, given the initial state |¥(p)),
the probability of having M excitations scales as 1/v/M.
We now show how we can exploit the Grover algorithm [or
its practical version, named amplitude amplification pro-
tocol (AAP) [60-63] ] to improve this result. It is important
to notice that a direct application of that algorithm makes
the resources dependent on the system size, N, something
that we want to avoid. Thus, we have to devise an
alternative method, which is consistent with the approxi-
mation, that circumvents this obstacle.

We recall that, given |y) = sinaly,) + cos a|y,), and
denoting by [ir) the state orthogonal to |y) in the subspace
generated by |y) and |y,), the AAP allows one to obtain
ly1) by applying a product of O(1/a) unitaries S;(w;),
Sy(w;) (for a small), which act as follows

Si(@)|@) = 1), (5a)

Sa(@)w2) = ly2).  (5b)

where ®; R depend on a Writing [¥(p)) =
sina|W(M)) + cosa|R), we see that if S;(®), S>(®) can
be implemented with circuits of constant depth, then the
AAP gives us a deterministic algorithm to obtain |y ) with
D = O(M'/#), thus reducing the preparation time.

Si(w)|w) = e“ly),

Sy (@) ) = e lyry),

Realizing the operators in Egs. (5) exactly could be done
by known methods using N, =log,(N) and D = O(1)
[44]. Instead, we show that, applying ideas similar to those
developed so far, an approximate version of them can be
realized using a finite amount of resources [56]. This leads
to the following improved version of Result 3:

Result 5—Improved scheme via amplitude amplifica-
tion. Up to an infidelity / = ¢, the Dicke state |W(M)) can
be prepared deterministically (N, = 1), with N, =1, &),
additional ancillas, and D = O(M'/*¢#2, ), where

1

+ In (Poly(M)/€?)] } (6)

Eigenstates of the XX Hamiltonian—Going beyond the
Dicke model, the previous ideas have ramifications for
other Hamiltonians whose eigenstates are labeled by the
number of excitations. As a first example, we discuss the
well-known XX spin chain H = — Y V= (670} + 6]0}).
This model can be solved via the Jordan-Wigner (JW)

transformation a; = (Hj‘;} aj)a,:, mapping it to a non-
H ==Y (aja; +He),
where {a;,ak} = 0. Accordingly, the eigenstates read
|D(M)) = A, - -- AT|0)®V with

N k=1
A, = Z cff < 05) o} - (7)

interacting Hamiltonian

Here, {c{} are distinct sets of coefficients, such that
{An Ay} =0, {AL, Ay} = 6, [64], while M =0, ...,N.

The form of the eigenstates is superficially similar to that
of the Dicke states, but it is more complicated due to
nonuniform coefficients ¢{ and the string operators [ | i aj.
Yet, the anticommutation relations of A, allows us to devise
an efficient preparation protocol. Indeed, the latter implies
that [®(M)) = Wy, --- W,[0), where W; = ™44/,
The W; are unitary and, using our previous constructions,
we find that they can be realized deterministically with
depth D = O(N) [56]. Therefore, the eigenstates of the
XX Hamiltonian with M excitations can be prepared
deterministically (N, = 1) by a QC with LOCC of depth
D =0O(NM) and N, = 1.

The preparation of spin states which can be mapped onto
free (or Gaussian) fermionic states has been considered
before [46-48,65-72]. Reference [46] finds a unitary
algorithm preparing arbitrary Gaussian operators with depth
O(N), yielding a more efficient protocol. However, our
approach also allows us to prepare states which are not
Gaussian and in principle out of the reach of previous work.
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For instance, we could prepare A, - - - AL |¢o), where |¢)
is any linear combination of Gaussian states (assuming |¢)
can be prepared efficiently). We also expect that our method
could be further improved and generalized to more inter-
esting situations.

Eigenstates of interacting Hamiltonians—As a final
example, we consider general states of the form

¥u) = Bjy...B10)®", (8)

?’:1 c?a;r are interpreted as creating spin
excitations. These states are quite general, including the
Dicke states and the eigenstates of the so-called Richardson-
Gaudin spin chain [49,50], an interacting integrable model.

Without assumptions on the coefficients ¢, efficient prepa-

where BZ =

ration of (8) is challenging. Here, we will assume that we are
in the “low excitation regime,” namely M < N, and that

j\’zl E;’cf =44 + O(M/N). If |y) has at most M exci-

tations, this implies
[Bo. Bjlly) = 4 ply) + O(M/N). )

Namely, B}, act as creation operators, up toa O(M/N) error.
This allows us to devise a simple preparation protocol,
sketched below, and estimate the number of resources
needed. We postpone a more detailed analysis of the states
(8) to future work, including a full study of the Richardson-
Gaudin eigenstates.

First, suppose that (9) holds exactly, i.e., without the term
O(M/N). Then, we create the state (8) by induction.
Assuming we have prepared |¥y,_,), we apply

N
oi0(By+B},) Wyt = Z A |¥pr—14)s (10)
k=0

where we used By |¥y_;) =0, so that the number or
excitations cannot decrease. Now, we measure the number
of excitations, using the circuit described in Result 2,
neglecting for simplicity exponentially small errors in the
circuit depth. In case we obtain k = 1 we have succeeded.
If k =0, we have not changed anything so that we can
repeat the procedure. If k > 2, then we have failed. The
probability of failing and obtaining M =1 are, respec-
tively, O(6*) and O(6?). We can iterate this procedure to
prepare |¥,,) starting from |0)®V. It is easy to show that the
preparation time scales as O(M/6%), while the success
probability is O(e=¢"), independent of N.

If we do not neglect the term O(M/N) in (9), then the
above construction introduces additional errors. While this
is not relevant for the probabilities, the state (10) contains
corrections for each M. The latter can be estimated as
follows. If we have to repeat the procedure r times (on
average), the error is rM /N for each step. Accordingly, the

total error will be € = rM?/N. Since r = 1/6%, and the
probability of not detecting M = 0,1 in any procedure
scales as pp; = rM@*, by setting pgy = 1/2 we have
e = M?/N. Thus, this allows us to create M = O(N'/3)
excitations if we take N large.

Outlook—We have introduced protocols to prepare
many-body quantum states using QCs and LOCCs. We
have shown how we can save resources by relaxing the
condition of preparing the states exactly and determinis-
tically but allowing for controlled infidelities and proba-
bilities of failure. Our results are expected to be relevant for
quantum-state preparation in present-day quantum devi-
ces, also in light of recent experiments operating QCs
assisted by feed-forward operations [26,73—75]. Our work
also raises several theoretical questions. For instance, it
would be interesting to explore the possibilities of this
approach to prepare eigenstates of more general interacting
Hamiltonians. In addition, it would be important to under-
stand how the classification of phases of matter via
quantum circuits and LOCC introduced in Ref. [16] is
modified by allowing for finite infidelities. We leave these
questions for future work.
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