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Balancing Performance and Explainability in
Academic Dropout Prediction

Andrea Zanellati

Abstract—A cademic dropout remains a significant challenge for
education systems, necessitating rigorous analysis and targeted
interventions. This study employs machine learning techniques,
specifically random forest (RF) and feature tokenizer transformer
(FTT), to predict academic attrition. Utilizing a comprehensive
dataset of over 40 000 students from an Italian university, the
research incorporates a range of variables, including demographic
information, prior educational metrics, and real-time academic
performance indicators. We present a nuanced comparative eval-
uation of the RF and FTT models, highlighting their predictive
accuracy and interpretative capabilities. Our empirical results
demonstrate the effectiveness of machine learning in managing
student attrition, with FTT models outperforming RF models in
terms of predictive accuracy and achieving a sensitivity rate of 81 %.
Significantly, the inclusion of historical academic data enhances the
models’ ability to identify students at increased risk of dropping
out. Furthermore, we apply advanced explanatory techniques, such
as shapley additive explanations, to investigate the discriminative
power of these models across different student profiles. This pro-
vides valuable insights into the key variables influencing dropout
risk, contributing to a more holistic understanding of the issue.
In addition, we conduct a fairness analysis to ensure the ethical
robustness of our predictive models, making them not only effective
but also equitable tools.

Index Terms—Academic dropout, educational data mining,
explainable artificial intelligence (XAI), informed machine learning
(ML).

I. INTRODUCTION

ROPOUT is a critical issue in the field of education, with
D significant consequences for individuals and society as
a whole. The complexity and importance of this phenomenon
have prompted research efforts since the 70s [1]. In recent years,
factors such as the increased accessibility of higher education,
the globalization of institutions, digitization, and data-driven
practices have reinvigorated the focus on addressing this issue.
In response, researchers and educators are exploring innovative
approaches, including the integration of artificial intelligence
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(AI) techniques [2] into educational decision-making processes.
Al, encompassing a wide range of techniques such as machine
learning (ML), has demonstrated remarkable effectiveness in
predictive and diagnostic tasks in a variety of domains.

The integration of Al in education offers direct improve-
ments to the education system. Al enables proactive strategies
to anticipate risks and implement interventions. By analyzing
student performance, demographics, and socioeconomic factors,
educators can tailor learning experiences and allocate resources
effectively. This data-driven approach also helps policymakers
make informed decisions about educational interventions based
on population density, accessibility, and infrastructure. In addi-
tion, Al algorithms can recommend professional development
courses by analyzing skills gaps, employee performance, and
industry trends.

Motivated by the transformative potential of Al, our research
aims to develop a robust Al-based tool to address academic
attrition. We focus specifically on the outcomes of first-year
students, using ML techniques to analyze real data from a
prestigious Italian university in an in-person learning setting. We
define dropout as a situation where a student does not re-enroll
in the same study program for the following academic year.
Therefore, the dropout target is always assessed after 12 months
of enrollment.

To ensure accurate analysis, we use state-of-the-art decision-
tree-based techniques; specifically, we establish our baseline as
random forest (RF), known for its predictive performance and
explanatory power in previous case studies of academic dropout
prediction [3]. In addition, we aim to go beyond conventional
modeling approaches by exploring the potential of deep neural
networks (DNNs). Our aim is to assess whether their imple-
mentation can improve the predictive performance by exploiting
their ability to account for nonlinear correlations. Among several
solutions, we rely on the feature tokenizer transformer (FTT)
approach, a deep architecture that combines tokenization for
tabular data representation [4] and an attention mechanism for
classification [5], trained end-to-end. Using the transformer
technique, we explore flexible strategies for handling the cat-
egorical data prevalent in our dataset to adequately represent
the findings. To the best of our knowledge, there are no other
studies in the literature applying FTT to address the prediction
of academic dropout risk. As a result, we address the following
research question (RQ).

RQI: To what extent does the use of FTT improve predictive

models of student dropout compared to state-of-the-art
techniques?
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We considered data on approximately 40 000 students.
They cover multiple information, including demographics, prior
schooling, enrollment, and first-year academic performance, to
identify patterns in students’ academic trajectories and predict
dropout risk at an early stage. To facilitate early intervention, we
include data on the academic performance of the same cohorts of
students at different time intervals, i.e., at enrollment, after three,
six, nine, and twelve months. By measuring the performance of
the model at each time interval, we aim to answer the second
RQ.

RQ2: To what extent does postenrollment academic career

information improve model performance?

Given the current model of university assessment and edu-
cation, we hypothesize that students’ academic career charac-
teristics can provide valuable insights into predicting dropout
risk. The validity of this hypothesis is tested using our set of
predictive models, trained at different stages, as a simulation
tool. We use appropriate performance metrics, including preci-
sion, recall, and F1, to test and analyze the hypothesis. While
predictive accuracy is commonly used to select data-driven
solutions, we also recognize the importance of explainability in
enhancing model trustworthiness and promoting its adoption [6],
[7]. Explainability refers to the model’s ability to provide trans-
parent justifications for predictions, enabling stakeholders to
understand the underlying factors [8]. By assessing both pre-
dictive accuracy and explainability, we ensure that outcome
prediction models provide meaningful insights for informed
decisions and interventions. To achieve reliable measures
of importance, we compare different post hoc explainability
techniques.

RQ3: To what extent do the explanations obtained from
various post hoc explanatory techniques contribute to
the reliability of the hypotheses underlying our models
and their results?

Our experiments were conducted using all available data,
including all students enrolled in any undergraduate course at
the university over three academic years, with no subsampling
or data exclusion.

The rest of this article is organized as follows. Section II
provides an overview of related approaches. In Section III,
we describe the dataset, introduce the predictive models, and
provide an overview of the explanatory techniques used. The
metrics of predictive performance are presented. Sections IV
and V present the results, comparing predictive performance,
and explanatory power under different assumptions. Section VI
discusses the results in relation to the RQs. Finally, Section VII
concludes this article.

II. RELATED WORK

The study of understanding and decreasing dropout rates
within higher education has advanced significantly, with numer-
ous investigations utilizing diverse analytical methodologies and
data sources [2], [9]. This review focuses on research in con-
ventional in-person classrooms, categorized by ML algorithms
(RQ1), the role of academic career information (RQ2), and the
impact of post hoc explainability techniques (RQ3).
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A. ML in School Dropout Prevention

The landscape of ML algorithms for academic dropout pre-
diction has evolved significantly [10], [11], [12], with a growing
emphasis on the adaptability and performance of deep archi-
tectures [13]. Early work by Anand et al. [14] used recursive
clustering to evaluate student performance in programming
courses, identifying underperforming students early. Alban and
Mauricio[ 15] introduced neural networks for university dropout
prediction, using multilayer perceptrons and radial basis func-
tion networks to achieve high accuracy rates. Nabil et al. [13]
compared various ML algorithms, finding that DNNs outper-
formed traditional methods due to their ability to capture non-
linear correlations between student characteristics.

Baranyi et al. [16] extended the utility of deep learning by
focusing on interpretability. They used DNNs and gradient-
boosted trees, achieving high prediction accuracy and providing
feature ranking through permutation importance and shapley
additive explanations (SHAP) values. Tang et al. [17] intro-
duced knowledge interaction discovery network (KIDNet), a
knowledge-aware neural network model that combines factor-
ization machine and DNN algorithms to capture both lower
order and higher order feature interactions, demonstrating its
effectiveness on a real-world dataset .

In summary, the empirical validation of deep architectures
for predicting academic dropout has enriched the state of the
art and opened avenues for future research. Our work aligns
with this trend by adopting the FTT model [4], exploring the
potential of attention-based neural networks for tabular data in
the context of academic dropout prediction. This research aims
to leverage these architectures to develop more effective and
nuanced models to mitigate dropout rates.

B. Data Sources and Features for Predicting Academic Risk

We review the types of data sources and features used in
existing literature to predict academic risk, focusing on aca-
demic history information. Dekker et al. [18] used structured
data, such as student grades and attendance records, to predict
dropout in electrical engineering programs, achieving 75% to
80% accuracy with decision trees. Kiss et al. [19] incorporated
both structured and unstructured data, including preenrollment
achievement measures and first-semester performance indica-
tors, using artificial neural networks and boosting algorithms to
highlight the incremental predictive validity of early university
performance indicators.

Jayaraman [20] used unstructured data from counselor
notes, employing natural language processing techniques to
extract sentiments and using them as features in an RF
model, achieving 73% accuracy in predicting student dropout.
Del Bonifro et al. [10] presented a prediction tool that uses ML
techniques to assess the risk of first-year undergraduate students,
incorporating a range of variables from personal data to profi-
ciency credits. This study serves as a foundational reference,
particularly in its methodological approach to using preenroll-
ment and first-year academic data for predictive modeling.

Alwarthan et al. [21] conducted a systematic review of
data mining techniques used to predict student academic
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performance, identifying RF and ensemble models as the most
accurate but noting a lack of consensus on the impact of admis-
sions requirements on student performance. Alam [22] intro-
duced a multimodal neural fusion network combining structured
and unstructured data to predict various student retention risks,
reporting promising performance and investigating the fairness
of the model.

Our research aligns with the existing literature on using struc-
tured data for predictive modeling, capturing the temporal as-
pects of academic performance through a time-series approach.
Our dataset comprises over 40 000 student careers, spanning
three academic cohorts and including 110 different degree pro-
grams, enhancing the predictive power and generalizability of
our models across different academic contexts.

C. Model Interpretability and Explainability in Education

The importance of interpretability and explainability in ML
models is particularly pronounced in educational data mining,
where the implications extend to human futures and career
trajectories. Cohausz [23] emphasized the need for a nuanced,
multistage approach to interpretability, advocating a fusion of
Al and social science methodologies, and extending local inter-
pretable model-agnostic explanations (LIME) [24] for deeper
interpretation.

Cannistra et al. [25] highlighted the pivotal role of feature
relevance in early dropout prediction, using an information-
driven modeling strategy and considering the specific programs
in which students were enrolled. Nagy and Molontay [26] used
a range of explainable AI (XAI) tools, such as permutation
importance, partial dependence plots, LIME, and SHAP scores,
demonstrating their utility in elucidating both global and local
aspects of dropout prediction models. Delen et al. [27] pre-
sented a hybrid ML framework designed to provide actionable
insights for individualized interventions, cautioning against the
indiscriminate application of group-level insights for individual
decision making.

In line with these contributions, our research highlights the
criticality of model interpretability and explainability. As de-
tailed in Section III-D, our methodology incorporates both
global and local perspectives on explainability, emphasizing re-
liability and validity, underpinned by our comprehensive dataset
and rigorous evaluation metrics.

III. MATERIALS AND METHODS
A. Dataset Description

The dataset used for this work was extracted from a collec-
tion of real data from one of the largest Italian universities.
Specifically, we have considered pseudonymous data describing
44 875 students enrolled in 110 courses in the academic years
2018-2019, 2019-2020, and 2020-2021. The dataset is col-
lected by the university, thanks to the informed consent provided
by students at the time of enrollment. This allows the data to be
used in pseudonymized form for research activities aimed at
improving the teaching offer and academic services. However,
the pseudonymization of the dataset ensures that students cannot
be identified, thereby meeting the ethical requirements of the
research.
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TABLE I
AVAILABLE FEATURES FOR EACH STUDENT IN THE ORIGINAL DATASET, ALONG
WITH THE POSSIBLE VALUES RANGE

Uld Features Type Range

AE Age of enrollment Numeric >0

SG Student gender Nominal 1,2

GOma  Geographical origin (macro) Nominal ~ 1-6

GOmi  Geographical origin (micro) Nominal  1-76
EFSI  EFSI Nominal  1-8

HST High school type Nominal  1-10

HSM High school (final) mark Numeric ~ 60-100

CD First/Single cycle degree Nominal 1,

AS Academic school ID Nominal  1-11

DN Degree name Nominal  1-97

PT Place of teaching Nominal ~ 1-9

ALR Additional learning Reqs. Nominal 1,2,3
WMA Weighted marks average Numeric 0 or 18-30
NH Number of honors Numeric >0

ECTS  Number of credits Numeric ~ 0-60

DO Dropout Nominal  True or False

The first column uniquely identifies the corresponding feature.

Our analysis focuses on the first year. Statistical evidence from
the source data suggests a concentration of dropouts in the first
year of the course, with the phenomenon gradually decreasing in
subsequent years. For the 2018 cohort of students, the only one
for which we have data three years after enrollment, the dropout
rate after one year is 14.8% of the total number of enrolled
students, while those who leave by the third year is 23.4%. This
means that 63.2% of the registered dropouts occurred in the first
year, confirming the importance of acting within the first year
to prevent dropouts.

Table I provides a comprehensive overview of the features
of the dataset. The table is divided into four columns: the first
column serves as a unique identifier for each feature, which will
be referenced later in Section V; the second column names the
feature; the third column specifies its type (either nominal or
numeric); and the fourth column outlines the possible values or
ranges.

The features are categorized into four distinct groups.

1) Personal data includes characteristics such as gender,
age, and geographical origin, as well as the equivalent
economic situation indicator (EESI), which measures the
economic status of the family at the time of enrollment.
a) Age of enrollment: This numeric feature indicates the

age of students at the time of their enrollment. It can
offer insights into the relationship between age and
academic performance or dropout rates.

b) Student gender: This feature captures the gender
classes given as binary (male or female) encoding. This
is used as a basis for stratified analyses to assess model
fairness across gender categories.

¢) Geographical origin: This feature is further divided
into macro- and microcategorizations. The macrocate-
gorization identifies six modalities, distinguishing be-
tween four macroareas in Italy, foreign students, and
instances where the information is not available. The
microcategorization offers 76 possible values, corre-
sponding to either the Italian region or the country of
origin for foreign students.
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d) EESI: The EESI feature is optional upon enrollment
and is segmented into eight distinct financial bands.
These bands are designed to encapsulate the economic
status of both the students and their families. The bands
are ordinal in nature, ranging from the lowest, which
signifies the most financially disadvantaged situations,
to the highest, indicative of more financially favorable
conditions.

2) Educational background relates to the educational back-
ground attained at the upper secondary level. Specifically,
this group includes the following two key characteristics.
a) High school type: This nominal characteristic delin-

eates ten different types of high schools from which
students graduated. It is used to capture the diversity
of educational backgrounds and to potentially eluci-
date any correlations between the type of high school
attended and academic performance or dropout rates
in higher education.

b) High school final mark: This numerical characteristic
represents the final mark obtained by students at the
end of their high school education. It is intended to
provide an initial quantitative measure of academic
competence that may be indicative of subsequent per-
formance in higher education.

3) Academic program set relates to the characteristics of
the program in which the student is enrolled. This group
comprises several attributes.

a) First/single cycle degree: This ordinal characteristic
categorizes the length of the program. A value of “1”
represents first cycle degrees, which typically last three
years, while “2” corresponds to single cycle degrees,
which last five or six years.

b) Academic school ID: This nominal feature identi-
fies the academic school selected by the student.
The dataset currently includes 11 different academic
schools, each potentially offering a unique set of degree
programs.

¢) Degree name: This characteristic serves as a unique
identifier for the specific program chosen by the stu-
dent, allowing for granular analysis of academic path-
ways.

d) Place of teaching: This nominal characteristic indi-
cates the geographical location of the program’s head-
quarters, with nine different cities represented in the
dataset.

e) Additional learning requirements (ALR): This ordinal
feature accounts for the possibility of mandatory
additional coursework during the first academic year.
Certain programs require an admission test, and failure
to pass this test necessitates additional coursework
and subsequent examinations. The ALR characteristic
is coded as follows: “1” indicates programs without
ALR; “2” indicates that the ALR exam was passed;
and “3” indicates that the required ALR exam was not
passed.

4) Academic performance setrelates to measures that capture
students’ academic progress after enrollment. This group
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is informed by the following three main variables, each

available at different time intervals.

a) Weighted marks average (WMA ): This numerical char-
acteristic represents the average examination mark,
weighted by the corresponding European credit trans-
fer and accumulation system (ECTS) credits for each
examination. In the context of the Italian academic
evaluation system, exam marks range between 18
and 30. Consequently, the weighted average also falls
within this interval. If a student has not passed any
exams, this average is set to 0.

b) Number of honors: This numerical characteristic quan-
tifies the cases where an exam was passed with honors.
Note that although honors are recorded, they do not
affect the weighted average of exam grades.

¢) Number of credits: This numerical characteristic indi-
cates the total number of ECTS credits earned by the
student. The maximum number of ECTS credits that
can be accumulated in a single academic year is 60.

The target variable for our predictive models is the “dropout”
characteristic, represented as a Boolean variable with values of 0
and 1, encoding False and True, respectively. Specifically, a
value of Ois assigned to students who exhibit canonical academic
outcomes, characterized by the continuation of their studies and
the successful acquisition of course credits. Conversely, a value
of 1 encapsulates three distinct noncanonical outcomes, each
of which indicates a form of academic withdrawal. The first
category includes students who formally abandoned their studies
without transferring to other Italian programs. The second cate-
gory includes students who have transferred to other programs
within the same academic institution. The third category consists
of students who left their current program to enroll in another
university.

It is appropriate to categorize these three noncanonical out-
comes as forms of dropout, as they all represent a deviation
from the student’s original academic trajectory. The differences
between them lie solely in the subsequent choices that students
make after dropping out. Moreover, these noncanonical out-
comes collectively constitute a minority in the dataset, account-
ing for 23.4%.

In order to facilitate a nuanced analysis of students’ aca-
demic progress, we have divided the data into five different
time intervals, each of which captures a different phase of
the first academic year. These intervals are defined at 0, 3, 6,
9, and 12 months after enrollment. Importantly, each student
is represented in each of these intervals; no data points were
excluded at any time. This approach resulted in five different
versions of the dataset for each cohort of students. The versions
are distinguished by the values of the fourth set of characteristics,
which are updated to reflect the academic metrics at each time
interval. This methodology allows us to strike a balance between
making early predictions and capturing the evolving academic
trajectories of students.

B. Predictive Models Explained

In our study, we employ two cutting-edge ML algorithms,
each with distinct characteristics and advantages: RF and FTT.
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These algorithms are chosen for their ability to handle complex,
high-dimensional data, comprising various temporal snapshots
reflecting students’ academic progression.

RF [28] is an ensemble learning method renowned for its
robustness and accuracy. At its core, RF creates a “forest” of
decision trees, each trained on a random subset of the dataset.
This technique, known as bootstrap aggregation or bagging,
enhances the model’s generalizability, effectively reducing the
risk of overfitting. Overfitting occurs when a model learns the
training data too well, including its noise, which can negatively
impact its performance on unseen data. By aggregating pre-
dictions from multiple trees, RF produces a more stable and
accurate prediction. To optimize our RF model, we employed a
technique called grid search to meticulously adjust the model’s
parameters, ensuring the best possible performance. Model effi-
cacy was gauged using fivefold cross validation, a process where
the dataset is partitioned into five parts, allowing the model
to be trained and tested across multiple scenarios to ensure
reliability. Our evaluation metrics include balanced accuracy,
which adjusts for any imbalance in the dataset’s classes, and
sensitivity, indicating the model’s ability to correctly identify
positive instances.

The FTT model [4] represents a novel application of neural
network architecture in analyzing tabular data. Drawing inspi-
ration from the transformer model [5], which has revolutionized
natural language processing, the FTT employs an attention
mechanism. This mechanism enables the model to focus on
the most informative features of the data, adapting dynamically
to the importance of different inputs. The “feature tokenizer”
component of FTT transforms the input data into tokens, akin to
words in a sentence, allowing the transformer to process them
effectively. This architecture is particularly adept at uncovering
intricate patterns and relationships within the data, potentially
offering superior predictive performance compared to more
traditional methods.

To put the performance of our chosen models into perspective,
we also implemented a basic model that simply predicts the
most frequent class for all instances. This naive baseline serves
as a point of reference to evaluate the added value of the more
sophisticated RF and FTT models, especially in the context of
our dataset’s class imbalance.

C. Dataset Preprocessing

The dataset contains both numerical and categorical char-
acteristics. Numerical features, such as age at enrollment and
final school grade, are processed as floating point numbers. The
target variable for classification, called the “dropout” feature, is
Boolean, as explained in the previous subsection.

Categorical features require different preprocessing tech-
niques to adapt to the specificities of RF and FTT algorithms.
For RF, one-hot encoding is used to fit the training set. Unknown
categories are handled by a zero vector representation.

In contrast, the FTT models use label encoding, which assigns
unique numerical labels to each category within a feature. This
method is advantageous for algorithms that benefit from ordinal
relationships between categories. Similar to RF, FTT models
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are trained on the training set, and the same encoding scheme is
used for validation and testing. Unknown categories are coded
as zero.

The dataset exhibits class imbalance, with dropout instances
representing only 15.4% of the total. Such imbalance can neg-
atively affect the performance of binary classification mod-
els [29].

For RF models, the imbalance is mitigated by class-weighted
options. The weights are calculated based on the bootstrap
sample for each decision tree and are inversely proportional to
the class frequencies. These weights influence both the entropy
criterion for splits and the “weighted majority vote” of the
terminal nodes [30].

In the case of FTT, random weighted batch sampling is used
to counteract the imbalance. This technique adjusts the selection
probabilities based on class frequencies, thereby improving
the representation of the minority class during training. This
eliminates the need for data replication and mitigates the effects
of class imbalance.

D. XAI Techniques

One of the main contributions of this work is the imple-
mentation of explainability techniques to understand the pre-
dictions made by RF and FTT models. We focus on computing
feature importance, determining how each feature contributes
to the predictions. We applied our explainability strategies to
the top-performing model in each family: grouped permutation
importance (GPI) for RF [31], attention map (AM) for FTT [4],
[32], and SHAP [33] for both.

RF models are valued for their interpretability. We used
GPI [34], an adaptation of permutation feature importance
(PFI) [35], which addresses the consistency issue of one-hot
encoded features by treating them as a single block during shuf-
fling. GPI also incorporates feature weighting within each group
to account for varying feature importance. This model-agnostic,
post hoc technique can be applied universally to explain trained
black-box models [8].

For FTT models, we used the AM to compute feature im-
portance. This model-specific technique relies on the attention
mechanism in transformers, averaging the attention weights for
each token in the sample to determine feature importance.

In addition to GPI and AM, we employed SHAP [36], in-
spired by Shapley values from the cooperative game theory,
to provide local explanations for individual predictions. SHAP
quantifies the influence of each feature on a model’s prediction,
offering nuanced insights into feature contributions for each
instance.

GPI and AM offer global explanations, identifying which
features drive overall model performance. GPI measures feature
importance by the decrease in the model’s sensitivity, while
AM uses attention weights to estimate feature usage by the
model. SHAP provides local explanations, detailing the impact
of features on individual predictions.

We used GPI and AM to derive global explanations from the
test set for RF and FTT models, respectively, and compared the
features identified by both techniques. SHAP was used for local
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explanations on three selected students (early dropout, transfer,
nondropout) and for a global perspective using a beeswarm plot,
summarizing how top features impact the model’s output.

Due to the high computational cost of SHAP, we applied ap-
proximation strategies. Kernel SHAP [36] was used for general
models, while Tree SHAP [33], optimized for decision trees,
was applied to RF models. This allowed us to include all test
instances in the RF beeswarm plot and limit FTT samples to
200 randomly selected instances.

E. Performance Metrics

To evaluate our prediction models, we employ several com-
mon performance metrics for binary classifiers: accuracy, sensi-
tivity (recall), Sspecificity, and weighted F1 score. These metrics
provide a comprehensive assessment, especially crucial in our
imbalanced dataset.

Accuracy quantifies the proportion of correct predictions
across both classes relative to the entire dataset. While useful, its
reliability can be compromised in the presence of class imbal-
ance, where the model may favor the majority class. Therefore,
we use additional metrics to provide a more nuanced evaluation.

Sensitivity (or Recall) measures the model’s ability to cor-
rectly identify students at high risk of dropping out. This metric
is crucial because the high-risk group, although a minority, is of
significant interest to educational stakeholders. High sensitivity
ensures effective identification of students who need targeted
interventions.

Specificity assesses the model’s performance in correctly iden-
tifying students at low risk of dropping out. It complements sen-
sitivity by indicating how well the model avoids false positives.

Weighted F1 score balances sensitivity (recall) and precision
(positive predictive value), providing a harmonic mean of these
two metrics. This measure is particularly useful in imbalanced
datasets as it accounts for both false positives and false negatives,
giving acomprehensive view of the model’s performance. A high
F1 score indicates that the model is both accurate and sensitive,
effectively identifying students across risk categories.

F. Model Training and Validation

The dataset was split into training, validation, and test sets.
We used data from the academic years 2018-2019 and 2019—
2020 for training and validation, while data from 2020-2021 was
reserved for testing. The splitratio for the training and validation
sets was 70:30.

For training the RF models, we performed grid search cross
validation to identify the optimal hyperparameters, including the
number of trees, maximum depth, and minimum samples per
leaf. The models were trained using fivefold cross validation
to ensure robustness and generalizability, i.e., the dataset was
divided into five subsets, the model was trained on four subsets
and validated on the remaining one.

The FTT models were trained using the Adam optimizer
with a learning rate schedule that decayed the learning rate
based on the validation loss. We used early stopping to prevent
overfitting, monitoring the validation loss and halting training
when no improvement was observed for a set number of epochs.
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Random weighted batch sampling was employed to handle class
imbalance during training.

To ensure the reproducibility of our results, we set random
seeds for all random processes involved in data splitting, model
training, and evaluation. All experiments were conducted using
Python with libraries such as scikit-learn for the RF models and
PyTorch for the FTT models.

G. Fairness Analysis

In addition to evaluating predictive performance, our study
places a strong emphasis on the ethical integrity of the predictive
models, particularly in terms of fairness [37]. Fairness analysis
was conducted to identify and mitigate potential biases that may
differentially impact specific demographic groups.

We focused on several protected attributes, including gender,
geographical origin (categorized into macro regions), and eco-
nomic status as indicated by the EESI. These attributes were cho-
sen due to their relevance in reflecting the diverse backgrounds of
the student population and their potential influence on academic
outcomes.

For each protected attribute, we performed stratified analyses
to evaluate the performance metrics across different subgroups.
The metrics analyzed included accuracy, precision, sensitivity,
specificity, false positive rates, and false negative rates. This
analysis was aimed at detecting any disparities in model perfor-
mance that could indicate bias.

To quantify fairness, we utilized several fairness metrics
following recent pivotal research [37], [38] as follows.

1) Demographic parity: Ensures that the prediction rate is

similar across different demographic groups.

2) Equalized odds: Requires that the true positive rate and
false positive rate are similar across different demographic
groups.

3) Predictive parity: Ensures that the precision is similar
across different demographic groups.

Confidence intervals at the 95% level were determined us-
ing bootstrap resampling techniques. These intervals provide a
measure of the variability in our fairness metrics and help in
assessing the statistical significance of any observed disparities.

In the stratified analysis, we used the following steps:

1) define groups based on the protected attributes (e.g., male
versus female for gender);

2) calculates the performance and fairness metrics for each
group;

3) compare the metrics across groups to identify disparities
and analyze the potential causes of any detected bias.

IV. PREDICTIVE PERFORMANCE RESULTS

In this section, we present the performance metrics, including
accuracy and sensitivity, for both the RF and FTT models
at different time intervals after enrollment, as described in
Section III. These metrics are evaluated on the test set. The FTT
models generally demonstrate superior accuracy compared to
their RF counterparts, except when assessed six-months posten-
rollment. Conversely, the RF models show improved sensitivity
capabilities under certain conditions.
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TABLE I
SUMMARY OF ACCURACY AND SENSITIVITY ON TEST SET
Accuracy Sensitivity
Time step RF FTT RF  FIT
October enrolment (TO) 0.72 0.78 048 0.44
End of January (T1) 0.75 0.78 0.65 0.1
End of April (T2) 084 083 059 0.65
End of July (T3) 085 08 075 0.74
End of October (T4) 085 087 080 0.81
0.9 /\\
08 // /—/
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o
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Fig. 1. RF model performance over time. Variation in accuracy, sensitivity,

specificity, and weighted F1-score at different intervals from October enrollment.
Actual weighted F1 score values are provided.
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Fig. 2. FTT model performance over time. Fluctuations in accuracy, sen-
sitivity, specificity, and weighted Fl-score at specific intervals from October
enrollment. Actual weighted F1 score values are included.

As shown in Table II, the best-performing model overall is the
FTT variant trained on data available 12 months after enrollment,
achieving an accuracy of 0.87 and a sensitivity of 0.81.

For comparative analysis, we also introduce a naive baseline
classifier that predicts the majority class label from the training
set across all test instances. This classifier achieves an accuracy
of 0.84 and a sensitivity of 0.25 over all time intervals consid-
ered.

Figs. 1 and 2 illustrate the time trends in the perfor-
mance metrics for the RF and FTT models. The weighted F1
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score, identified as the most equitable metric in Section II-
I-E, also shows a general improvement over time. This sug-
gests that the quarterly updates of student career informa-
tion contribute significantly to the predictive power of the
models.

For RF models, the most notable improvement in performance
occurs between the zero- and six-month intervals, with a slight
decrease in sensitivity thereafter. We briefly discuss the behavior
of sensitivity trend in Section V. For the FTT models, the metrics
show a more consistent upward trend, reaching satisfactory
levels even at the time of enrollment.

The performance of the naive classifier serves as a baseline
to help interpret the effectiveness of the RF and FTT models,
particularly in scenarios with unbalanced datasets.

A. Fairness Analysis Results

In Fig. 3, we present a comprehensive comparison
of the fairness analysis of the best model in terms of
predictive performance. The figure consists of 15 box plots,
systematically arranged in a grid. Each row in this grid is
dedicated to the analysis of a particular feature, while each
column corresponds to one of the selected evaluation metrics—
namely accuracy, recall, precision, false positive rate, and false
negative rate—all evaluated at a decision threshold of 0.5. This
visual representation serves as a robust tool for examining the
performance of the model across different subgroups, thereby
facilitating a nuanced understanding of its fairness attributes.

We performed the fairness analysis by segmenting the dataset
based on specific demographic and academic features. The
segmentation allowed us to evaluate how the model performs
across various subgroups, ensuring that no particular group is
disproportionately advantaged or disadvantaged. The fairness
analysis ensures that our predictive models not only achieve
high accuracy but also uphold ethical standards essential in
educational settings.

V. EXPLAINABILITY RESULTS

In this section, we outline the results of our explainability
analysis, first adopting a global XAI framework similar to
the methodology presented in [35], and then, extending our
investigation through the application of localized techniques.
Among the RF-based models, we choose two versions: the
model trained with data six months after enrollment (referred
to as T2-RF model hereinafter) and the one trained with data
12 months after enrollment (T4-RF model). The first analysis
aims to get insights into why the model registered a pitfall in
the sensitivity performance to the advantage of specificity (see
Fig. 1). The second model has been chosen because it has the
highest results according to all the performance metrics. For
FTT, we considered the 12-months model (T4-FTT model),
which is our best model according to the results presented in
Section IV.

Our explainability results are organized as follows. In
Section V-A, we present the global explainability perspective
with the techniques chosen for each model, i.e., GPI and AM for
RF and FTT, respectively. In Section V-B, we present the results
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Fig. 3.

Quantitative analysis of fairness across multiple features and metrics. The boxplot matrix is organized into three rows (student gender, geographical

origin, and economic class) and five columns (accuracy, recall, precision, false positive rate, and false negative rate), all evaluated at a decision threshold of 0.5.
This layout provides a comprehensive view of model fairness across different subgroups and evaluation criteria.

TABLE III
GPI RESULTS FOR RF COMPUTED AS MEAN DECREASE OF SENSITIVITY

T2-RF

0.248 (0.007)
0.036 (0.003)
0.025 (0.003)
0.019 (0.002)
0.001 (< 0.001)

T4-RF

0.001 (< 0.001)
0.493 (0.005)
0.005 (0.002)
0.005 (0.001)
0.005 (0.003)

Feature

Weighted mark average
Number of ECTS
Additional learning reqs.
Academic School

Age of enrollment

obtained with SHAP when used in its local explainability mode.
We present its application to students in different conditions of
continuation of studies as an example of the kind of insights that
can be derived locally with SHAP. Finally, in Section V-C, we
present beeswarm plots for a global perspective through SHAP
values, both for RF and FTT.

A. Global Feature Importance

The use of GPI in the RF model facilitates the identification of
salient features that contribute to the generation of predictions
for each trained instantiation of the model. In this study, a feature
is considered significant if its importance measure is greater than
or equal to 0.01. This corresponds to a minimum 1% decrease
in sensitivity due to random shuffling of that particular feature.
Conversely, a feature is considered negligible if its importance
measure falls below the 0.01 threshold. We performed 100
random shuffles for each feature to calculate the PFI. The mean
and standard deviation of the most salient features for the T2-RF
and T4-RF models are shown in Table III.

In the T2-RF model, the most salient feature is the weighted
mean grade, denoted by meanyya = 0.248, followed by the

number of ECTS credits earned within six months of enrollment,
denoted by meangcts = 0.036; i.e., they contribute to a decrease
in sensitivity of 25% and 4%, respectively. The threshold of 1%
is also exceeded by the allocation of ALR, which are determined
on the basis of admission tests, and by the categorization of the
academic school.

For the T4-RF model, we visualized an equivalent number
of features as identified for the T2-RF model. However, only
the number of ECTS credits earned 12 months after enrollment
exceeds the 1% threshold criterion. Specifically, this feature
shows an average decrease of 50% in the sensitivity metric,
and thus, emerges as the most important variable for identifying
dropout risk. For the remaining features, the perturbation in
sensitivity due to randomized reshuffling is insignificant, falling
below the 1% threshold criterion.

The key difference between the two models is the impact of
WMA and ECTS on sensitivity. As ECTS range increases along
the academic year and WMA range remains stable, ECTS’s
importance grows relative to WMA. The results (see Fig. 1)
indicate that reliable ECTS information, available by the end
of the first enrollment year, is crucial for model robustness
compared to WMA. Indeed, where WMA matters the most,
according to GPI analysis, there is a pitfall in sensitivity.

For the FTT model, we applied an AM-based feature impor-
tance analysis to the T4-FTT model. In Fig. 4, the average weight
assigned to each feature in the AM is shown. It is noteworthy
that no single feature has a significantly higher average weight
than the others. The average weights for all features are in the
range [0.0494, 0.0626]. Nevertheless, it is worth noting that the
top five features, in descending order of importance, are the
geographical region of origin, the place of teaching, the number
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Fig. 4.  AM-based feature importance for T4-FTT model. Each bar shows
the average attention weight for a feature in the training dataset, colored by
information type as introduced in Section III.

of awards obtained, the number of ECTS credits obtained, and
information on ALR.

The two global explainability techniques applied to their re-
spective models (T4-RF and T4-FTT) provide different insights.
ECTS is by far the preeminent feature for T4-RF with GPI;
on the other hand, it ranks fourth for T4-FTT with AM feature
importance in a context where no feature stands out more than the
others. However, the relevance of features related to the student’s
current academic career is consistent across both models. While
the global feature importance procedure offers a preliminary
understanding of feature importance, it is worth noting that the
results may not fully capture the explainability power of the
models. The limitations of this kind of analysis suggest that more
sophisticated techniques, such as SHAP, could be employed to
provide a more comprehensive and interpretable understanding
of the models’ decision-making processes.

B. SHAP for Local Explanations

The SHAP explainability technique has been applied to both
RF and FTT models. We chose SHAP because it is an agnostic
state-of-the-art explainability technique. Thus, we considered
the best models both for RF and FTT, i.e., T4-RF and T4-FTT
models, and we present and compare their explainability out-
comes. First, we aim to introduce the results of local explain-
ability gained from the models on some selected students, taken
as examples. Figs. 5 and 6 display how the selected models
came to the prediction correctly for three selected students, i.e.,
the predicted risk for the presented cases agrees with their actual
value. Fig. 5 refers to the RF model, and Fig. 6 refers to the FTT
one. In each figure, we selected a student who early interrupts
the academic career, a student who transfers to another degree
program, and a student for whom dropout does not occur.

As for local explainability with the RF model, the number of
ECTS is the one with the highest SHAP value (longest bar in
the plot) both for the student who early interrupts the academic
career (case a in Fig. 5) and for the one for whom dropout did
not occur (case c). The bar color and its orientation tell how
this feature contributes to the predicted risk: for student a, pink
and left-right oriented ECTS bar, not having accrued credits in
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12 months raises the risk of dropout; for student ¢, blue and
right-left oriented ECTS bar, having acquired 42 ECTS (out of
60 total) contributes to the prediction of a low risk of dropout.
The same feature acts misleadingly for student b. In this case,
ECTS is the second main feature according to its SHAP value.
The attainment of 40 out of 60 ECTS credits is considered to
be satisfactory as per the model. Typically, 60 ECTS credits
represent the maximum amount of credits that a student can earn
during the first year of enrollment. Thus, it is used to downgrade
the dropout risk prediction, although the actual target class for
the student is positive to dropout. The most relevant feature for
high-risk dropout for the student b is the academic school, whose
actual value is pharmacy and biotechnology. Statistics confirm
that this academic school is affected by the highest number
of transfers compared to other schools of the same university
(36.9% in the three-year enrollment period 20182021 against
a university average of 8.4%). This is because many first-year
students choose pharmacy and biotechnology courses as a sec-
ond study choice after being excluded from other degrees with
restricted admission procedures, e.g., medicine and surgery, or
veterinary medicine. As a final remark for the RF model, also
WMA appears as a relevant feature for the dropout predictions
for all the students (among the first five SHAP values).

As regards local explainability with the FTT model, we refer
to the examples in Fig. 6, and introduce the enabled explanations
also in comparison with our observations for the RF model.
Also for the FTT model, ECTS is the prominent feature in the
risk prediction for students a and c. The same feature is less
relevant for the student b (it appears as the seventh positive
SHAP value). We have previously noted, based on the global
analysis of feature importance using the AM method, that ECTS
stands out as one of the most significant features, despite not
being favored by the RF models. The different SHAP value of
ECTS on different samples fits with this result. Furthermore,
we want to underline that, unlike what was observed for the
corresponding case for the RF model, the number of ECTS
acquired by the student b here contributes to raising the dropout
risk, despite being an acceptable asset (40 out of 60). For student
a,together with ECTS, the features associated with higher SHAP
values are the assignment of ALR that have not been passed and
the WMA (equal to zero as no ECTS has been acquired). All
these factors contribute, as expected, to raise the risk of dropout.
The prominent feature for student b is DN, which identifies the
degree program. We found matching information for the RF
model (related to the academic school), and we have already
motivated how to interpret these results with some descriptive
statistics. For student c, ECTS is definitely the prominent feature,
followed by data on the academic school, which is engineering
and architecture.

To sum up, we find two main similarities between the local
explanations gained by the two models. First, the relevance of
ECTS for the dropout risk prediction of students @ and c. Second,
the relevance of information on the context of enrollment for
the student b, i.e., the enrollment in pharmacy. On the other
hand, we have a main difference in how the number of ECTS
(40 out of 60) is used for the dropout risk prediction of the
student . One might wonder what interpretation to give to
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Fig. 5. SHAP Local explanations for RF model trained with data twelve months after enrollment. Each line shows the main features impacting the predicted
dropout risk for a student, with bar lengths proportional to their SHAP values. Pink bars indicate features that increase dropout risk, while blue bars indicate features
that decrease it. The combined contributions determine the predicted value. (a) Student who early interrupts the academic career. (b) Students who transfers to
another degree course. (c) Student with no form of dropout.
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Fig. 6. SHAP Local explanations for FTT model trained with data twelve months after enrollment. Each line shows the main features impacting the predicted
dropout risk for a student. Refer to Fig. 5 for instructions on reading the graph, which is similar for the RF model. (a) Student who early interrupts the academic
career. (b) Students who transfers to another degree course. (c¢) Student with no form of dropout.

this difference. We hypothesize that the RF model struggles C. SHAP for Global Explanations
more in learning correlations between different features; the
feature tokenizer module for input features embedding and the
attention mechanisms of the FTT architecture provide greater
flexibility, which allows, in the case of student b, to consider in
a “contextualized” way the weight and the orientation effect of
the number of ECTS. We deepen this discussion in Section VI.

Let us move back again to a global explainability perspec-
tive, aggregating local explanations computed with SHAP in a
summary plot, namely beeswarm. Figs. 7 and 8 refer, respec-
tively, to RF and FTT models, trained with data on students’ aca-
demic careers 12 months after enrollment. In a beeswarm plot,
for each instance, i.e., a student in our case study, the provided
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SHAP global explanations for RF model trained with data 12 months after enrollment. The beeswarm plot for the T4-RF model shows features ordered
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SHAP global explanations for FTT model trained with data 12 months after enrollment. The beeswarm plot for the T4-FTT model shows features ordered

by average SHAP value for 200 randomly chosen samples. Refer to Fig. 7 for guidance on interpreting the chart.

explanation is visualized by a single dot on each feature row.
The SHAP value of the row feature for each instance determines
the horizontal position of the dots, whose distribution along each
row shows a density graph. This information may be exploited to
provide a global overview of the feature’s importance. Features
are in descending order according to their mean SHAP value.
Moreover, each dot for numerical features is colored according
to a chromatic scale to display the original value of a feature for
each instance. Thus, a blue point on the right side of the ECTS
row means that there is a student with a low number of acquired
ECTS and this has a great influence in boosting her/his risk of
dropout.

As for categorical features, both binary and nonbinary, we
consider each of them as a single factor of analysis, encom-
passing all its modes. Specifically, SHAP values are computed
for each instance by summing the SHAP values of all binary
features associated with that categorical feature. For this set of
features, no color mapping has been set to avoid implying an
order among categorical features.

The beeswarm plot for the T4-RF model points out ECTS as
the main feature; this is in line with the result retrieved with
GPL In particular, there is a high density of pink dots on the
left, thus we can infer that the model often uses the acquisition
of a high number of ECTS as an impact criterion to place the
student in the low-risk class. The weighted average mark is
another determining factor for the low-risk class, considering
the high-density area of pink dots, i.e., high weighted average
mark, on the left side. For the applicability of the model, it would
be of interest to determine the features that are most decisive
for the high-risk class, i.e., we are looking for high-density
areas in the right part of the plot. However, no such situation
is evident in any row. We may observe a slight correlation
between low age of enrollment or low weighted average mark
with high dropout risk. It is worth noting a counterintuitive result
among the explanations used by the model: the final high school
grade (HSM) when high, is often considered by the RF model
as a rationale for high dropout risk. Nevertheless, its impact
on the prediction is small according to SHAP values. Finally,
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we point out the relevance that numeric features play in the
RF model with respect to the categorical ones. The top three
consists of all numeric features, and this is even more impressive
if we consider that the dataset has only five numeric features
against ten categorical ones. Among the categorical features, the
most effective (fourth position according to mean SHAP value
ranking) is the one on the attribution of ALR.

We conduct a similar analysis also for the T4-FTT model. We
limited the beeswarm plot generation to 200 randomly chosen
samples, due to time computational cost. This represents a
limit in the SHAP global perspective on FTT but still allows
us to obtain some insights. Similarly to the case of T4-RF,
ECTS is the preeminent feature with a cluster of pink dots
on the left side of the plot. Thus, in many cases, there is a
correlation between a high achievement of ECTS and a lower
dropout risk prediction. Other relevant data are those on the
academic school of the students, their high school marks, age
of enrollment, and information on ALR. We observe a blue
cluster for the age of enrollment on the right side of the plot,
revealing that young students are more likely to drop out. Also
for the FTT model, the numerical features are relevant in de-
termining the risk prediction. However, their distribution is less
asymmetric than we observed for the RF model. In Fig. 7 for
the T4-RF model, we have four out of the first five features
that are numerical. Moreover, the numerical features are all in
the first half of the ordered features. In the T4-FTT model,
we have a more homogeneous, albeit still not symmetrical,
distribution.

VI. DISCUSSION

This section synthesizes the predictive and explanatory ev-
idence to address the RQs outlined in the introduction, incor-
porating findings from similar studies and reflecting on the
practical implications of our results.

In response to our first research question (RQ1), our empirical
study supports the effectiveness of FTT models in predicting
academic dropout risk. As detailed in Section IV, the FTT
models, particularly the T4-FTT, consistently outperform RF
models across various evaluation metrics, showing at least a
one percentage point improvement. These results align with
the trend of using deep learning algorithms for dropout predic-
tion, recognized for their adaptability and sophistication [10],
[11], [12], [13]. The balanced performance of FTT models in
sensitivity and other metrics makes them suitable for dropout
intervention strategies, consistent with findings in [14] and
[15]. Furthermore, our fairness analysis, which shows consistent
results across different characteristics within a 95% confidence
interval, complements the focus on interpretability seen in [16].

Our study expands the use of deep learning in educational
data mining, achieving high accuracy while improving model
transparency and fairness. The flexible architecture of FTT
models, including an embedding component and attention mech-
anism, allows customization to different feature sets and data
distributions, enhancing predictive fairness. This novel appli-
cation of attention-based neural networks for tabular data in
dropout prediction adds to the existing literature [4], confirming
the efficacy of FTT models for this task.
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Regarding our second research question (RQ2), our find-
ings highlight the crucial role of ECTS credits in predicting
dropout risk, supporting prior research on the importance of
academic history information [18], [19], [20]. Using structured
data, including ECTS credits, our approach accurately predicts
dropout risk, validated by our extensive dataset capturing di-
verse academic paths. The temporal sensitivity of our models to
academic career characteristics underscores the dynamic nature
of academic risk factors, with incremental improvements in
predictive performance using data from progressively distant
time points from enrollment. This aligns with Kiss et al.’s[19]
emphasis on early university performance indicators.

However, relying solely on academic characteristics such as
ECTS credits, which can change over time, has limitations.
Building on the work presented in [20] and [22], we propose
incorporating immediate behavioral features for a more com-
prehensive assessment of dropout risk. Our study verifies ECTS
credits as a reliable dropout risk indicator and underscores the
significance of analyzing academic career characteristics over
time. Combining structured data in a time-series format, our
methodology contributes to the current academic discourse,
proposing ways to incorporate other information types for more
comprehensive predictive models.

In examining research question 3 ( RQ3), we explore the ex-
plainability of predictive models within educational data mining.
Our findings align with and expand upon the current discourse
on model interpretability . The significance of ECTS credits
across different explainability techniques, such as global post
hoc interpretability (GPI) and SHAP, supports previous stud-
ies [25], [26]. The detailed explanations provided by SHAP for
the FTT model contribute to discussions about the adaptability
of models to individual student cases, a topic also explored by
Cohausz [23] and Delen et al. [27].

While both RF and FTT models focus heavily on ECTS
credits, their ability to explain outcomes differs, highlighting
the complexity of model interpretability. Our analysis showcases
the FTT model’s local explanatory power, especially regarding
ECTS features, and emphasizes its versatility in adjusting to
various feature sets and samples, allowing for a detailed under-
standing of factors contributing to dropout rates.

Our study also focuses on improving the sensitivity of the
T2-RF model by evaluating the relationship between contex-
tual information and academic career data. Incorporating ECTS
credits as a feature enhances the understandability and reliabil-
ity of predictive models, as highlighted by Delen et al. [27].
By transparently utilizing ECTS credits in our predictions, we
improve the credibility and transparency of these models, em-
phasizing the importance of fairness and adaptability in their
implementation.

VII. CONCLUSION

This study contributes to the evolving discourse on aca-
demic dropout prediction by employing two distinct ML
methodologies: RF and FTT. Our investigation, driven by the
dual aims of evaluating the comparative efficacy of FTT against
conventional ML approaches such as RF and assessing the
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impact of incorporating academic career data, demonstrates the
potential of ML to identify students at risk of dropout.

Our findings reveal that FTT models exhibit superior predic-
tive accuracy over RF models, although with increased compu-
tational demands. Notably, the inclusion of academic career data
enhances model performance, particularly in terms of sensitivity,
and enriches the FTT models’ capacity to profile students prone
to dropout. Unlike RF models, which require distinct training
for diverse outcomes, FTT models provide a more integrated
approach to understanding dropout predictors.

The implications of our research for educational stakeholders
are significant. By leveraging data-driven insights, institutions
can better tailor their retention strategies. Specifically, integrat-
ing comprehensive datasets and employing advanced models
such as FTT can provide a nuanced understanding of student be-
haviors and risk factors. This aligns with the findings of Zingaro
etal. [6], who suggest that such approaches could refine retention
strategies when combined with simulation-based analyses.

Despite these advances, our study highlights areas for further
exploration. The reliance on ECTS credits, while informative,
may obscure underlying causes of dropout. Future research
should incorporate qualitative insights, such as student moti-
vations and study habits, to provide a more holistic view of
dropout causes. In addition, the development of tailored pre-
dictive models to address the unique dropout dynamics across
different academic programs remains crucial.

Ethical considerations are paramount when utilizing predic-
tive models in education. Future research should consider evalu-
ating entire academic programs rather than individual students,
incorporating broader contextual factors such as environmental
and support mechanisms, as emphasized in [39]. By integrating
insights from educational, cognitive, and psychological research
into data-driven methodologies, we can enhance the ethical and
effective application of ML in educational contexts, leading to
a comprehensive understanding of academic dropout trends.

In summary, our study underscores the importance of in-
corporating diverse data sources and advanced ML models to
improve dropout prediction. This approach not only enhances
predictive accuracy but also ensures that interventions are in-
formed, ethical, and effective, ultimately contributing to a deeper
understanding of academic attrition and strategies to mitigate it.
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