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A B S T R A C T

Postharvest pear fruit internal browning damages were assessed non-destructively using a capacitive instru-
mental chain in the super low (SLF) – low (LF) radiofrequency region combined with Image analysis. A rapid, 
inexpensive, and non-destructive instrumental chain was set up: an LCR meter interfaced with a PC receives and 
transmits signals through a parallel plate capacitor in the frequency range from 100 Hz to 10 kHz. The capac-
itance data were used to classify the FRED® pear fruit into two classes, “with defects” and “healthy”, using the 
unsupervised fuzzy C-means clustering analysis. The main results show good classification rates: 91 % of the 
samples are correctly classified as damaged. Further samples should be implemented to understand how the 
model performs with samples from different ripening stages. Despite this, the technique appears promising for 
non-destructive internal quality assessment in pear fruit.

1. Introduction

After harvesting, pears (Pyrus communis L.) fruits are stored under a 
controlled atmosphere (CA) to delay senescence phenomena and in-
crease shelf life (Evans, 2020). The well-known postharvest storage aims 
at reducing the fruit respiration rate and metabolic processes by con-
trolling and managing CO2 and O2 partial pressures, in addition to a 
temperature reduction (Teixeira and Ferreira, 2003). Due to the sus-
ceptibility to CO2 levels, during long-term storage under a controlled 
atmosphere, internal flesh browning disorders with or without the 
development of cavities can occur (Streif et al., 2001). The process could 
be due to the increase in the internal gas concentrations above the toxic 
level for the product and first disorders can be observed starting from the 
beginning of storage and becoming more severe during this last (Franck 
et al., 2007). Browning disorder symptoms appeared to be related to the 
oxidation of phenolic compounds occurring after the breakdown of the 
cellular integrity associated with the accumulation of fermentative 
metabolites (Lwin et al., 2023). Factors such as cultivar, orchard prac-
tice, and harvest maturity can also have a role in the disorder devel-
opment (Franck et al., 2007). Since the symptoms are internal and affect 
the inner part of the cortical parenchyma, the occurrence and the 

severity of the disorder cannot be assessed through an external quality 
assessment. In addition, the damage is extremely severe leading to 
important losses.

To identify optimal postharvest storage conditions and sort fruits 
according also to internal quality, some non-destructive assessment 
techniques have been explored, in combination with machine learning 
tools, to identify and quantify internal fruit disorders during postharvest 
storage, mainly at laboratory scale. These techniques undoubtedly 
include Magnetic resonance imaging (MRI), X-ray computer tomogra-
phy (CT), spectroscopy as transmission Vis/NIR and time-resolved 
reflectance), and acoustic vibration signals (Lammertyn et al., 2003; 
Mei and Li, 2023; Nugraha et al., 2019; Zhao et al., 2021).

In MRI, changes in the chemical composition and structure influence 
the relaxation times of the protons in water and, consequently, the 
generated two-dimensional and three-dimensional MR images, under 
static magnetic fields and radio frequencies (Clark et al., 1997). The 
technique was successfully explored to detect internal browning in 
‘Blanquilla’ pears (Hernández-Sánchez et al., 2007) and the spatial 
distribution of core breakdown in “Conference” pears (Lammertyn et al., 
2003) but is characterized by a low image acquisition speed and high 
equipment costs (Colnago et al., 2014). Similarly, X-ray CT images, 
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providing three-dimensional assessments of tissue density in combina-
tion with deep learning models, are considered still challenging com-
plex, and expensive tools compared with other non-destructive 
technologies (Carmignato et al., 2017), even if interesting research 
works refer to the identification of internal browning and cavities in 
pear fruit (Tempelaere et al., 2023; Van De Looverbosch et al., 2022; 
Van De Looverbosch et al., 2020).

In the field of nondestructive evaluation of agricultural products, 
spectroscopic techniques can be considered the most diffused solutions, 
especially for their suitability for online applications and a few milli-
meters of superficial exploration. Some examples focused on internal 
inspection include Vis/NIR tools in transmission mode in the 651–1282 
nm region for the detection of brown core in “Yali” pears (Han et al., 
2006) and in the 550–1100 nm region for the moldy core classification 
in “Ya” pears (Zhang et al., 2022), and time-resolved reflectance spec-
troscopy at 690 and 720 nm for the identification of brown heart in 
“Conference” fruits based on photon adsorption and scattering events 
(Zerbini et al., 2002).

Pear internal disorders appeared, in addition, to affect the response 
of the fruit to vibroacoustic signals as testified by the recent work con-
ducted by using contact piezoelectric transducers and different types of 
domain features (time and frequency) for the discrimination between 
healthy and browning pears (Zhang et al., 2024).

A promising reliable and powerful alternative applicative solution 
could be represented by techniques based on fruit dielectric properties. 
The numerous published works focused on fruit non-destructive matu-
rity assessment, clearly evidence a relationship between the fruit’s at-
tributes (internal structure, moisture content, and chemical 
composition) and the dielectric permittivity at different ranges of fre-
quencies measured with different probes (Khaled et al., 2015; Sipahio-
glu and Barringer, 2003).

Examples refer to a coaxial probe in the regions of 200–3000 MHz 
(Cao et al., 2023) and 20 MHz/MHz-4500(− |-) MHz (Guo et al., 2015), a 
2–20 GHz waveguide where the fruit is placed inside between two 
vertical antennas (Ragni et al., 2012), a contactless 947–1900 MHz 
waveguide device (Berardinelli et al., 2021), and to a rectangular par-
allel plate capacitor in the 10 kHz–10 MHz frequency range (Soltani 
et al., 2011a). Depending on the frequencies and type of instrumental 
chain, the techniques based on the exploration of the dielectric behavior 
have been proven to be rapid, low cost, suitable for online measure-
ments, and with a good product penetration depth. These properties are 
undoubtedly interesting for the assessment of fruit internal chemical and 
physical changes due to diseases occurring during postharvest storage, 

especially in combination with simple machine learning tools.
AIM: The present research aims to explore the potentiality of a 

radiofrequency device for the non-destructive assessment of internal 
damages of a new variety of pear fruit during postharvest storage. In-
ternal flesh browning disorders were assessed in the frequency range 
from 100 Hz to 10 kHz by using a self-assembled instrumental chain 
characterized by a stainless-steel parallel plate capacitor and an LCR 
meter interfaced with a PC. The acquired capacitance values in the 
explored frequency range were used as input data for Fuzzy-C means 
clustering analysis intending to discriminate between internally defec-
tive and healthy pear fruits. t-distributed Stochastic Neighbor Embed-
ding (t-SNE) algorithm was used to manage high-dimensional data and 
project the observations into a 2D-dimensional space.

2. Material and methods

2.1. Experimental design

Observation and results of this article were obtained from pear fruit 
of FRED® variety following the experimental design shown in Fig. 1.

The harvest ended at a defined ripeness stage characterized by 
dimensional and quality indexes shown in the figure at point 1. Post- 
harvest, after the sorting procedure and methodically packing fruit 
into crates was conducted in a refrigerated chamber with controlled 
storage conditions (point 2). After about four months of storage, samples 
were transported to the laboratory for data collection, numbered in 
figure as point 3. Firstly, non-destructive measurements were conduct-
ed, particularly the capacitance acquisition. Images of pears were ac-
quired soon after the capacitive measurements, by cutting fruits. 
Following the experimental plan diagram, data analysis was the final 
step (point 4). The pear fruit images were used to calculate the number 
of pixels of the defect area and the number of pixels of the whole pear. 
The ratio between these two values was used as a defect percentage. A 
threshold of 2 % was defined for the healthy class because no defect, or 
only little browning is visible. Subsequently, capacitive measurements 
were used to classify samples by means of the Fuzzy-C means algorithm.

2.2. Plant materials and post-harvest handling

Two batches with 59 fruits of Italian FRED ® pears (Pyrus communis 
L.) were harvested from a farm located in the Romagna region (Italy) 
during the second week of September 2023 at commercial harvest.

FRED® (Origine group) variety began in early 2000 at the Agroscope 

Fig. 1. Experimental plan design.
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research station in Conthey, Switzerland, to obtain resistant genetic 
material to fire blight. The genetic cross between the Canadian variety 
“Harrow Sweet”, tasty and tolerant to the aforementioned disease, and a 
Dutch variety called “Verdi”, with high conservation potential and 
attractive red color, produced some selections, among which the one 
called CH201 is the most promising and selected for the present study. 
stood out and appeared to be among the most promising. From an 
agronomic point of view, the vegetative and productive habitus of Fred® 
does not seem to be characterized by a particular vigor, but with high 
productivity. Some uncertainty about the need to introduce pollinators 
arises from the fact that there is evidence of full production in mono-
varietal conditions. From the perspective of specialized plantings, the 
option that includes the introduction of pollinating varieties seems 
preferable. The solidity of the production also finds a valid ally in the 
high specific weight of the fruits, significantly higher than that of other 
varieties. Generally, fruits of this kind of variety with a diameter of less 
than 70 mm can easily reach a weight of 200 g. The harvest window of 
FRED® is currently included in the second ten days of September with a 
hardness that still appears to be sustained around a value of 7 kg/cm2. 
The blushing facet of the fruits, and the yellow pulp perceptible at 
harvest, becomes intense, sometimes ochre, making them particularly 
attractive.

At harvest, the following values of dimensional characteristics and 
quality indices were measured on the first sample of fruits: mass (g), 
longitudinal diameter (mm), minimum equatorial diameter (mm), 
maximum equatorial diameter (mm), Magness-Taylor flesh firmness 
(N), soluble solid content (SSC, ◦Bx), and starch index (Starch iodine 
test, Scale 1–10). In detail, Magness-Taylor flesh firmness (N) and sol-
uble solid content (◦Bx) values were obtained by using a digital pene-
trometer (FTA-Fruit Texture Analyzer, 8 mm probe) and a digital 
refractometer (PR-1, ATAGO Co. Ltd., Tokyo, Japan), respectively.

After harvest, the second sample was stored in decarbonized atmo-
sphere conditions, with 0.1 % CO2 obtained with a decarbonization air 
system (Delta Gem ® Fruit Control) (Temperature = 0.5 ◦C) until the 
middle of January 2024. Capacitive measurements were conducted after 
the considered postharvest storage. Immediately before the electric ac-
quisitions, fruit dimensional parameters in terms of mass (g), longitu-
dinal diameter (mm), minimum equatorial diameter (mm), and 
maximum equatorial diameter (mm) were evaluated. After spectral as-
sessments, Magness-Taylor flesh firmness (N) and soluble solid content 
(◦Bx) were measured, and the fruit’s internal browning was quantified 
through image analysis.

2.3. Capacitive measurements

2.3.1. Principle of detection
The material response under an applied electromagnetic field is 

described by the dielectric permittivity. The dielectric permittivity is 
composed of the real and imaginary parts, also known as the dielectric 
constant and loss factor. When an external electromagnetic field is 
applied to a material, the dielectric behaves as energy storage, while the 
loss factor is a measure of energy dissipation. The system developed 
focused on the evaluation of the capacitance, an electrical parameter. 
Capacitance is a function of the material dielectric constant, the material 
size, and the electrode distance. Accordingly, capacitance (Eq. (1) can be 
calculated as: 

C = εrε0
A
t

(1) 

C is the capacitance (F), Ɛr is the relative dielectric constant of the 
material, Ɛ0 is the dielectric constant of free space (8.85 × 10-12F/m), A 
is the area of capacitor plates (m2) and t is the distance between parallel 
plates (m).

In this way, the internal defect of the fruit can be assessed by 
measuring the difference in capacitance as a result of different dielectric, 

as a function of frequency. When a pear is placed between the plates, the 
capacitance increases with an a-dimensional factor, the relative dielec-
tric constant of the material interposed. Since capacitance is a function 
of electrode spacing, the plate distance was measured for each fruit and 
used as a correction coefficient, by dividing the capacitance with the 
distance value.

2.3.2. Instrumental chain and acquisition procedure
Electrical assessments were carried out by a self-assembled instru-

mental chain shown in Fig. 2.
The equipment consists of a parallel plate capacitor as a probe 

coupled with an LCR meter (LCR-8101G, GW-Instek, Good Will Instru-
ment Co. Ltd, Taiwan), and interfaced with a PC. The capacitor is 
composed of two identical conducting stainless steel plates covered with 
a plastic film to isolate the proximal conductivity effects. The system has 
been calibrated with internal own procedures, for capacitance mea-
surements. The parallel plates have to be put in contact with fruits with 
the mobile armature to adapt at different sample diameters. The contact 
of the pear with the plates can be considered point-like; moreover, it is 
an electrically insulated contact because the presence of a plastic film 
covering the conductive plates. For these reasons, no notable influence 
due to the contact of the pear with the electrodes is expected. On the 
contrary, measure of the plate distance was kept at each fruit to correct 
the capacitance measurements accordingly (mean distance and standard 
deviation: 65.2 ± 4.0 mm).

The probe has the following dimensions: 55.6 ± 0.1 mm (length), 1.3 
± 0.0 mm (width), 36.0 ± 0.1 mm (height), and a maximum plate dis-
tance of 83.0 mm. The capacitor was mounted on a plastic support to 
avoid movements of the cable connected to the LCR meter and avoid 
signal noise.

Measurements of capacitance were conducted at 5 ± 1◦C and carried 
out in triplicate in the radio-frequency range from 100 Hz to 10 kHz (50 
points, with a constant step of 202.041 Hz). The voltage was set to 1 V, 
and each measurement was automatically averaged 3 times.

2.3.3. Image analysis of internal browning
Immediately after capacitive acquisitions, pears were evaluated in 

terms of internal browning presence by using image analysis carried out 
using an electronic eye (visual analyzer VA400 IRIS Alpha M.O.S., 
France). The instrument is composed of a resealable chamber (420 ×
560 mm2), and a controlled with standardized light conditions: 98 CRI 
(color rendering index), D65 (light of a cloudy day at noon), 6700 ◦K 
(color temperature). The CCD camera (16 million colors) is positioned in 
the upper part of the chamber to allow high-resolution images with a 
built-in zoom calibrated and monitored completely automatically. The 
software (E-Eye software Alpha-Soft, version 14.0) is capable of 
acquiring data, analyzing images (RGB scale), and statistically pro-
cessing the results. Two fluorescent LED channels illuminate the upper, 
lower, and back parts (to prevent shadows) of the cabin sides. The in-
strument performed an automatic calibration with a certified color 
checker, and image analysis (RGB scale or CIE L*a*b*). The image 
analysis of pears was set up with upper illumination only and a resolu-
tion of 2588 × 1942 pixels. The subsequent image analysis was per-
formed by using ImageJ software (ImageJ 1.53 t, National Institutes of 
Health, USA). The images were acquired by placing 4 pears, half-cut, on 
a removable support blue colored at a 20 cm distance from the camera. 
The blue support allows the positioning of the pear in the defined grid. 
The reference grid created with blue plastic material is necessary to 
obtain a reference of standard dimensions. Varying the size of the pears, 
as long as they are positioned within the individual boxes that make up 
the grid, will not affect the calculations of the percentage of defect areas. 
As a first step, the pixels of the whole pear and the pixels of the defect 
areas were manually selected and saved as text files. The pixels of each 
portion were calculated by Excel files with cell coordinates that auto-
matically extract the four-pear position and return the number of pixels. 
The damaged observations were identified in terms of the pixels’ ratio 

E. Iaccheri et al.                                                                                                                                                                                                                                 Computers and Electronics in Agriculture 229 (2025) 109709 

3 



between the defected (browned) area and the total area. The calculated 
percentages were used to define a threshold score by visual appearance: 
that under or equal the 2 % pear does not show defects or only little 
browning is visible, while fruits with a score percentage higher than 2 
revealed visible defects. According to image analysis (Fig. 3), pears with 
defect percentages lower than 2 %, show very slight or no change of pulp 
browning. In this way, the calculated percentages were used to define 
the two classes: “with defects” (> 2 % of pixels’ ratio) and “healthy” 
(≤2% of pixels’ ratio).

2.3.4. Statistical analysis
Capacitance acquisitions were arranged in a 59 (samples) × 50 (in-

dependent variables, capacitance values in the explored frequency 
range) X matrix. Data analysis was conducted by using JASP Team 
(2024) (Version 0.18.3, Computer software).

To classify pears according to the two identified classes, “with de-
fects” (with internal defects, > 2 % of pixels’ ratio) and “healthy” 

(without internal defects, (≤2% of pixels’ ratio), the unsupervised 
Fuzzy-C means clustering algorithm was taken into consideration. As 
known and differently from K-means hard allocation, the Fuzzy-C means 
technique softly assigns observations to all clusters with varying degrees 
of membership [0,1]. The partitioning is conducted by following an 
iterative optimization of the objective function and, consequently, by 
updating the cluster membership and centers (prototypes) (Eq. (2)
(Bezdek et al., 1984; Ferraro, 2024): 

min
U,H JFkM =

∑n

i=1

∑k

g=1
um

igd
2( xj, hg

)

uig ∈ [0, 1]i = 1,⋯, ng = 1,⋯, k 

∑k

g=1
uig = 1i = 1,⋯, n (2) 

Fig. 2. Instrumental chain setup.

Fig. 3. Image analysis and damage scores pixels’ ratio between the defected area and the total area.
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where: (k × p)H is the prototype matrix with each row the prototype of 
cluster g; (n × k)U is the membership degree matrix shows the degree of 
observation i to cluster g; d2( xj, hg

)
is the square Euclidean distance 

between observation i and prototype g. Initial clustering prototypes were 
randomly determined and a maximum number of iterations (25) and a 
fuzziness parameter (2) were set up for the fixed number of clusters (2). 
The main results were expressed in terms of the percentage of correct 
classification samples and model performance (maximum and minimum 
diameter in Euclidean distance, Pearson’s γ, and model-explained vari-
ance). A two-dimensional t-SNE clustering plot (random starting values) 
was used to show the relative distances between observations and 
clusters. The t-SNE algorithm aims at embedding high-dimensional 
points by respecting similarities between them (Van Der Maaten and 
Hinton, 2008).

3. Results and discussion

3.1. Destructive assessments

Table 1 shows a descriptive summary of the characteristics of the two 
samples of 59 pears each (at harvest and after the postharvest storage) in 
terms of mean values and standard deviations of the dimensional and 
qualitative parameters.

In addition, at harvest, pear samples were also characterized by a 
mean value of the starch index of 5.3 (±1.7).

As described above, percentages of internal defects were calculated, 
according to the material and method section, starting with image 
analysis. Fig. 3 shows examples of acquired pear images according to the 
percentages of pixels’ ratio between the defective area and the total 
area.

Since characterized by percentage values of the of pixels’ ratio (be-
tween the defected area and the total area) lower than 2 %, 42 % of the 
considered fruits were identified as “healthy”. The remaining 58 % of 
pears showed the following distribution of the percentage values of the 
of pixels’ ratio: mean, 7.1 %; standard deviation, ± 7.1 %; minimum, 
2.4 %; maximum, 42.5 %. All fruits were not affected by the presence of 
internal cavities.

3.1.1. Capacitive measurements
It is known that rapid and non-destructive methods for food quality 

assessment were usually performed by using dielectric properties 
(Ryynänen, 1995). Concerning the internal quality of fruit, the radio-
frequency range was previously explored by using Magnetic Induction 
Spectroscopy (MIS) on avocados to estimate ripeness (O’Toole et al., 
2023). Accordingly, the capacitance was exploited for contactless fruit 
internal quality classification, as the penetration depth, in the very low 
frequency region explored, is suitable for whole fruit investigation. 
Capacitance in the presence of pear fruit ranges from about 10 to 18 pF. 
Averaged capacitive signals of pear fruits at 5 ◦C, after normalization on 
the parallel plate distance of each fruit, were shown in Fig. 4.

The capacitance spectra are the response of the applied field to the 
dielectric interposed, the pear, as a function of different chemical- 
physical compositions. The capacitance system is not a direct mea-
surement of the internal defect, but a fingerprint of the fruit analyzed. 
Thus, the differences in spectral data can be related to fruit disease, 
which as an example can be verified for water distribution or different 
carbohydrate constituents’ concentrations. Particularly considering 
foodstuffs with high moisture, water is the principle responsible for 

dielectric properties modification (Nelson and Trabelsi, 2008). In detail, 
the water content induces an increase of the dielectric constant, as a 
function of the polarization effect, otherwise water electric charges are 
easily polarized under an electric field. The increase in water polarized 
charges produces a greater electric filed induction, and thus a capaci-
tance raises (Venkatesh and Raghavan, 2005).

3.1.2. Clustering
Table 2 shows the main results of the Fuzzy-C means clustering al-

gorithm used to classify pears according to the two clusters, “with de-
fects” and “healthy”.

As evidenced, the Fuzzy-C means clustering algorithm was rather 
able to correctly classify pears according to the presence of internal 
defects (91 % of correct classifications). The three fruits incorrectly 
classified as “healthy” showed percentage values of pixels’ ratio (be-
tween the defected area and the total area) from 2.8 % to 3.7 %. The 
Silhouette score, a measure of clustering quality (in terms of a measure 
of compactness and separation), evidences a misclustering when close to 
“-1”, a weak structure when close to “0”, and a strong clustering when 
close to “+1” (Rawashdeh and Ralescu, 2012). The appreciable clus-
tering results can be also expressed, based on Euclidean distance, in 
terms of maximum diameter (16.5), minimum separation (0.778), and 
Pearson’s γ (0.606). This last index represents the correlation and “0–1” 
vector (0 = same cluster; 1 = different clusters) (Zhang et al., 2009).

The two-dimensional t-SNE clustering plot, used to show the relative 
distances between observations and clusters, is shown in Fig. 5.

As can be appreciated, similarities and dissimilarities between ob-
servations according to the value of the pixels’ ratio can be easily 
visualized in the two-dimensional clustering plot.

The proposed technique based on the capacitance can be exploited to 
classify pears according to internal defects, but it should be considered 
that tests were carried out at one ripening stage. During storage, the 
dielectric properties of the pear can change due to chemical and physical 

Table 1 
Mean values and standard deviations of the two independent batches of pear characteristics at harvest and after the CA postharvest storage.

Sample Mass Long. diam. Min. eq. diam. Max.eq. diam. Magness-Taylor flesh firmness Soluble solid content

Harvest 242 ±31 g 102 ±10 mm 68 ±4 mm 69 ±4 mm 68.9 ±6.8 N 15.7 ±1.4 ◦Bx
Postharvest storage 258 ±34 g 102 ±10 mm 70 ±4 mm 71 ±4 mm 51.2 ±5.4 N 18.0 ±1.3 ◦Bx

Fig. 4. The capacitance spectra (divided by plate distance) of pear fruit in the 
radiofrequency range are classified according to two classes: “healthy” and 
“with defects”.
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modification also consider the ripening stage (García et al., 2004; Guo 
et al., 2011; Seo and Song, 2023; Soltani et al., 2011b). This can be a 
limitation of this study, even if the reliability could be implemented with 
additional samples at different ripening, to develop several models 
taking into consideration this important parameter. Another possible 
limitation could regard the possible presence of different kinds of in-
ternal defects. For example, internal cavities can occur in this variety 
and produce a dielectric behavior that the developed model does not 
take into account. The influence on the capacitance signal due to several 
ripening stages and the presence of internal cavities should considered 
in future works.

4. Conclusion

A parallel plate capacitor instrumental chain was exploited to predict 
internal browning in a new variety of pear fruit. The possibility of 
classifying the observations into two classes, “whit defect” and “healthy” 
fruit was explored with fuzzy C-means clustering analysis starting from 
capacitance spectral information. A global (“with defects” and 
“healthy”) classification capacity of 89.5 % of samples was observed. 
The system proposed is rapid, cheap, and contactless allowing non- 
destructive measurements with possible future development of online 
and at-line applications in the postharvest facilities. Furthermore, it is 
promising to detect internal browning defects occurring during post-
harvest storage of pears. Future perspectives should regard the increase 
of the sample number and the exploration of a wide range of ripening 
stages to increase the robustness of the classification herein performed 
and the knowledge about the influence on the dielectric properties of 
other different internal damages.
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