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Abstract: The Internet of Things (IoT) is gaining increasing attention in healthcare due to its potential
to enable continuous monitoring of patients, both at home and in controlled medical environments. In
this paper, we explore the integration of IoT with human-robotics in the context of motor rehabilitation
for groups of patients performing moderate physical routines, focused on balance, stretching, and
posture. Specifically, we propose the I-TROPHYTS framework, which introduces a step-change
in motor rehabilitation by advancing towards more sustainable medical services and personalized
diagnostics. Our framework leverages wearable sensors to monitor patients’ vital signs and edge
computing to detect and estimate motor routines. In addition, it incorporates a humanoid robot that
mimics the actions of a physiotherapist, adapting motor routines in real-time based on the patient’s
condition. All data from physiotherapy sessions are modeled using an ontology, enabling automatic
reasoning and planning of robot actions. In this paper, we present the architecture of the proposed
framework, which spans four layers, and discuss its enabling components. Furthermore, we detail
the current deployment of the IoT system for patient monitoring and automatic identification of
motor routines via Machine Learning techniques. Our experimental results, collected from a group
of volunteers performing balance and stretching exercises, demonstrate that we can achieve nearly
100% accuracy in distinguishing between shoulder abduction and shoulder flexion, using Inertial
Measurement Unit data from wearable IoT devices placed on the wrist and elbow of the test subjects.

Keywords: motor rehabilitation; internet of things; humanoid robotics; ontology; human activity
recognition; machine learning

1. Introduction

Recent statistics on demographic trends in Europe show a clear increase in the median
age, with a significant growth in the number and proportion of elderly people. Between
2019 and 2050, the EU population aged 75–84 is estimated to be 27%, reaching 129.8 million
by 2050 [1]. This demographic shift is associated with a rise in high metabolic risk factors
among Europeans, such as obesity, type-2 diabetes and cardiovascular diseases, all of which
require healthcare support from public institutions. This support often includes moderate
physical activities, focusing on balance, stretching, and posture, under the guidance of
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medical professionals [2,3]. In parallel, the COVID-19 pandemic has underlined the need
to reduce pressure on healthcare workers and highlighted the importance of building
sustainable healthcare systems that can leverage emerging information technologies (IT) [4].

Researchers have identified that monitoring vital signs, such as heart rate and oxygen
saturation, is essential for timely intervention and prevention [5]. Through continuous
monitoring, Internet of Things (IoT) systems can deliver real-time feedback to healthcare
providers and reduce the need for frequent in-person visits [6–8]. Of the few works that
simultaneously collect Inertial Measurement Unit (IMU) and physiological data [9–11],
none are able to handle rehabilitation sessions composed of groups of patients. Further-
more, little effort has been devoted to automating such sessions, while ensuring high
patient engagement.

This paper focuses on motor rehabilitation techniques for groups of patients per-
forming moderate physical routines in controlled indoor environments, such as gyms or
dedicated hospital rooms. Wearable IoT devices equipped with IMU sensors have been
identified as portable and non-invasive solutions for patient monitoring, contributing to
personalized healthcare management [6,7]. Similarly, camera-based solutions enhanced
by Deep Learning (DL) techniques have been successfully applied to posture detection,
gait analysis, and automatic error detection during exercises [12,13]. However, limited
innovation has been brought about in the way physiotherapy sessions are delivered to
patients. While telerehabilitation systems, now accessible via portable devices [14], enable
home-based physiotherapy sessions and remote monitoring, they often lack the ability to
personalize and adapt to the patient’s individual condition.

In this paper, we propose a novel concept for a smart motor rehabilitation system
that leverages the convergence of IoT, Artificial Intelligence (AI), and Robotics, to improve
healthcare sustainability, enable fine-grained patient monitoring and provide personalized
diagnoses. We call this system I-TROPHYTS (https://site.unibo.it/itrophyts/en accessed
on 1 December 2024), an acronym for IoT and humanoid RObotics for autonomic PHYsio-
Therapeutic monitoring, coaching and supervision in smart Spaces. In our proposed scenario,
patients are continuously monitored during physiotherapy sessions using wearable IoT
sensors that capture both movement and physiological responses, such as heart rate and
oxygen saturation already mentioned. At the same time, a humanoid robot partially takes
over the role of the physiotherapist by imitating certain human behaviors. Based on the
collected IoT data and domain-specific information, the robot can decide to start the next ex-
ercise in the motor routine, suggest alternative exercises, assign cool-down periods, or alert
medical personnel in case of detected anomalies. By introducing controlled automation in
this domain, I-TROPHYTS aims to enhance the overall sustainability of healthcare systems,
as a single physiotherapist could supervise multiple patient groups simultaneously. Fur-
thermore, by employing non-invasive IoT monitoring techniques together with edge-based
processing [15,16], we can continuously track individual patient performance over time
and identify correlations that could lead to personalized therapies. The use of humanoid
robotics may also increase patient engagement due to its morphological similarities to
humans [17,18]. However, realizing this concept requires the development of an innovative
hardware/software framework with contributions spanning multiple fields, including
IoT, knowledge representation and robotics. The I-TROPHYTS framework ensures IoT
data acquisition from two types of wearable devices (IMU-based and vital-sign sensors),
and integrates ML algorithms for exercise recognition and motion tracking. Moreover, it
enables the representation of physiotherapy session data—including both patient states
and domain-specific rules—via a uniform and unambiguous knowledge representation in
the form of an ontology. This ontology facilitates reasoning and decision-making by the
humanoid robot. To summarize, the key contributions of this paper are as follows:

• We present the concept behind I-TROPHYTS for next-generation smart rehabilitation
and the layered architecture that supports its implementation.

https://site.unibo.it/itrophyts/en
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• We describe in detail the current development phase of the I-TROPHYTS framework,
with a focus on the IoT data acquisition and processing pipeline, as well as the robotic
architecture.

• We report experiments, involving multiple volunteers performing up to four mo-
tor routines, to assess the ability of the proposed IoT and ML-based techniques to
automatically identify and distinguish between different exercises.

Our results demonstrate that a performed exercise can be accurately identified by lever-
aging IMU data from wearables. In particular, we achieve 100% accuracy in distinguishing
a shoulder abduction from a shoulder flexion, using IMU data from IoT wearable devices
placed on the wrist and elbow of our test subjects. We also show that the I-TROPHYTS
framework can discern the exercise with high accuracy (>90%) employing just one signal
(acceleration or gyroscope) from a single IoT sensor (placed on the wrist or elbow of an
arm). This proves that the exercise being performed can be identified, even if the active
arm is not equipped with a sensor.

The paper is organized as follows. Section 2 reviews the state of the art of IT solutions
for rehabilitation systems, focusing on IoT and ML-based approaches. Section 3 introduces
the I-TROPHYTS concept and components of the framework. Section 4 details the current
design and development phase of the framework, focusing on the IoT sensing and edge
processing layers. Section 5 describes experiments and performance results. Section 6
includes a discussion on ongoing work on data modeling and integration with robotic
actuation. Section 7 concludes the paper.

2. Related Works

Many studies make use of wearables for early detection and diagnosis, to improve
elderly care and reduce physiotherapy visits. In a recent work [6], researchers explored the
value of wearable sensor data for timely prediction in stroke recovery patients, employing
IMU sensors to collect movement and balance data. Participants were divided into ambula-
tory and non-ambulatory groups. By applying supervised ML classifiers, three models were
trained to combine patient information with clinical and sensor data to predict outcomes.
According to a review [7] of stroke rehabilitation research from 2009 to 2023, accelerometers
(the most common) and gyroscopes paired with ML can improve stroke rehabilitation and
remote monitoring. The study explores several ML techniques, including reinforcement
learning, supervised, unsupervised, and semi-supervised learning. Tak et al. [9] presented
a sensor-based 3D motion capture method that employs four IMU sensors placed on the
trunk, pelvis, upper leg, and lower leg, to measure joint movement during a single-leg
squat, demonstrating good to excellent concurrent validity with a conventional 3D motion
capture system. Similarly, Bravi et al. [8] used two IMU sensors, placed on the wrist and
upper arm, to measure the range of motion of the shoulder. Additionally, a Raspberry Pi
served as a gateway, managing data collection, synchronization, and processing through
dedicated software. Basmaji et al. [19] proposes a belt with IMU sensors and a High-
Definition camera to highlight the need for posture monitoring to prevent spinal issues and
musculoskeletal discomfort. Sensors are placed in the thoracic and thoracolumbar corners
to monitor the flexion angle of the neck and upper back. The collected data are transmitted
to a cloud server, and users can view and track their posture via a mobile application,
enabling therapists to provide accurate follow-up and guidance. The solution described
in [10] captures the therapist’s movements, gathers data using RGB-Depth cameras, and
allows therapists to record specific rehabilitation movements via a gesture-based Natural
User Interface (NUI). These motions are then replicated by an exoskeleton robot on a
patient. Future developments aim to integrate ML for automatic error detection during
exercises and potentially provide feedback. Thakur et al. [20] propose a robot-assisted
wrist physical rehabilitation system that uses accelerometer and magnetometer sensors
embedded in a 3D-printed wearable band to monitor wrist movements such as flexion,
extension, abduction, and adduction in stroke patients. By synchronizing the robot’s actions
with sensor feedback, it ensures precise execution of exercises, and can operate indepen-
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dently. Data are uploaded to a cloud server, enabling clinicians to track progress and adjust
treatment plans based on feedback. The system supports both active rehabilitation and
therapist-assisted use. The study presented in [11] aims to help paralyzed patients navigate
smart cities with automatic limb control, suggesting a lightweight, intelligent exoskeleton
system that employs data from multiple sensors and cameras to detect parameters like
distance, obstacles, orientation, speed and acceleration. The system uses Artificial Neural
Networks (ANNs) for data classification and AI-powered navigation for real-time motion
control and prediction. While some data are processed locally to enable real-time corrective
movements and prevent falls, cloud-based feedback is provided for remote monitoring
and assistance.

In this context, the proposed work aims to develop an IoT system that facilitates
synchronized motor rehabilitation. I-TROPHYTS jointly monitors patient movements and
vital signs via non-invasive IoT devices to conduct physiotherapy sessions independently
at home, while receiving real-time semi-autonomous supervision of their rehabilitation
activities. Table 1 summarizes our literature review by comparing our solution with
the state of the art. Among the reviewed works, I-TROPHYTS is the only solution that
combines ML-based techniques and edge processing to support patient physiotherapy
sessions conducted by a humanoid robot. Furthermore, it can handle the simultaneous
monitoring of multiple users.

Table 1. Comparison of I-TROPHYTS with related work.

Paper IMU Sensors Vital Signs ML
Techniques

Edge
Processing

Humanoid
Robot

[6] ✓ ✗ ✓ ✗ ✗

[7] ✓ ✗ ✓ ✓ ✗

[9] ✓ ✗ ✗ ✗ ✗

[8] ✓ ✗ ✗ ✗ ✗

[19] ✓ ✗ ✗ ✗ ✗

[10] ✗ ✗ ✗ ✗ ✓

[20] ✓ ✗ ✗ ✗ ✓

[11] ✓ ✗ ✓ ✓ ✓

I-TROPHYS ✓ ✓ ✓ ✓ ✓

3. The I-TROPHYTS Framework
3.1. System Model

Here, we consider the system depicted in Figure 1a, which involves four primary
actors: patients, a humanoid robot, a medical supervisor, and a pervasive IoT sensing
and computing platform. Patients face high metabolic, cardio-respiratory and infectious
risks, which makes them suitable for physical activities focused on balance, stretching, and
posture. These activities are performed in dedicated indoor environments, such as gym
spaces or rehabilitation rooms. In this paper, we will not delve further into the medical
implications and motivations behind our work; interested readers can refer to [2,3] for ex-
amples of studies exploring the connection between reduced metabolic risk and the benefits
of physical activity. Unlike traditional scenarios, where patients follow exercises guided
by human physiotherapists, the role of the physiotherapist is taken by a humanoid robot
that provides motor routines. The IoT sensing and computing platform enables monitoring
of each patient’s physiological and motor performance. Each patient is equipped with
multiple wearable IoT devices, including IMU sensors that track the position of specific
body parts. Additionally, patients wear at least one IoT device to monitor vital signs, such
as heart rate and blood pressure. All collected data are transmitted from these devices to
an Edge Server (ES), where sensor data from physiotherapy sessions is stored, aggregated
and processed. Based on the current detected states of the patients, the robot can decide to
continue the therapy plan by executing the next exercise in the sequence, assigning cool-
down periods, or performing alternative exercises. It can also alert the human supervisor
when necessary. The supervisor is responsible for programming the robot’s motor routines,
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and can access all IoT data generated during the sessions for personalized diagnostics. We
highlight some unique advantages of our approach compared to both traditional and smart
rehabilitation solutions, as detailed in Section 2.

1. Scalability. Our system can serve multiple patients simultaneously and can be easily
replicated across different environments or rooms.

2. Privacy. Our system was intentionally designed to avoid the use of camera-based
solutions for monitoring patients during sessions, focusing instead on wearable
IMU-based sensors. Although numerous studies have demonstrated the accuracy
of computer vision technologies for posture tracking [21,22], significant challenges
remain, especially regarding the privacy of the recorded individuals, an issue that
cannot be overlooked in medical environments.

3. High Patient Engagement. The presence of a humanoid robot increases patient engage-
ment, thanks to the empathy induced by somatic similarity recognition, as discussed
in [17,18,23].

4. Fine-Grained Personalization. Our approach enables continuous monitoring of each
patient’s motor and vital states, allowing long-term data collection to generate person-
alized clinical reports.

At the same time, we recognize that our solution is not targeted at a fully automated,
AI-driven medical scenario, which could raise concerns about fully delegating decision-
making responsibility to AI systems [24,25]. Instead, the human supervisor retains the
ability to intervene in cases of alarms from the IoT system, or any malfunctions, ensuring a
balance between automation and human supervision.

EDGE SERVER

TIME-SERIES DATABASE

ROUTINES+SESSION STATES

GATEWAY

PROCESSING

HUMANOID ROBOT

PATIENT

ALERT

REPORT

VITAL SIGNS

MOTION SENSOR

SMART RING

PHYSIOTHERAPIST

(a) I-TROPHYTS framework

SENSING AND CONNECTIVITY LAYER

MOTION SENSOR SMART RING

EDGE PROCESSING LAYER

EDGE SERVER PROCESSING TIME-SERIES DATABASE

KNOWLEDGE AND MODELING LAYER

ALERT  REPORT

REASONING AND ACTUATION LAYER

HUMANOID ROBOT PHYSIOTHERAPIST

(b) Architecture layers

Figure 1. Framework and architecture of I-TROPHYTS.

3.2. Technological Components

The I-TROPHYTS framework provides the technologies needed to enable the IoT
robotic environment depicted in Figure 1a. Its components, which span across the IoT,
knowledge modeling, and robotics domains, are organized into four distinct layers, as
shown in Figure 1b.

The layers are detailed as follows:

• Sensing and Connectivity Layer. This layer is responsible for collecting IoT data from
patients, via sensors embedded in wearable devices, and transmitting the data towards
the ES, via wireless Machine to Machine (M2M) links.

• Edge Processing Layer. This layer temporarily stores and aggregates, on the ES, raw
time-series data from each patient, including IMU data and vital signs. It extracts
second-layer information relevant to the physiotherapy session, such as automatic
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identification of exercises within the motor routine, 3D tracking of each sensor position,
and statistical features derived from vital signs. As future work, we plan to offload
some of these tasks to the extreme edge, specifically to IoT wearable devices, to reduce
the amount of raw data transferred from them, thus improving both privacy and
energy efficiency, in line with the edge computing approach.

• Knowledge Modeling Layer. This layer is responsible for modeling and organizing infor-
mation related to the physiotherapy domain, enabling better data management and
supporting semi-automatic decision-making by the robot. The knowledge includes:
(i) second-level information generated by the Edge Processing Layer, which provides
quantitative data on the current states of the session and individual patients; and (ii)
domain-specific rules and constraints, such as how a physiotherapist would assess
the correct execution of an exercise or respond to partial failures. We plan to develop
semantic ontologies, specific to the physiotherapy domain [26], to model these rules,
as discussed further in Section 6.

• Reasoning and Actuation Layer. This layer uses the dynamic state of the session (pro-
vided by second-layer IoT information from the knowledge modeling layer) and the
static set of domain rules and constraints to plan the next actions of the I-TROPHYTS
framework. We distinguish between two types of outputs: (i) robotic actuation, which
controls the physical mobility of the humanoid robot, including decisions about the
next exercise in the sequence and precise control of the robotic joints; and (ii) interac-
tion with the human supervisor, which involves recording the session data to a remote
storage, detecting alert conditions and notifying medical supervisors, if necessary.

4. Framework Development

Here, we discuss the deployment and enabling technologies of the I-TROPHYTS
framework. More precisely, we detail the implementation of the first two layers: Section 4.1
describes the Sensing and Connectivity Layer, while Section 4.2 shows the development
of the Edge Processing Layer. The upper two layers are still under development, and the
ongoing activities are described later in the paper, in Section 6.

4.1. Sensing and Connectivity Layer

Figure 2 depicts the implemented IoT monitoring system used in motor rehabilitation
sessions. Two classes of wearable IoT devices are deployed to monitor patients: (i) smart
rings, worn by each individual to track vital signs, such as heart rate and oxygen saturation;
and (ii) IMU-based devices, used to surveil body movement, with each patient potentially
wearing multiple devices at various locations.

EXERCISE 
IDENTIFICATION

REPETITIONS
COUNTER

AGGREGATION

EDGE SERVER 

BLE

WIFI

SENSORS

M
Q

TT
 B

R
O

K
ER

FEATURE
EXTRACTION

Figure 2. Implementation of the first two layers of I-TROPHYTS.

The complete list of features collected by IoT devices for patient monitoring is pre-
sented in Table 2.
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Table 2. Features collected from IoT devices for patient monitoring in I-TROPHYTS.

Feature Device

Heart Rate Smart Ring
Oxygen Saturation Smart Ring

Acceleration Data (x, y and z) IMU Device
Gyroscope Data (x, y and z) IMU Device

At regular intervals, raw data from both smart rings and IMU devices are transmitted
to the ES via wireless links. Smart rings utilize Bluetooth Low Energy (BLE) [27] technology
for communication, while we use WiFi for IMU-based devices due to the bandwidth
required to transfer the complete IMU time-series. Additionally, the Message Queuing
Telemetry Transport (MQTT) protocol is employed, which enables IMU-based devices
to publish data to the broker and subscribe to configuration updates, such as changes in
acquisition frequency.

4.2. Edge Processing Layer

As shown in Figure 2, the ES server includes the MQTT broker and a custom software
stack, which performs the following tasks:

• Receiving the vital sign data transmitted from the smart ring via BLE connection.
• Receiving the time-series transmitted from each IMU-based device via MQTT subscription.
• Aggregating the time-series from different IMU-based devices into time windows of

size Tf second.
• Extracting statistical features, namely mean, maximum, minimum, and standard

deviation, from each time window of the IMU data, and storing them in a database,
which, in our implementation, is InfluxDB (https://www.influxdata.com/ accessed
on 1 December of 2024).

• Computing second-level information from the statistical features.

We focus on two types of information automatically extracted from IMU data:
(i) identification of the type of exercise routine currently performed by each patient; and
(ii) a repetitions count for that routine.

Exercise identification is performed using an independent and modular application.
We have implemented several traditional and deep ML algorithms, which serve as a library
of options for the system administrator to choose the most suitable one for their specific
context. Section 5 provides a quantitative comparison of the classification performance of
the implemented algorithms.

To count repetitions, we developed a simple algorithm to estimate the number of
repetitions by identifying peaks in accelerometer signals inspired by the work in [28],
assuming that each peak corresponds to a moment of maximum effort during the exercise.
This approach treats the problem of exercise repetition detection as a task of finding
local maxima in the signal shape. To focus on the signal features that are most relevant for
predicting motion, we used accelerometer data from a single device. Now, the accelerometer
measures acceleration along three axes (X, Y, Z). To obtain a unified signal that captures the
overall motion intensity, we computed the acceleration magnitude, which can be defined
as follows, for a device d, at time t and without loss of generality:

ad(t) =
√

accelerometerXd(t)2 + accelerometerYd(t)2 + accelerometerZd(t)2 . (1)

To reduce noise in the acceleration magnitude and make peak detection reliable, we
applied a moving average smoothing technique with window size w. Let W be the total

https://www.influxdata.com/
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number of windows over which smoothing can be applied, in the dataset. We define the
smoothed acceleration magnitude ãd(t) as the collection of points α(w) at a specific time t,

α(w) =
1
w

w

∑
j=0

ad(j) , (2)

ãd(t) = { α(wi) ∀ i ∈ [1, W] } . (3)

Finally, we detect peaks in the smoothed acceleration magnitude ãd(t), using a thresh-
old value β̃ and a minimum peak distance criterion σ. Let λ be the total number of points
in the dataset; we defined β̃ as the mean of the smoothed signal over all time points,

β̃ =
1
λ

λ

∑
t=1

ãd(t) . (4)

Let tp be the time index corresponding to a peak signal, and let σ be the distance be-
tween two peaks signals defined as |ãd(tpi )− ãd(tpi−1)|. We define a peak as the maximum
local point p(t) if all the following four conditions are satisfied:

p(t) =


ãd(tp) > ãd(tp−1)
ãd(tp) > ãd(tp+1)
ãd(tp) > β̃

|ãd(tp)− ãd(tp−1)| ≥ σ

. (5)

5. Performance Evaluation

In this section, we present the performance evaluation of the system. First, the method-
ology used for data collections is described in detail, including the procedures and tech-
niques employed. Next, the results section presents the evidence derived from the data,
along with the analysis of performance metrics.

5.1. Data Collection Methodology

The goal of this section is to describe the experimental setup and procedures used,
detailing the exercises performed, and the technical aspects of data acquisition, as well as
the type of the hardware and the data recorded. Starting from the experimental design,
two different exercises were designed to represent the movements:

• A: shoulder flexion; participants are expected to move their arm reaching 180 degrees,
as illustrated in Figure 3a.

• B: shoulder abduction; participants are expected to move their arm reaching 90 degrees,
as shown in Figure 3b.

Then, given the need to perform the exercises with both arms, they were further
divided into two subcategories:

• L: left arm.
• R: right arm.

From this, we derived four specific-side exercises: AR, AL, BL, BR.
To collect data and ensure that the results could be generalized across individuals,

the study involved six volunteers, called “subjects 1 to 6” to protect their privacy: two
women and four men, aged 25 to 35 and healthy. No particular characteristics of any of
them are noteworthy; all subjects were in a comparable physical condition for the purposes
of the study. Each participant was instructed by watching an explanatory video with all
the methods of performing the exercises, to allow everyone to execute the exercises in the
same way and as similarly as possible. Each volunteer spent approximately 10 min on
each exercise, for a total of 40 min, to ensure balanced and comparable data collection
across individuals.



Appl. Sci. 2024, 14, 11489 9 of 20

Smart Ring

ESP32-S3-Touch-LCD

(a) Movement A (b) Movement B

Figure 3. Illustration of two exercises performed during the experiments.

Data were collected using four ESP32 devices, two on each arm (one above and one
below the elbow). In particular, the microcontroller, formally designated as ESP32-S3-
Touch-LCD-1.28 and visible in Figure 3a, is a high-performance MCU board developed by
Waveshare. It features an onboard 1.28-inch capacitive touch display, a Li-ion battery, and
a six-axis sensor, comprising a three-axis accelerometer and a three-axis gyroscope. The
device is equipped with a 32-bit Xtensa LX7 dual-core processor, with a maximum main
frequency of 240 MHz, and supports both 2.4 GHz Wi-Fi (802.11 b/g/n) and Bluetooth
5 (LE). We collected accelerometer and gyroscope data, representing the movements made
by an user during the exercises, with a fixed frequency of 50 Hz. To provide a visual
representation of the motion patterns captured by the sensors, Figures 4 and 5 show the
raw signals recorded by the ESP32 units, for exercise A performed with the right arm and
exercise B performed with the left arm, respectively. A frequency image of the accelerom-
eter and gyroscope data gives some key insights into the patterns and characteristics of
the motion, or vibrations, captured by the sensor. Transforming time-domain signals into
a frequency-domain representation helps identify dominant frequencies which, in turn,
provide guidance to distinguish between different types of movement or detect specific vi-
bration patterns. Indeed, since motion is three-dimensional in space and distributed across
all axes, from the figures provided, it seem evident that some axes are more influenced
than others. Figure 4 shows how, for the accelerometer sensor, the X and Z axes are most
affected, which reflects motion along the corresponding body axes. Similarly, in Figure 5,
the most affected axes are Y and Z, which reflects motion along the corresponding body
axes, confirming the direction of the movement.

During the exercise, participants were asked to wear a smart ring, the COLMI R02,
visible in Figure 3a, which allowed us to monitor their biometric data, including blood
oxygen (SpO2) and heart rate (HR). The ring build by COLMI is equipped with heart rate
and blood oxygen sensors, capable of transmitting data every 30 s.

After data collection, the raw values were processed and resampled to create six
separate datasets, one for each subject. Since we collect data from four devices, recording
two types of signals, and each signal is recorded along three axes (X, Y, Z), we collected
24 features per device. This results in a total of 96 device-specific features, with the data
resampled at 100 ms intervals to ensure consistency.
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Figure 4. Accelerometer and gyroscope raw data—AR exercise.

0 100 200

700

600

500

400

300

Ac
c 

X 
(m

/s
^

2)

Accelerometer X-Axis

0 100 200

0

200

400

600

800

1000

Ac
c 

Y 
(m

/s
^

2)

Accelerometer Y-Axis

0 100 200
800

600

400

200

0

200

Ac
c 

Z 
(m

/s
^

2)

Accelerometer Z-Axis

0 100 200

0

20

40

60

G
yr

o 
X 

(r
ad

/s
)

Gyroscope X-Axis

0 100 200
20

0

20

40

60

80

100

G
yr

o 
Y 

(r
ad

/s
)

Gyroscope Y-Axis

0 100 200
125

100

75

50

25

0

G
yr

o 
Z 

(r
ad

/s
)

Gyroscope Z-Axis

Figure 5. Accelerometer and gyroscope raw data—BL exercise.

5.2. Results

To evaluate their performance in recognizing the activities performed by the partic-
ipants, specifically the exercises they executed, a comparative analysis between various
algorithms was conducted. After an extensive literature review, it was analyzed that tree-
based algorithms supporting vector machine and neural networks are the most commonly
used classifiers for Human Activity Recognition (HAR) tasks [29,30]. Therefore, in this
work, we propose the evaluation of several algorithms, including a Feed Forward Neural
Network (FFNN) [31] as a DL approach, and traditional ML methods, such as Decision
Tree (DT) [32], Random Forest (RF) [33], Gradient Boosting (GB) [34], and Support Vector
Machine (SVM) [35]. Given the nature of the data collected and the objectives of this
study, the analysis focused not only on the accurate classification of exercises, but also on
assessing the adaptability of the models to new data. With multiple study participants,
three key aspects were explored, which we, respectively, called Personalized, Traditional,
and Inboard Learning, as listed below.

• Personalized Learning: evaluates how well the models were able to recognize activi-
ties when analyzing each participant individually.

• Traditional Learning: evaluates the performance when combining data from
all participants.
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• Inboard Learning: tests the generalization of models by training on data from some
participants and scoring on data from others, measuring how well the models can
adapt to unseen data.

Before analyzing the performance, it is worth mentioning that, for both Personalized
and Traditional Learning approaches, the experiments were conducted by averaging the
results over multiple runs, and the calculated confidence interval was 95%. In each run,
different hyperparameter configurations were used to optimize the performance of the
models. The hyperparameters included variations in learning rate, batch size, and network
architecture, to identify the optimal settings for each learning strategy. Table 3 presents the
hyperparameter configurations for each model implemented in this study.

Table 3. Set of Hyperparameters.

Model Hyperparameter Set

Support Vector C: [0.1, 1, 10, 100, 1000],
Machine gamma: [1, 0.1, 0.01, 0.001, 0.0001],

kernel: [‘rbf’, ‘poly’, ‘sigmoid’]
Decision Tree criterion: [‘gini’, ‘entropy’, ‘log_loss’],

splitter: [‘best’, ‘random’]
Random Forest n_estimators: range(50, 250, 50),

criterion: [‘gini’, ‘entropy’, ‘log_loss’]
Gradient Boosting n_estimators: range(50, 250, 50),

criterion: [‘squared_error’, ‘friedman_mse’]
Feed Forward Batch Size: [8, 16, 32, 64, 128 256, 512],
Neural Network Hidden Sizes: [8, 16, 32, 64, 128, 256, 512]’,

Learning Rate: [0.01, 0.001, 0.0001],
Depths *: [1, 2, 3, 4],

Dropout Probability: [0.1, 0.2, 0.3, 0.4, 0.5]
* Depths is the number of times a network hidden layer will be used.

This process ensured a robust evaluation, by accounting for variability in model perfor-
mance due to different training conditions. In the case of Inboard Learning, we evaluated
the generalization capabilities of the models using a leave-one-out approach. Specifically,
with six subjects, we iteratively selected each participant as a test subject, ensuring that
each individual was used, as a test case, exactly once. During each iteration, the model was
trained on data from the remaining five participants. After completing all six combinations,
we calculated the average performance across all iterations, to provide a comprehensive
assessment of the model’s ability to generalize to unseen subjects. To facilitate a more com-
plete understanding of the following results, we provide an explanation of the performance
metrics employed. The evaluation was conducted using the Accuracy metric, which serves
to quantify the proportion of accurate predictions (True positive, TP) made by the models
in all runs. Additionally, the F1-Score was used, as it combines the Precision and Recall
metrics into a single unit, thus ensuring that both false positives (FP) and false negatives
(FN) are minimized.

Accuracy =
TP

TP + TN + FP + FN
, (6)

F1score = 2 × Precision × Recall
Precision + Recall

, (7)

Precision =
TP

TP + FP
, (8)

Recall =
TP

TP + FN
. (9)

As shown in Figure 6a,b, there is a similar pattern in all evaluations. If we compare
the algorithms based on their ability to detect activities when analyzing each participant
individually or together, the performance is equivalent and all the algorithms achieve



Appl. Sci. 2024, 14, 11489 12 of 20

optimal results, reaching 100% accuracy. In terms of generalization, a similar pattern can
also be observed, but with a completely different trend: all the algorithms seem to be
unable to generalize across different subjects (Inboard Learning); only the FFNN was able
to achieve the best accuracy, with a value of 35%. The best-performing algorithm was
selected for further investigation, focusing on the importance of each signal (accelerometer
and gyroscope) and their individual impact on model performance. We also assessed the
minimum number of devices required for accurate activity classification, by progressively
training the model with data from one device up to all available devices. Both personalized
and traditional aspects were taken into account, to better understand individual variations
across different users and scenarios. Specifically, this approach was adopted to gain insights
at the individual level, and also to understand how the usage of different devices, including
those not directly involved in the movement, affects the model’s ability to accurately
classify the activity. The analysis was conducted as follows: given the availability of four
different devices, we tried to generalize the results as much as possible by testing all
possible combinations for every possible number of devices used in the data collection. For
each combination, we evaluated performance using accelerometer data, gyroscope data,
and a blending of both.
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Figure 6. Comparison of accuracy and F1-Score metrics in evaluating different learning algorithms.

In Figures 7 and 8, we reported the mean and confidence interval of the analyzed
metrics, varying the number of devices for both personalized and traditional scenarios. Each
column represents the combined results, accounting for all possible device permutations.
For instance, focusing on the personalized scenario, the column for a single device reflects
the combined results of analyzing the individual data from each sensor (i.e., left wrist, right
wrist, left elbow, right elbow). The analysis reveals that, in a personalized scenario, using
only one device with accelerometer data, good performance in activity classification is
already achieved, measured in terms of accuracy with a score of 93%. As more devices are
added, performance improves even when using only one signal type. In particular, when
comparing both scenarios (personalized and traditional), we can observe a similar trend
where using only two devices with all signal types comes close to the best performance of
the algorithm, reaching a total score of 98%, which would otherwise require all devices and
signals. Furthermore, the narrow confidence intervals for accelerometers indicate consistent
results across different combinations, while the wider confidence intervals for gyroscopes
for a small number of devices indicate greater variability in the classification task.
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variable number of devices.
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Figure 8. Comparison of F1-Score for evaluating FFNN performance using different signals on a
variable number of devices.

In Figure 9a,b, we investigated the ability to predict motions using the best-performing
algorithm, namely the FFNN algorithm. Specifically, we analyzed the prediction accuracy
and F1-score for movement A, movement B, and the combination of both motions across
different time windows, from 125 milliseconds (ms) to 2 s. In the smallest time window
of 125 ms, accuracy is close to 100%, while there is a performance loss for a time window
of 2 s. The results indicate a clear correlation between increased time windows and lower
accuracy rates for motion classification.

Table 4 presents the average inference time for each tested algorithm. All techniques
showed inference times under 1 s. Furthermore, excluding SVM (which is the slowest),
all models achieved inference times under 100 ms, demonstrating that the tested set of
techniques is suitable for real-time scenarios.
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Figure 9. Accuracy and F1-Score for predicting motion using FFNN across different time windows.
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Table 4. Inference Time (in seconds) of each algorithm.

Model Mean Std

Support Vector Machine 0.6887 0.0063
Decision Tree 0.0010 0.0001

Random Forest 0.0170 0.0050
Gradient Boosting 0.0549 0.0006

Feed Forward Neural Network 0.0152 0.0159

As previously mentioned, during the activity, participants were asked to wear a smart
ring to monitor their heart rate and oxygen saturation levels. Figure 10 illustrates the
patient’s heart rate fluctuations over a predetermined period of time while performing
the AL exercise. It is evident that exercise may cause an increase in heart rate variability,
highlighting the physiological differences between a male and female subject during a
24 min exercise session, with the female subject’s heart rate peaking at 120–130 bpm,
while the male subject’s heart rate remains just below 90 bpm. The oxygen saturation
levels collected during the experiments remained stable, showing no notable patterns or
significant variations.
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Figure 10. Heart rate comparison of two subjects—AL exercise.

The final analysis aimed to predict the number of repetitions a patient would perform
for a given exercise, based on the algorithm described in Section 4.2. Figure 11 illustrates
the peak identification performed by the repetition counter algorithm on the data collected
during the execution of the AR exercise.
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Figure 11. Peak detection—AR exercise.

To analyze performance across four different exercises and four different devices, we
calculated the peaks for each exercise separately, and then averaged the results for each
device. This approach allowed us to derive predicted peaks, which are the average of
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the peaks detected across all devices. We collected four separate data sets, one for each
exercise, to accurately count the number of repetitions performed by the subject. Since the
algorithm uses threshold and distance parameters to identify peaks, varying these values
can significantly affect the number of peaks detected. Therefore, we explored different
parameter values to understand their influence on the results, which are presented as
confidence intervals. Figure 12 shows the results of the repetition counter algorithm. While
the predicted repetitions are close to the actual counts, there are still some fluctuations due
to the different parameters used in the algorithm, which significantly influence the number
of peaks detected in the signal.
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Figure 12. Predicted versus actual repetitions of exercises.

6. Ongoing Activities
6.1. Knowledge Modeling Layer

The concept behind I-TROPHYTS for next-generation smart rehabilitation relies on the
integrated use of several types of information (physiological/clinical/training data, exercise
targets, actual and expected performance, and so on). To ensure that all this information is
treated in a coherent and consistent way, a symbolic layer is forecast, with the purpose of
providing the necessary structure for information integration. More specifically, it allows
to integrate and present the available information about patients, the patient’s history
and the ongoing session in a unified way, which is then used to organize and cluster into
readable data by the people in charge of the session, namely the physiotherapist. Once this
knowledge systems is in place, it becomes possible to apply formal reasoning to anticipate
the development of dangerous patient states, and to inform the physiotherapist of the
actual status and quality of the patient’s performance. In particular, the I-TROPHYTS
system must keep track of patients, each with their own specific clinical history, whose
data may need to be treated in a personalized way, a situation that usually goes beyond
the scope of ML methodologies. On the other hand, there are physiotherapists who are
used to having a visual and holistic view of the patient, and are not trained to interpret the
variety and complexity of sensory data. Furthermore, the knowledge layer would make
the data easily accessible and comprehensible, ensuring that the system is accountable [36];
it also ensures that the system is extensible (e.g., towards the inclusion of new sensors, data
types, and medical guidelines, to stay up to date with the evolution of technology and
medical practice) and flexible (e.g., adaptable to new types of patients or changes in session
scenarios and activities). To guarantee these properties, the knowledge layer will be based
on an applied ontology, that incorporates rigorous modeling criteria (OntoClean [37]) and
methodologies (Dogma [38]). The layer will be aligned with a solid foundational ontology
(DOLCE [39]).

The ontology can classify the physiological qualities of a person, the relevant features of
their movements, as well as the abilities they possess. Likewise, it organizes the sequence of
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planned (physical) movements, the ideal exercise execution, the joint and muscles activated
during the exercise, and assembles the constraints (gathered from physiotherapists) that
exist between the state of the individual and the planned exercise. All this information
will be treated in relation to the current context [40], to provide time-sensitive information
management and, perhaps, compare it with data from previous sessions. The effort to
encode the physiotherapist’s knowledge, which will cover his/her concerns in terms of
remote control of the patient, is a complex task that raises new research questions and is
still ongoing.

6.2. Reasoning and Actuation Layer

The next step is to give the robot the ability to control the interaction with the patient,
the doctor and its environment. The robot must be able to decide which action to perform
by exploiting the knowledge base at its disposal and the information collected by the
sensors. To this end, we are investigating the development of a multi-agent system behind
a specific cognitive architecture. The agent paradigm that best fits the requirements of the
project is the Belief-Desire-Intention (BDI) paradigm [41,42], which mainly refers to the
logic of practical reasoning, i.e., the type of reasoning that leads to the deliberation of a
decision in order to achieve a goal. To ensure the use of the agent paradigm in robotics, it
was necessary to study how to reconcile the typical abstractions of agent design (agent, role,
task, action, message, communication, capability, and so on) with those of the programming
frameworks most widely used in robotics in recent years.

The Robot Operating System (ROS) [43,44], together with a robot simulator like Gazebo
(https://gazebosim.org/home accessed on 1 December 2024), offers a powerful tool for
programming robots through the possibility of using building blocks, such as nodes, topics,
and plugins. To develop a cognitive architecture for the implementation of the complex
robotic system under discussion, we first aimed to integrate the agent paradigm into ROS
and Gazebo [45,46] to have a set of design abstractions useful to formalize the activities of
a reliable robotic system design process. The result of this study led to the identification of
mapping paths between the elements of the agent paradigm, namely agents, tasks, actions,
goals, and those of the framework components entailed in the development of the robotic
system with ROS, mainly nodes and topics.

This preliminary phase was necessary to think about a possible agent-based cognitive
architecture. Moreover, it led to the possibility of managing the complexity of the healthcare
scenario through the agent paradigm and defining, at the implementation level, the nodes
and topics needed for the chosen healthcare scenarios; details on the implementation of the
healthcare scenario can be found in [47,48].

In the I-TROPHYTS project, we chose to use the NAO robot, which has twenty-five
degrees of freedom and is equipped with seven touch sensors placed on the head, hands
and feet [49]. Readers interested in the mechatronic design of the NAO humanoid robot
may refer to the work of D. Gouaillier et al. [49].

We have created a robotic system with nodes and topics that allows the NAO robot to
receive some input from the sensors, on the patient’s condition, and to formulate a sugges-
tion that takes into account the health conditions and the way in which the physiotherapy
exercises are performed. This is still a first prototype from which we can deduce a possible
cognitive architecture through a bottom-up approach. We have set up an initial model of a
hybrid architecture, centralized at the top level of the knowledge management module and
distributed in the individual modules as shown in Figure 13.

The advantage of this construction is that it is designed to be highly modular, with
minimal coupling based on a three-tier structural pattern. Each module can be implemented
in a multi-perspective approach: this means that for the sensing module, for example, a peer
agent architecture, or another type of simple and efficient processing of input information,
even without agents, could be sufficient. Instead, the reasoning module needs a BDI
agent implementation, since it mainly contains the reasoning module, which allows to
reason about the action to be taken, and the anticipation module, which allows the robot to

https://gazebosim.org/home
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“imagine” the outcome of its actions, compare it with the post-condition associated with
the chosen action, and then decide whether to actually execute it or change strategy. In the
future, we will further refine the architecture by detailing the architectural pattern of the
agents in each sub-component, while also gathering feedback from the implementation of
the I-TROPHYTS scenarios.

Figure 13. Agent-based cognitive architecture for structuring robotic systems that can monitor,
suggest, explain in complex scenarios.

7. Conclusions

This paper introduces the I-TROPHYTS framework for smart motor rehabilitation
in controlled environments. Our work advances the current state of the art by making
three contributions. First, the I-TROPHYS framework integrates four layers, incorporating
contributions from IoT, edge computing, knowledge modeling and robotics. Second,
we present the design and implementation of the data collection and edge processing
layers. We describe in detail the IoT system used to monitor patients’ motor activities
and vital signs during rehabilitation sessions. Additionally, we illustrate edge processing
techniques to identify the type of exercise (via ML approaches) and count the number
of repetitions performed by the patient. Third, we test our algorithms through small-
scale experiments involving six participants performing four stretching exercises. Our
experimental results indicate that, by using ML techniques with accelerometer sensors,
we can achieve close to 100% accuracy in identifying exercises. Moreover, the results
highlight the importance of proper tuning of the time window for feature extraction and
the significance of personalized training, as different patient data show different patterns
of sensor data when performing the same exercise. Similarly, our proposed automatic
repetition counting technique demonstrated satisfactory performance, closely matching the
number of repetitions.

We plan several future actions to fully realize and validate the I-TROPHYTS frame-
work. First, we plan to increase the number of subjects involved in our data collection to
improve our current dataset and provide a more comprehensive analysis. In the sensing
layer, we aim to explore BLE Mesh technology [50,51] to develop multi-hop sensor net-
works in indoor environments to improve energy efficiency in data collection. However,
we face challenges such as transmitting IMU time-series over BLE, which currently suffers
from limited throughput and scalability. In the data processing layer, we plan to include
additional algorithms to track sensor trajectories, allowing us to quantify the accuracy and
effectiveness of each patient’s movements. These data will be represented in the knowledge
modeling layer via a unified ontology, which will model all relevant data and relations in
the physiotherapy session, applying formal reasoning to anticipate potentially harmful
states for patients. Such anticipation may support the realization of a Digital Twin (DT)
of the physiotherapy session, which is the main goal of the SORTT project [52]. At the
actuation layer, we plan to integrate real-time IoT data into our proposed agent-based cog-
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nitive architecture for robot control. From a business perspective, we aim to investigate the
economic attractiveness and cost-effectiveness of commercializing and implementing the
framework in the healthcare industry. Finally, we plan to collaborate with physiotherapy
professionals and researchers to (1) gather expert feedback on the system features required
for live physiotherapy sessions (e.g., specific movement angles, user interface display
preferences), and (2) use the I-TROPHYTS framework in real, professionally supervised
physiotherapy sessions. In such sessions, we will assess the patient acceptance and collect
metrics related to user experience, engagement, and physiotherapist feedback.
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46. Marian, M.; Stîngă, F.; Georgescu, M.T.; Roibu, H.; Popescu, D.; Manta, F. A ROS-based control application for a robotic platform
using the Gazebo 3D simulator. In Proceedings of the 2020 21th International Carpathian Control Conference (ICCC), High
Tatras, Slovakia, 27–29 October 2020; pp. 1–5.

47. Seidita, V.; Chella, A. Agents as a Design Paradigm for Robotic Systems Leveraging ROS and Gazebo. In Agents and Robots for
reliable Engineered Autonomy; Springer: Cham, Swizerland, 2024; pp. 21–37.

48. Seidita, V.; Chella, A. Enhancing Robotic Systems in Healthcare: A Preliminary Analysis of Agent-Based Paradigms and
Simulation Environments. In Proceedings of the CEUR Workshop Proceedings, CEUR-WS, Bard, Italy, 8–10 July 2024; Volume
3735, pp. 181–189.

49. Gouaillier, D.; Hugel, V.; Blazevic, P.; Kilner, C.; Monceaux, J.; Lafourcade, P.; Marnier, B.; Serre, J.; Maisonnier, B. Mechatronic
design of NAO humanoid. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan,
12–17 May 2009; pp. 769–774. [CrossRef]

50. Borgo, S.; Di Felice, M.; Esposito, A.; Seidita, V.; Spaletta, G.; Toni, R.; Zyrianoff, I. POSTER: IoT and Humanoid Robotics for Next
Generation Motor Rehabilitation Systems. In Proceedings of the 2024 20th International Conference on Distributed Computing in
Smart Systems and the Internet of Things (DCOSS-IoT), Abu Dhabi, United Arab Emirates, 29 Aprl–1 May 2024; pp. 771–773.

51. Montecchiari, L.; Trotta, A.; Zyrianoff, I.D.; Bononi, L.; Natalizio, E.; Di Felice, M. A BLE Mesh Edge Framework for QoS-Aware
IoT Monitoring Systems. In Proceedings of the 2023 IEEE 9th World Forum on Internet of Things (WF-IoT), Aveiro, Portugal,
12–27 October 2023; pp. 1–6.

52. Borgo, S.; Di Felice, M.; Fasano, G.; Masolo, C.; Seidita, V.; Spaletta, G.; Barbaro, F.; Di Conza, G.; Quarantini, E.; Quarantini, M.;
et al. Integrating Ontological Modelling, IoT and Humanoid Robotics for Motor Rehabilitation Systems. In Proceedings of the
Formal Ontology in Information Systems Conference 2024 (FOIS 2024), Enschede, The Netherlands, 15–19 July 2024.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ROBOT.2009.5152516

	Introduction
	Related Works
	The I-TROPHYTS Framework
	System Model
	Technological Components

	Framework Development
	Sensing and Connectivity Layer
	Edge Processing Layer

	Performance Evaluation
	Data Collection Methodology
	Results

	Ongoing Activities
	Knowledge Modeling Layer
	Reasoning and Actuation Layer

	Conclusions
	References

