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Abstract: The coefficient of performance (COP) is a crucial metric for evaluating the efficiency of heat
pump systems. Real-time monitoring of heat pump system performance necessitates continuously
collecting and processing data from various components utilizing multiple sensors and controllers.
This process is inherently complex and presents significant challenges. In recent years, artificial intel-
ligence (AI) models have increasingly been applied in refrigeration, heat pump, and air conditioning
systems due to their capability to identify and analyze complex patterns and data relationships,
demonstrating higher accuracy and reduced computation time. In this study, multilayer perceptron
(MLP), support vector machines (SVM), and random forest (RF) are used to develop COP prediction
models for solar-assisted heat pumps. By comparing the predictive accuracy and modeling time
of the three models built, the results demonstrate that the random forest model achieves the best
prediction performance, with a mean absolute error (MAE) of 2.42% and a root mean squared error
(RMSE) of 4.01% on the train set. On the test set, the MAE was 2.35% and the RMSE was 3.84%. The
modeling time for the RF model was 6.57 s.

Keywords: data-driven intelligent algorithms; prediction models; MLP; SVM; RF; solar-assisted heat
pumps; coefficient of performance

1. Introduction

According to the latest International Energy Agency (IEA) report, World Energy
Outlook, space and water heating account for approximately 45% of building energy
consumption and contribute 80% of direct CO2 emissions from buildings [1]. To achieve
zero emissions in buildings, heat pump technology garnered significant attention over the
past few decades and is considered a key component in the global transition towards secure
and sustainable heating [2]. A heat pump is an efficient thermal transfer device that moves
heat from a low-temperature source to a high-temperature sink. To further enhance the
energy efficiency of heat pumps, reduce overall energy costs, and improve system stability,
solar-assisted heat pumps (SAHP) have been developed by integrating solar energy with
heat pump systems. The systems have been widely used in recent decades for simultaneous
heat, hot water, and power generation for a broad range of applications, from providing
domestic and commercial buildings with heat and power to manufacturing and agricultural
applications [3]. The primary advantage of SAHP technology is its capability to harness
renewable solar resources, which significantly reduces reliance on electricity and fossil
fuels [4]. Furthermore, the inherent flexibility and adaptability of SAHP systems enable
them to operate efficiently across various climatic conditions, thereby offering effective
energy solutions in both cold winters and hot summers [5].
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Recent literature on energy efficiency and thermal comfort in public buildings, es-
pecially schools and kindergartens, is expanding [6–8]. For instance, in [7], the effect of
thermal modernization in a kindergarten in Bialystok, Poland, was analyzed. Studies using
two different types of energy simulation software, TRNSYS 18 and Auditor OZC 7.0 Pro,
demonstrated that insulating external walls and replacing windows could reduce the build-
ing’s annual energy consumption by approximately 70%; experimental measurements also
confirmed these findings within the building. In [8], Franco et al. also analyzed the energy
reductions achieved using heat pumps and demand-controlled ventilation based on actual
building occupancy. The interventions in two different educational buildings resulted in up
to 70% of energy demand reductions. The COP is a crucial metric for assessing the efficiency
of SAHP systems. The COP is defined as the ratio of the instantaneous heat energy (Q) pro-
duced to the electrical energy (W) consumed to operate the heat pump. Accurate prediction
of the COP for SAHP systems is essential for optimizing system design and operational
parameters, enhancing overall energy efficiency, reducing operational costs, and promptly
identifying performance degradation or system faults [9]. Performance prediction of SAHP
typically employs two types of numerical models: white-box models and black-box mod-
els [10]. White-box models necessitate a comprehensive understanding of the physical
properties and interactions of all components within the system, requiring the specification
of numerous parameters. The complexity of developing white-box models is increased
by issues such as data measurement inaccuracies or direct measurement difficulties [11].
In contrast, data-driven black-box models offer a more straightforward approach, as they
learn from historical data to extract useful information for accurate predictions without the
need for extensive physical modeling data. Recent advances in computational capabilities
and big data technologies led to considerable progress in applying intelligent algorithms in
the field of heat pumps [12]. Intelligent algorithms, such as the artificial neural network
(ANN), support vector machines (SVMs), and random forest (RF), have been extensively
employed for heat pump performance prediction. Hikmet et al. [13] developed a predictive
model using the SVM algorithm to forecast the COP of ground-coupled heat pump (GCHP)
systems. This model leverages the powerful classification and regression capabilities of
SVM to provide an effective tool for accurate prediction of GCHP system performance.
Xu et al. [14] proposed three numerical methods—namely linear regression, nonlinear
regression, and artificial neural networks—to evaluate the heat transfer rate of GSHP under
fixed variables. Wang et al. [10] employed SVR as the base estimator, coupled with the
Adaboost.R2, the ensemble method, to predict the heating capacity and COP of electric
vehicle heat pumps. This approach combines the advantages of SVR with ensemble learn-
ing techniques, enhancing the accuracy and robustness of the predictions. Yong et al. [15]
compared the performance of three deep learning algorithms—fully connected deep neural
networks (FCDNNs), convolutional neural networks (CNNs), and long short-term mem-
ory (LSTM)—in quantitatively predicting changes in the performance (including heating
capacity, power consumption, and COP) of air source heat pumps (ASHPs) due to frost
growth. The study demonstrated that these deep learning methods effectively predict
performance variations resulting from frost accumulation. Shin et al. [16] developed and
validated performance prediction models for ASHP systems using ANN, SVM, RF, and
K-nearest neighbors (KNN). The study explored the performance of different algorithms
in predicting system performance, highlighting the strengths and weaknesses of each
model. Michael et al. [17] established simple linear regression (SLR) models, MLR models,
generalized linear models (GAMs), and RF models to predict the performance of ASHPs in
a field trial of deeply retrofitted Irish houses. Their findings indicated that the RF model
provided the best predictive results among all the tested models.

According to the literature, the application of data-driven intelligent algorithms in the
performance prediction of heat pump systems, to date, primarily focused on traditional
GCHP and ASHP systems. These algorithms leverage historical data and machine learning
techniques to predict the performance of heat pump systems effectively. Despite exten-
sive research on these conventional systems, there is comparatively limited research on
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applying data-driven algorithms to novel SAHP systems. A data-driven intelligent model
could solve the challenge of continuous performance monitoring during the operation of
SAHP systems.

In this study, the aim is to use and compare three remarkable machine learning al-
gorithms (MLP, SVM, and RF) to predict the performance of SAHP systems. Initially, the
dataset obtained from TRNSYS simulations was pre-processed to enhance the quality of
the modeling database. Subsequently, the model parameters were optimized to improve
prediction performance. The predictive results of the optimized models were then com-
pared with the TRNSYS simulation results. Finally, the best-performing and most suitable
model was identified by comparing model accuracy and modeling time.

This paper is organized as follows: Section 2 describes the SAHP system used and
the dynamic simulation process of the TRNSYS dataset in this study. Section 3 details the
research methodology employed. Section 4 discusses the establishment and testing process
of the prediction models. Section 5 presents the prediction results of the three models
and compares their prediction accuracies and computational efficiency. Section 6 provides
concluding summaries.

2. System Description

This study focuses on the SAHP system to develop its performance prediction model.
The system is installed in a school located in Milan (coordinates: 45◦27′39.24′′ N, 9◦16′48′′ E),
and the building is a two-story structure, as shown in Figure 1. Due to the difficulty in
obtaining long-term operational data for the SAHP systems through field measurements,
and the challenges in ensuring the accuracy of such data, the data required for developing
the prediction model relies on TRNSYS simulations, with detailed simulation processes
referenced in [6].

The heating period extends from 15 October to 14 April of the following year. During
this period, the energy produced by the solar collectors and the heat pump is collected in a
storage tank connected to the heat dissipation terminal (see Figure 2a). In the non-heating
season, due to insufficient energy demand, the hot water produced by the solar collectors
flows into the geothermal probes (see Figure 2b). In this way, the intermittent solar energy
collected and stored during the summer can be utilized during the peak heating demand
in winter. To investigate the impact of the number of probes and the area of solar collectors
on the performance of the SAHP system, this study designed 12 different simulation
experiments. Specifically, the number of probes was set to 10, 15, 20, and 25, while the areas
of the solar collectors were set to 0, 30, and 40 square meters. The time step for the TRNSYS
simulation was set to 1 h, with a total simulation duration of 15 years. Considering the
excessively large total data volume, this study extracted 8% of the data, amounting to
17,470 data points, to construct the database required to develop the prediction model.
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3. Methodology
3.1. Machine Learning Method

Machine learning (ML) is a branch of artificial intelligence (AI). ML algorithms analyze
and learn from large datasets, automatically extracting patterns and regularities, which
can then be used for tasks such as prediction, classification, clustering, and dimension-
ality reduction [18]. ML algorithms are categorized into three main types: supervised
learning, unsupervised learning, and reinforcement learning [19]. Fundamental machine
learning algorithms include linear regression, SVM, KNN, logistic regression, decision trees,
k-means clustering, RF, naive Bayes, dimensionality reduction techniques, and gradient
boosting [20,21]. With the rapid development of ML, the concept of integrating heat pump
systems with ML technology has become increasingly feasible, effective, and necessary,
offering vast potential for application [22]. The prediction of COP is fundamentally a re-
gression problem, where effective solutions rely on ML algorithms trained on historical
data to uncover the relationships between input variables (features) and output variables
(targets). To effectively capture the complex, nonlinear relationships between these features
and targets, this study employs MLP, SVM, and RF algorithms to analyze the performance
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of the SHAP system. The MLP model can be customized to specific datasets and problem
requirements by adjusting the number of layers and neurons per layer, thereby enhancing
predictive accuracy. The SVM model, with its ability to apply various kernel functions—such
as linear, polynomial, and radial basis kernels—offers robust handling of nonlinear data
and adapts to diverse data distributions. Additionally, RF, by aggregating predictions from
multiple decision trees, achieves superior accuracy compared to single decision trees, while
also mitigating overfitting and improving model generalizability.

3.1.1. MLP Algorithm with Back Propagation (MLP Neural Network)

The MLP is a type of feedforward ANN commonly utilized in machine learning
and deep learning [23], and the layers and structure of the MLP algorithm used for COP
prediction as depicted in Figure 3. An MLP-NN consists of an input layer, one or more
hidden layers, and an output layer [24]. Each neuron in one layer is fully connected to
every neuron in the next layer. The input layer receives the input data, with each neuron
representing one input feature. The number of neurons in each hidden layer is adjustable,
allowing for an increase in the complexity of the model by modifying the number of layers
and neurons in each. Neurons in these layers apply activation functions to introduce non-
linearity. The output layer produces the final output, with each neuron representing one
predicted value. MLPs are trained using the backpropagation algorithm, which computes
the error and propagates it back through the network to update weights and biases, thereby
minimizing the loss function; so, it could enable the MLP to approximate any function by
adjusting the values of weights and biases [25].
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3.1.2. SVR Algorithm

SVR is an extension of SVM for regression tasks [26], was first introduced by Vap-
nik [27]. For a given training dataset {(xi, yi)}n

i=1, where xi is the input vector and yi is the
corresponding output value, the goal of SVR is to find a function f (x) with an ϵ-insensitive
loss function to approximate the relationship between input and output variables:

f (x) = w · Φ(x) + b (1)

where x ∈ Rn, y ∈ R, Φ is a non-linear transformation that maps input data from the original
low-dimensional space Rn to a higher-dimensional space, or infinite-dimensional. The
purpose of introducing transformation Φ is to find a function in the higher-dimensional
space to fit the data effectively. w ∈ Rn is the weight vector, and b ∈ R is the bias term. ϵ is
a region around the predicted value f (x) set by humans. If the prediction f (x) is within
ϵ distance of the actual target value y, the loss is zero. If the prediction error exceeds ϵ, the
loss is the magnitude of the error minus ϵ. This means that only the part of the error that
exceeds ϵ contributes to the loss. The ϵ insensitive loss function can be defined as:

Lϵ(y, f (x)) =
{

0 i f |y − f (x)| ≤ ϵ

|y − f (x)| − ϵ otherwise
. (2)
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The goal of SVR optimization is to find the values of parameters w and b such that
the regression function f (x) = w·Φ(x) + b accurately predicts the target values yi while
minimizing the regression risk:

min
W,B

1
2
||w||2 + C∑m

i=1 Lϵ( f (xi), yi). (3)

To prevent overfitting and ensure better convergence during model training, slack
variables are introduced. Slack variables relax the strict requirement that every training
sample must lie within the margin defined by the support vectors. After introducing slack
variables, Equation (3) can be rewritten as:

Target function:

min
W,B

1
2
||w||2 + C∑m

i=1 (ξi + ξ*
i ).

Subject to: 
yi − f (xi) ≤ ϵ + ξi
f (xi)− yi ≤ ϵ + ξ∗i

ξi, ξ∗i ≥ 0
. (4)

For dual optimization problems, the weights can be expressed as follows Equation (5)

w= ∑l
i=1 (αi − α∗i ) Φ(xi). (5)

By substituting Equation (5) into Equation (1), the target function can be rewritten as:

f (x) = ∑l
i=1 (αi − α∗i )Φ(xi)Φ(x) + b. (6)

Kernel functions k (xi, x) = Φ(xi)Φ(x) enable machine learning algorithms to operate
effectively in high-dimensional feature spaces by implicitly mapping the original input
space Rn to a potentially infinite-dimensional feature space, without explicitly computing
the mapping Φ(x). After introducing the kernel function, Equation (6) can be rewritten as

f (x) = ∑l
i=1 (αi − α*

i )k (xi, x) + b. (7)

3.1.3. Random Forest

RF is an ensemble learning method proposed by Leo Breiman and Adele Cutler in
2001, widely used for classification, regression, and other tasks [28]. This method improves
the predictive performance and stability of models by constructing and combining multiple
decision trees [29]. A decision tree is a tree-structured predictive model composed of a
root node, internal nodes, and leaf nodes. The root node is the starting point of the tree,
containing the entire dataset and performing the initial split based on a selected feature.
Internal nodes lie below the root node, with each node representing a decision and split on
a particular feature. Leaf nodes are the terminal nodes of the tree, representing the final
classification result or regression value. In regression tasks, a decision tree splits the data at
each node by selecting the optimal feature and split point to minimize the MSE between the
resulting subsets. When the number of samples at a node falls below a predefined minimum,
or when further splitting does not significantly reduce the MSE, the splitting process stops,
and the node is marked as a leaf node. The output value of the leaf node is the mean of
the target variable within that subset. RF enhances prediction accuracy by combining the
results of multiple decision trees without significantly increasing computation time [30]. By
employing bootstrap sampling to generate multiple different subsets of the original training
data randomly, each decision tree is trained on a unique sample set. This randomness
effectively prevents the overfitting issue common to individual decision trees. Additionally,
RF demonstrates strong robustness to missing values and noisy data. These characteristics
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make RF a powerful and widely applied machine learning algorithm that is suitable for
various real-world applications.

3.2. Model Performance Evaluation

In this study, MAE and RMSE are utilized as evaluation metrics to assess the model’s
performance. MAE is the average of the absolute differences between predicted and
actual values, indicating the average magnitude of errors in predictions. RMSE is defined
as the square root of the average of the squared differences between predicted values
and actual values, providing a measure of the difference between the predicted values
and the actual values. Lower values of RMSE and MAE indicate more accurate model
prediction performance.

MAE =
1
n∑n

i=1|yi − ŷi | (8)

RMSE

√
1
n∑n

i=1 (yi − ŷi)
2

(9)

where yi represents the actual values, ŷi represents the predicted values, and n is the
number of observations.

4. Machine Learning Modeling

The ML modeling process is illustrated in Figure 4. The dataset for prediction was
generated using TRNSYS, followed by data preprocessing, including outlier detection and
removal as well as normalization. The pre-processed dataset was then split into a training
set (70%) and a test set (30%). The training set was used to train three models: MLP, SVM,
and RF. Hyperparameter optimization was performed to identify the best hyperparameter
combinations for each model. Finally, the trained optimal models were validated on the
test set, and the predictive performance of the three models was compared.
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4.1. Database and Data Preprocessing

The database for this study is derived from a long-term dynamic TRNSYS simulation
spanning 15 years on a SAHP system. The dynamic analysis performed by Ballerini et al. [6]
aims to investigate the potential use of solar thermal collectors to supply energy to the
borehole field employed by the heat pump during the summer period, when there is no
need for space heating. Different scenarios were considered, varying the number of probes
and the area of solar thermal collectors.

4.1.1. Data Outliers and Detection

The original dataset frequently includes outlier values, which can significantly under-
mine the dataset’s quality and diminish the accuracy and robustness of subsequent models.
Therefore, the detection and removal of outliers is imperative for enhancing database
quality. The interquartile range (IQR) method, a robust statistical method, is particularly
effective in identifying and eliminating outliers from original data.

4.1.2. Min–Max Normalization Cop (Output)

Normalization is also a critical step in data preprocessing, ensuring that each data
point is scaled to fall between 0 and 1, which effectively reduces differences between
features. This process accelerates model training, improves model stability, and enhances
generalization capabilities. X is the original feature value, Xmin is the minimum value of
the feature, and Xmax is the maximum value of the feature and X′ is the normalized value.

X′ =
X − Xmin

Xmax− Xmin

(10)

4.2. Modeling Optimization

For models built, the number of probes, the areas of solar panels, the electricity
consumed, and the energy provided by solar collectors are selected as predictor variables
(inputs), and the predicted value (output) of the model is the COP of the SAHP system.
Our optimization goal is to minimize the values of MAE and RMAE. SVR, MLP with BP,
and RF algorithms are chosen to build models.

Extensive experiments have been conducted to enhance the accuracy of the MLP
prediction model. All model parameters are detailed in Table 1. It is crucial to select the
optimal number of hidden layers and the number of neurons in each layer. Through manual
adjustments of the network architecture, it was determined that a model with four hidden
layers, each containing nine neurons, achieves optimal performance. The experimental
results are summarized in Tables 2 and 3. The selection and tuning of hyperparameters are
also critical to the model’s performance. Properly setting and optimizing hyperparameters
can significantly enhance the model’s accuracy and training efficiency. Following the
determination of the number of layers and neurons per layer, the hyperparameters that
require further optimization include momentum, learning rate, batch size, and the number
of iterations. Introducing momentum can accelerate convergence and reduce oscillations,
with the optimal momentum value typically found between 0 and 1. To determine the
best momentum value, the momentum was incrementally increased from 0.1 to 0.99. The
learning rate dictates the step size for each weight update. A learning rate that is too
high may prevent the model from converging and cause significant fluctuations in the loss
function, while a learning rate that is too low can result in slow convergence and potentially
lead to being trapped in a local optimum. The learning rate gradually increased from
0.001 to 0.5. Batch size refers to the number of training samples used in each iteration. A
larger batch size can provide higher computational efficiency and more accurate gradient
estimates but requires more memory and may lead to model overfitting. Conversely, a
smaller batch size offers lower computational efficiency and noisier gradient estimates but
can help the model escape local optima. The number of iterations indicates how many times
the entire training set is used for training. Insufficient iterations may cause underfitting,
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while excessive iterations can lead to overfitting. After conducting 35 experiments, the
optimal hyperparameter configuration was determined as follows: momentum is set to 0.2,
the learning rate is set to 0.3, the batch size is set to 100, and the number of epochs is set
to 500.

Table 1. Parameter configuration of MLP model.

Optimized Parameters Values

The number of layers 1, 2, 3, 4, 5
The number of nodes at each layer 4, 5, 6, 7, 8, 9, 10, 11, 12

Activation function Sigmoid
Momentum 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99

Learning rate 0.001, 0.01, 0.1, 0.2, 0.3, 0.5
Number of epochs 500, 800

Batch size 100, 1000

Table 2. Accuracy of MLP prediction model with different of the number of layers.

Output Number of Layers

Accuracy
[%]

MAE RMSE MSE RMSE
(Train) (Train) (Test) (Test)

Coefficient of
performance

1 6.54 9.12 6.33 8.67
2 6.11 9.13 5.84 8.64
3 5.82 8.84 5.56 8.34
4 5.57 8.85 5.47 8.33
5 22.83 27.36 22.8 27.26

Table 3. Accuracy of MLP prediction model with different of the number of nodes.

Output Number of Nodes

Accuracy
[%]

MAE RMSE MSE RMSE
(Train) (Train) (Test) (Test)

Coefficient of
performance

4 5.57 8.85 5.47 8.33
5 5.84 8.87 5.61 8.29
6 5.77 9.02 5.51 8.51
7 5.73 8.83 5.47 8.31
8 5.52 8.68 5.27 8.18
9 5.5 8.74 5.24 8.21
10 5.58 8.78 5.33 8.25
11 5.68 8.82 5.42 8.3
12 5.53 8.75 5.28 8.22

To optimize the performance of the SVR model, it is crucial to select an appropriate
kernel function, C (regularization parameter), and ε (error tolerance parameter); the detailed
parameter configuration of the SVR model is shown in Table 4. Firstly, a suitable kernel
function should be chosen to map input data to a high-dimensional feature space. This
study evaluated several kernel functions, including the polynomial kernel, RBF kernel,
and PUK kernel, and the predictive accuracy of the SVR model under each kernel function
is summarized in Table 5. The results show that the PUK kernel function demonstrates
superior performance. The parameters σ and θ of the kernel function significantly affect
the model’s complexity, fitting capacity, and generalization performance. The parameter
σ controls the width of the kernel function. Larger σ values increase the range of influence
of the kernel function, while smaller σ values decrease it. The parameter ω adjusts the
shape of the kernel function, allowing the kernel to fit the data distribution better. In
this study, σ was tested at values of 0.1, 0.5, 1, and 2, with the model performing best
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when σ is set to 0.1. Likewise, ω was tested at values of 1, 1.5, 2, and 3, and the model
showed the best performance when ω is set to 1. After selecting an appropriate kernel
function and completing the optimization of its parameters, other parameters that need to
be optimized include C and ε. The C parameter balances the trade-off between achieving a
low training error and a low model complexity. A higher C value emphasizes minimizing
the training error, potentially leading to overfitting, while a lower C value results in a
smoother decision surface and may cause underfitting. Various values, including 1, 2, 5, 8,
and 10, were tested for C, with the results indicating that the model achieved the lowest
MSE when C was established at 10. ε defines a margin of tolerance where no penalty is
given for errors. It determines the width of the ε-insensitive zone used to fit the training
data. Larger values of ε result in fewer support vectors and a smoother function, while
smaller values make the function fit the data more closely. To determine an optimal ε, this
study explored a range of values from 10−1 to 10−4, ultimately identifying that the model
exhibited superior performance when ε was configured at 10−4. Following an extensive
series of 19 experiments, the optimal hyperparameter configuration for the SVR model was
determined as follows: C is set to 10, ε is 10−4, ω), and σ is 0.1.

Table 4. Parameter configuration of SVR model.

Optimized Parameters Values

Kernel function PUK, RBF, Poly
C 1, 2, 5, 8, 10

ε (Epsilon) 10−1, 10−2, 10−3, 10−4

σ (Sigma) 0.1, 0.5, 1,2
ω (Omega) 1, 1.5, 2, 3

Table 5. Accuracy of SVR prediction model using different kernel functions.

Output Kernel Function

Accuracy [%]

MAE RMSE MSE RMSE
(Train) (Train) (Test) (Test)

Coefficient of
performance

PUK 5.91 7.71 5.89 7.75
RBF 6.97 9.8 6.79 9.39
Poly 21.49 25.53 21.58 25.59

The accuracy of the RF model is significantly influenced by the maximum depth of the
decision trees, the maximum number of features, and the number of decision trees, and
the parameter settings for the RF model are comprehensively described in Table 6. When
the maximum depth of the trees is low, the model structure is simple and less complex.
In this scenario, the model may not sufficiently capture the complex patterns in the data,
leading to underfitting. As the maximum depth of the trees increases, the model structure
becomes more complex, allowing it to capture finer details and complex patterns in the
data. However, deeper trees are also more prone to overfitting the training data, capturing
noise and outliers, reducing the model’s generalization ability, and decreasing the test
set’s accuracy. In this study, the maximum depth of the decision trees was manually
adjusted, increasing incrementally from 10 to 60. Experimental results indicate that when
the depth reached 35, the model’s MSE was minimized. Regarding max features, when this
parameter is set to a lower value, each tree uses only a subset of features for splitting. This
randomness helps reduce the model’s dependency on specific features, thereby lowering
the risk of overfitting. Although smaller max features can decrease overfitting, it may also
lead to the omission of some key features, preventing the model from thoroughly learning
the complex patterns in the data and potentially decreasing overall accuracy. When max
features are set to a higher value, the model can utilize more information for splitting,
usually improving the accuracy of individual trees. However, this also increases the risk of
overfitting, especially when the number of features is large, and the number of samples is
small. The maximum number of features was gradually increased from 1 to 3, and results
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show that when the maximum number of features was set to 3, the MSE on the test set
reached its lowest value. Moreover, the number of decision trees is crucial in determining
the model’s accuracy. The greater the number of trees, the more stable and accurate the
model tends to be, as more trees can reduce the model’s variance and minimize the impact
of individual tree prediction errors on the overall model. However, increasing the number
of trees also raises computational costs and time. By manually increasing the number of
decision trees, it was found that the model performed optimally when the number of trees
reached 500. Through a series of 12 experimental runs, the optimal configuration for the
RF model was established as comprising 500 decision trees, a maximum depth of 35, and
a maximum of three features. This configuration effectively balances model complexity
with computational resources, significantly enhancing both the accuracy and generalization
capability of the model.

Table 6. Parameter configuration of RF model.

Optimized Parameters Values

Max depth 10, 20, 30, 35, 40, 60
Max-feature 1, 2, 3

The number of trees 100, 300, 500

5. Result and Discussion
5.1. Prediction Accuracy

In this study, MLP, SVM, and RF models have been used to predict the COP of
SAHP systems. To evaluate the accuracy of the models, MAE and RMSE are used as
key performance indicators. Typically, models with lower MAE and RMSE values are
considered to have higher predictive accuracy. In the performance evaluation of the
training set, the MLP model exhibited a MAE of 5.5% and a RMSE of 8.74%. The SVR
model achieved an MAE of 5.91% and an RMSE of 7.71%, while the RF model attained an
MAE of 2.42% and an RMSE of 4.01%. The evaluation results on the test set indicate that
the MLP model had an MAE of 5.24% and an RMSE of 8.21%. Similarly, the SVR model
showed an MAE of 5.89% and an RMSE of 7.75%. Meanwhile, the RF model demonstrated
an MAE of 2.35% and an RMSE of 3.84%, and Table 7 summarizes the MAE and RMSE
values for the three models on both the training and testing datasets. The results indicate
that the RF models exhibit superior predictive accuracy compared to the MLP and SVR
models. Figures 5–7 illustrate the comparison between the predicted COP values of the
models and the TRNSYS simulated COP values. The prediction results of all three models
are highly consistent with the TRNSYS simulation results. Additionally, a Y = X line
is added in the figures, with data points closer to this line indicating higher prediction
accuracy. It is evident from the figures that the RF model’s data points are the closest to
the Y = X line among the three models. Figures 8–10 illustrate the differences between
the predicted values and the TRNSYS-simulated values for the three models in both the
training and testing datasets. In these figures, the error expression presented on the y-axis
shows the difference between the TRNSYS simulation and the predicted COP values for
the entire dataset. Prediction errors originating from MLP, SVM, and RF machine learning
methods are displayed with red, blue, and green lines, respectively. Closeness to the zero
point indicates good prediction performance, while large fluctuations from the zero point
indicate poor prediction performance. In the training set, the maximum errors between the
predicted values and TRNSYS-simulated values for the MLP, SVR, and RF models are 1.34,
1.51, and 0.73, respectively. In the testing set, the maximum error for the MLP model is 1.10,
for the SVM model is 1.51, and for the RF model is 0.54. In contrast, the RF model exhibits
significantly smaller fluctuations in both the training and testing sets compared to the MLP
and SVR models. Overall, the RF model demonstrates the best performance among the
three predictive models, indicating it is the most reliable and accurate model.
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Table 7. Accuracy of prediction models.

Output Prediction Model

Accuracy [%]

MAE RMSE MSE RMSE
(Train) (Train) (Test) (Test)

Coefficient of
performance

MLP 5.5 8.74 5.24 8.21
SVR 5.91 7.71 5.89 7.75
RF 2.42 4.01 2.35 3.84
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5.2. Training Time

Computational efficiency is another important factor to consider when evaluating a
model. The time required to build the three models is presented in Table 8. The MLP model
takes 33.01 s to build, while the SVM model requires 67.67 s. In contrast, the RF model is
built in only 6.57 s. Compared to the MLP and SVM models, the RF model demonstrates
a significantly shorter training time. This is likely because, although the RF comprises
multiple decision trees, these trees can be generated in parallel. Since the construction
of each decision tree is independent of the others, the RF model benefits from parallel
computation on multi-core processors, thus accelerating the training process. Additionally,
the RF model has a relatively simpler structure compared to the MLP model, requiring
fewer computational resources, which further contributes to its shorter training time.

Table 8. Modeling time of prediction models.

Prediction Model Values [s]

MLP 33.01
SVR 67.67
RF 6.57

6. Conclusions

This study developed COP prediction models for SAHP systems using data-driven in-
telligent algorithms. Three algorithms, namely MLP, SVR, and RF, were evaluated regarding
prediction accuracy and computational efficiency. The evaluation metrics included MAE
and RMSE for accuracy, while modeling time was used to assess computational efficiency.
A methodological approach was followed and described in detail. The analysis results
indicate that data-driven algorithms are highly effective in predicting the performance of
SAHP systems.
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It can be concluded that the RF model outperformed the MLP and SVR models in
both accuracy and computational efficiency. Specifically, the RF model achieved an MAE
of 2.42% and an RMSE of 4.01% on the training set, and an MAE of 2.35% and an RMSE
of 3.84% on the test set, with a modeling time of only 6.57 s. These findings suggest that
the RF model is an effective method for predicting the performance of the SAHP system
and also provide a solid foundation for the future development of real-time performance
management systems for SAHP.

Future work will focus on optimizing the system design based on the RF prediction
model. This includes exploring the optimal configuration of the solar panel area and the
number of probes to further reduce costs and enhance the system’s energy efficiency.
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