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Abstract
We are concerned with the Cauchy problem for the
semilinear parabolic equation driven by themixed local–
nonlocal operator  = −Δ + (−Δ)𝑠, with a power-like
source term. We show that the so-called Fujita phe-
nomenonholds, and the critical value is exactly the same
as for the fractional Laplacian.
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1 INTRODUCTION

Let  be the mixed local–nonlocal operator  = −Δ + (−Δ)𝑠, where (−Δ)𝑠 stands for the frac-
tional Laplacian of order 𝑠 ∈ (0, 1). We investigate global existence and blow-up of solutions to
semilinear parabolic equations driven by  of the following type:{

𝜕𝑡𝑢 + 𝑢 = 𝑢𝑝 in ℝ𝑁 × (0, +∞)

𝑢 = 𝑢0 in ℝ𝑁,
(1.1)

where 𝑝 > 1 and 𝑢0 is a given nonnegative initial datum.
Bibliographical notes: global existence and blow-up. Global existence and blow-up of solutions

have been largely studied in the literature. Concerning the purely local case  = −Δ, it has been
shown in [23], and in [35, 38] for the critical case, that

(a) if 1 < 𝑝 ⩽ 1 + 2

𝑁
, any solution of (1.1) blows up in finite-time, provided that 𝑢0 ≢ 0;
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266 BIAGI et al.

(b) if 𝑝 > 1 + 2

𝑁
, then there exists a global in time solution of (1.1), provided that 𝑢0 is sufficiently

small.

Such a dichotomy is known as the Fujita phenomenon. We refer, for example, to [1, 18, 41] and the
references therein, for a complete account about blow-up and global existence of solutions in the
purely local case  = −Δ.
This question has been addressed also on Riemannian manifolds when  is the Laplace–

Beltrami operator; in this direction, some results can be found, for example, in [2, 33, 34, 42, 46, 47,
55, 57]. Furthermore, analogue results have also been established for local quasilinear evolution
equations (see, for example, [29–32, 42–44]).
On the other hand, when  = (−Δ)𝑠 in [54] it is shown that if 𝑝 ⩽ 1 + 2𝑠

𝑁
, then any solution

arising from a nontrivial initial datum 𝑢0 blows up in finite time (see also [22]). Such a result
has been generalized in [40] for more general source terms. Moreover, in [37] (see also [36]), for
𝑝 > 1 + 2𝑠

𝑁
, global in time solutions are considered, and the asymptotic behavior of solutions as

𝑡 → +∞ has been studied.
Bibliographical notes: mixed local–nonlocal operators. Recently, the study of qualitative prop-

erties of solutions to partial differential equations, mainly of elliptic but also of parabolic type,
driven by the mixed operator  has been attracting much attention (see [5–13, 17, 24–27]). One of
the main reasons for this interest is that mixed operators of the form  have applications in prob-
ability; indeed, they are related to the superposition of different types of stochastic processes such
as a classical random walk and a Lévy flight. Furthermore, they are exploited to model various
phenomena in sciences, such as the study of optimal animal foraging strategies, see, for example,
[19, 20] and references therein.
Description of our results. Along the above-described line of research, in the present paper we

deal with nonnegative solutions to problem (1.1). The main result of this paper will be given in
detail in the forthcoming Theorem 3.3; however, we give here a sketchy outline of this result. In
particular, we show that if 𝑝 ⩽ 1 + 2𝑠

𝑁
, then problem (1.1) does not admit any global solution with

𝑢0 ≢ 0. On the other hand, if 𝑝 > 1 + 2𝑠

𝑁
, then there exists a global in time solution, provided that

𝑢0 is small enough. We point out that problem (1.1) behaves like the problem with  = (−Δ)𝑠; in
other terms, for what concerns existence and nonexistence of global in time solutions the mixed
local–nonlocal operator has the same character as the nonlocal operator (−Δ)𝑠. The proof of the
nonexistence of global solutions is based on a test functions argument and on suitable a priori
estimates. Furthermore, the global solution is constructed by an iteration method, which exploits
in a crucial way the estimates from above for the heat kernel of .
Plan of the paper. The paper is organized as follows. In Section 2 we fix the notation and recall

some preliminary results concerning the fractional Laplacian, the operator  and the heat kernel
of . In Section 3 we give the precise definition of solution to problem (1.1) and we state our main
existence/nonexistence result, which is then proved in Section 4.

2 MATHEMATICAL BACKGROUND

Notation. Throughout the paper, wewill tacitly exploit all the notation listed below; we thus refer
the Reader to this list for any nonstandard notation encountered.

∙ We denote by ℝ+ (resp. ℝ+
0
) the interval (0, +∞) (resp., [0, +∞)).
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LOCAL-NONLOCAL FUJITA-TYPE RESULTS 267

∙ Given any 𝑥0 ∈ ℝ𝑁 and any 𝑟 > 0, we denote by 𝐵𝑟(𝑥0) the open (Euclidean) ball with center
𝑥0 and radius 𝑟; in the particular case when 𝑥0 = 0, we simply write 𝐵𝑟.

∙ Given any 0 < 𝑇 ⩽ +∞, we denote by 𝑆𝑇 the (infinite) strip ℝ𝑁 × (0, 𝑇); in the particular case
when 𝑇 = +∞, we simply write 𝑆 in place of 𝑆+∞.

∙ If 𝐴 is an arbitrary set in some Euclidean space ℝ𝑚 (with 𝑚 ⩾ 1), we denote by 𝟏𝐴 the usual
indicator function of 𝐴, that is,

𝟏𝐴(𝑧) =

{
1 if 𝑧 ∈ 𝐴

0 if 𝑧 ∉ 𝐴.

∙ Wedenote by 0 the set (vector space) of the functions𝜑 ∈ 𝐶∞(𝑆) for which there exist numbers
𝑟, 𝑇 > 0 (possibly depending on 𝜑) such that

𝜑 ≡ 0 out of 𝐵𝑟 × [0, 𝑇).

∙ Given any 𝑠 ∈ (0, 1), we denote by 𝐿𝑠 the tail space

𝐿𝑠(ℝ
𝑁) ∶=

{
𝑓 ∶ ℝ𝑁 → ℝ ∶ ‖𝑓‖1,𝑠 ∶= ∫ℝ𝑁

|𝑓(𝑥)|
1 + |𝑥|𝑁+2𝑠

dx < +∞

}
.

∙ Given any open interval 𝐼 ⊆ ℝ, any Banach space (𝑋, ‖ ⋅ ‖𝑋) and any 1 ⩽ 𝜃 ⩽ ∞, we denote by
𝐿𝜃(𝐼; 𝑋) the space of the 𝐿𝜃-functions taking values in 𝑋, that is,

𝐿𝜃(𝐼; 𝑋) =
{
𝑓 ∶ 𝐼 → 𝑋 ∶ 𝔫𝑋(𝑓)(𝑡) ∶= ‖𝑓(𝑡)‖𝑋 ∈ 𝐿𝜃(𝐼)

}
.

If 𝑓 ∈ 𝐿𝜃(𝐼; 𝑋), we define ‖𝑓‖𝜃,𝐼,𝑋 ∶= ‖𝔫𝑋(𝑓)‖𝐿𝜃(𝐼).
∙ If 𝑋,𝑌 are real normed vector spaces, we denote by 𝐵(𝑋, 𝑌) the set (vector space) of the linear,
bounder operators from 𝑋 into 𝑌.

∙ We denote by 𝔉 the Fourier transform on 𝐿2(ℝ𝑁), normalized in such a way that it is an
isometry; as a consequence, for every 𝑓 ∈ 𝐿2(ℝ𝑁) ∩ 𝐿1(ℝ𝑁) we have

𝔉(𝑓)(𝜉) =
1

(2𝜋)𝑁∕2 ∫ℝ𝑁
𝑒−𝚤⟨𝑥,𝜉⟩𝑓(𝑥) 𝑑𝑥.

As anticipated in the Introduction, in this ‘preliminary’ section we collect several definitions
and known results, which will allow us to clearly state our main contribution (see Theorem 3.3 in
Section 3), and to make the manuscript as self-contained as possible.

2.1 The mixed operator  = −𝚫 + (−𝚫)𝒔

In order to clearly state the main result of this paper, we first need to fix some notation and to
properly define what we mean by a solution to the Cauchy problem (1.1); due to the mixed nature
of , this will require some preliminaries.
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268 BIAGI et al.

(1) The fractional Laplacian. Let 𝑠 ∈ (0, 1) be fixed, and let 𝑢 ∶ ℝ𝑁 → ℝ. The fractional
Laplacian (of order 𝑠) of 𝑢 at a point 𝑥 ∈ ℝ𝑁 is defined as follows:

(−Δ)𝑠𝑢(𝑥) = 𝐶𝑁,𝑠 ⋅ P.V.∫ℝ𝑁

𝑢(𝑥) − 𝑢(𝑦)|𝑥 − 𝑦|𝑁+2𝑠
𝑑𝑦

= 𝐶𝑁,𝑠 ⋅ lim
𝜀→0+ ∫{|𝑥−𝑦|⩾𝜀}

𝑢(𝑥) − 𝑢(𝑦)|𝑥 − 𝑦|𝑁+2𝑠
𝑑𝑦,

(2.1)

provided that the limit exists and is finite. Here, 𝐶𝑁,𝑠 > 0 is a suitable normalization constant
which plays a role in the limit as 𝑠 → 0+ or 𝑠 → 1−, and is explicitly given by

𝐶𝑁,𝑠 =
22𝑠−12𝑠Γ((𝑁 + 2𝑠)∕2)

𝜋𝑁∕2Γ(1 − 𝑠)
.

As it is reasonable to expect, for (−Δ)𝑠𝑢(𝑥) to be well-defined one needs to impose suitable growth
conditions on the function 𝑢, both when |𝑦| → +∞ and when 𝑦 → 𝑥. In this perspective we state
the following proposition (see [39, 51] for a proof).

Proposition 2.1. LetΩ ⊆ ℝ𝑁 be an open set. Then, the following facts hold.

(i) If 0 < 𝑠 < 1∕2 and 𝑢 ∈ 𝐶
2𝑠+𝛾

loc
(Ω) ∩ 𝐿𝑠(ℝ

𝑁) for some 𝛾 ∈ (0, 1 − 2𝑠), then

∃ (−Δ)𝑠𝑢(𝑥) = 𝐶𝑁,𝑠 ∫ℝ𝑁

𝑢(𝑦) − 𝑢(𝑥)|𝑥 − 𝑦|𝑁+2𝑠
𝑑𝑦 for all 𝑥 ∈ Ω.

(ii) If 1∕2 < 𝑠 < 1 and 𝑢 ∈ 𝐶
1,2𝑠−1+𝛾

loc
(Ω) ∩ 𝐿𝑠(ℝ

𝑁) for some 𝛾 ∈ (0, 2 − 2𝑠), then

∃ (−Δ)𝑠𝑢(𝑥) = −
𝐶𝑁,𝑠

2 ∫ℝ𝑁

𝑢(𝑥 + 𝑧) + 𝑢(𝑥 − 𝑧) − 2𝑢(𝑥)|𝑧|𝑁+2𝑠
𝑑𝑦 for all 𝑥 ∈ Ω.

Moreover, in both cases (i) and (ii) we have (−Δ)𝑠𝑢 ∈ 𝐶(Ω).

In the particular case whenΩ = ℝ𝑁 and 𝑢 ∈  ⊆ 𝐿𝑠(ℝ
𝑁) (here and throughout,  denotes the

usual Schwartz space of the rapidly decreasing functions), it is possible to provide an alternative
expression of (−Δ)𝑠𝑢 (which iswell defined on thewhole ofℝ𝑁 , see Proposition 2.1) via the Fourier
Transform𝔉; more precisely, we have the subsequent result.

Proposition 2.2. Let 𝑢 ∈  ⊆ 𝐿𝑠(ℝ
𝑁). Then,

∃ (−Δ)𝑠𝑢(𝑥) = 𝔉−1
(|𝜉|2𝑠𝔉 (𝑢)

)
(𝑥) for every 𝑥 ∈ ℝ𝑁. (2.2)

It should be noted that, on account of (2.2), it is immediate to recognize that the Schwartz space
 is not preserved by the fractional Laplacian (−Δ)𝑠 (as |𝜉|2𝑠𝔉𝑢 is not regular at 𝜉 = 0), that is, one
has (−Δ)𝑠() ⊈  ; however, we have the following characterization of the image

𝑠 = (−Δ)𝑠(),
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LOCAL-NONLOCAL FUJITA-TYPE RESULTS 269

which will be crucial to give the definition of solution of problem (1.1).

Proposition 2.3 See, for example, [53, Lemma 1]. Setting 𝑠 = (−Δ)𝑠(), we have

𝑠 =
{
𝜓 ∈ 𝐶∞(ℝ𝑁) ∶ (1 + |𝑥|𝑁+2𝑠)𝐷𝛼𝜓 ∈ 𝐿∞(ℝ𝑁) for every 𝛼 ∈ (ℕ ∪ {0})𝑁

}
.

Another consequence of the ‘representation formula’ (2.2), which plays a fundamental role in
our argument (and, in general, in the analysis of the fractional Laplace operator (−Δ)𝑠), is the
possibility of realizing this operator as a densely defined, self-adjoint and nonnegative operator on
the Hilbert space 𝐿2(ℝ𝑁), whose associated heat semigroup admits a global heat kernel. Indeed,
taking into account (2.2), it is natural to define

𝑠 ∶ 𝐻𝑠(ℝ𝑁) ⊆ 𝐿2(ℝ𝑁) → 𝐿2(ℝ𝑁), 𝑠(𝑢) = 𝔉−1
(|𝜉|2𝑠𝔉(𝑢)

)
where𝐻𝑠(ℝ𝑁) =

{
𝑢 ∈ 𝐿2(ℝ𝑁) ∶ |𝜉|2𝑠𝔉(𝑢) ∈ 𝐿2(ℝ𝑁)

}
.

(2.3)

Clearly, we have  ⊆ 𝐻𝑠(ℝ𝑁), and thus 𝑠 is densely defined; moreover, by (2.2) one has

𝑠(𝑢) = (−Δ)𝑠𝑢 for every 𝑢 ∈  ⊆ 𝐻𝑠(ℝ𝑁),

and this shows that𝑠 is indeed a realization of (−Δ)𝑠 on 𝐿2(ℝ𝑁). We then observe that, since the
map𝔉 is an isometry of 𝐿2(ℝ𝑁), for every 𝑢, 𝑣 ∈ 𝐻𝑠(ℝ𝑁) we get

(i) ⟨𝑠(𝑢), 𝑣⟩𝐿2(ℝ𝑁) = ⟨𝔉(𝑠(𝑢)), 𝔉(𝑣)⟩𝐿2(ℝ𝑁) = ⟨|𝜉|2𝑠𝔉(𝑢),𝔉(𝑣)⟩𝐿2(ℝ𝑁)

= ⟨𝔉(𝑢), |𝜉|2𝑠𝔉(𝑣)⟩𝐿2(ℝ𝑁) = ⟨𝑢,𝔉−1(|𝜉|2𝑠𝔉(𝑣))⟩𝐿2(ℝ𝑁)

= ⟨𝑢,𝑠(𝑣)⟩𝐿2(ℝ𝑁);

(ii) ⟨𝑠(𝑢), 𝑢⟩𝐿2(ℝ𝑁) = ⟨𝔉(𝑠(𝑢)), 𝔉(𝑢)⟩𝐿2(ℝ𝑁) = ⟨|𝜉|2𝑠𝔉(𝑢),𝔉(𝑢)⟩𝐿2(ℝ𝑁)

= ⟨|𝜉|𝑠𝔉(𝑢), |𝜉|𝑠𝔉(𝑢)⟩𝐿2(ℝ𝑁) ⩾ 0;

and thus 𝑠 is self-adjoint and nonnegative. As a consequence of these facts, we are then enti-
tled to apply [28, Theorem 4.9], ensuring that the operator −𝑠 generates a strongly continuous
semigroup on the Hilbert space 𝐿2(ℝ𝑁), say {𝑇(𝑡)}𝑡⩾0. By this, we mean that

(P1) for every fixed 𝑡 ⩾ 0, we have 𝑇(𝑡) ∈ 𝐵(𝐿2(ℝ𝑁), 𝐿2(ℝ𝑁));
(P2) 𝑇(𝑡 + 𝜏) = 𝑇(𝑡)◦𝑇(𝜏) for every 𝑡, 𝜏 ⩾ 0;
(P3) for every fixed 𝑡 ⩾ 0 and 𝑓 ∈ 𝐿2(ℝ𝑁), we have

lim
𝜏→𝑡

𝑇(𝜏)𝑓 = 𝑇(𝑡)𝑓 in 𝐿2(ℝ𝑁);

(P4) for every fixed 𝑡 > 0 and 𝑓 ∈ 𝐿2(ℝ𝑁), we have 𝑇(𝑡)𝑓 ∈ 𝐻𝑠(ℝ𝑁) and

𝑑

𝑑𝑡
(𝑇(𝑡)𝑓) = lim

ℎ→0

𝑇(𝑡 + ℎ)𝑓 − 𝑇(𝑡)𝑓

ℎ
= −𝑠(𝑇(𝑡)𝑓) in 𝐿2(ℝ𝑁).
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270 BIAGI et al.

This semigroup is called the heat semigroup of −(−Δ)𝑠, and it is denoted by (𝑒−𝑡(−Δ)𝑠 )𝑡⩾0.
Wenowobserve that, starting fromproperty (P4) and exploiting the Fourier transform (together

with the very definition of 𝑠), it is easy to show that the operator 𝑒−𝑡(−Δ)𝑠 (for every 𝑡 > 0) is
actually an integral operator on 𝐿2(ℝ𝑁) with a kernel of convolution type.
Indeed, let 𝑓 ∈ 𝐿2(ℝ𝑁) be fixed, and let

𝑢 ∶ [0, +∞) → 𝐿2(ℝ𝑁), 𝑢(𝑡)(𝑥) = 𝑒−𝑡(−Δ)𝑠𝑓(𝑥).

Using property (P4) and applying the Fourier transform, we see that

∗) 𝔉(𝑢′(𝑡)) = 𝔉

(
𝑥 ↦

𝑑

𝑑𝑡

(
𝑒−𝑡(−Δ)𝑠𝑓

)
(𝑥)

)
= −𝔉

(
𝑥 ↦ 𝑠(𝑒

−𝑡(−Δ)𝑠𝑓)(𝑥)
)

= −|𝜉|2𝑠𝔉(
𝑥 ↦ 𝑒−𝑡(−Δ)𝑠𝑓(𝑥)

)
= −|𝜉|2𝑠𝔉(𝑢(𝑡)),

∗) 𝔉(𝑢(0)) = 𝔉
(
𝑥 ↦ 𝑒−0⋅(−Δ)𝑠𝑓(𝑥)

)
= 𝔉(𝑓),

which is a (formal) first-order, linear Cauchy problem for 𝑡 ↦ 𝔉(𝑢(𝑡))(𝜉) (for every fixed 𝜉 ∈ ℝ𝑁);
as a consequence, by formally solving this problem, we derive

𝔉(𝑢(𝑡))(𝜉) = 𝔉(𝑓)(𝜉)𝑒−𝑡|𝜉|2𝑠 for all 𝜉 ∈ ℝ𝑁, 𝑡 ⩾ 0.

Since we have expressed𝔉(𝑢(𝑡)) as a product of two functions, by using the well-known properties
of the Fourier transform we then conclude that

𝑒−𝑡(−Δ)𝑠𝑓(𝑥) = 𝑢(𝑡)(𝑥) = 𝔉−1
(
𝑒−𝑡|𝜉|2𝑠 ⋅ 𝔉(𝑓)

)
= (𝔥(𝑠)

𝑡 ∗ 𝑓)(𝑥) = ∫ℝ𝑁
𝔥(𝑠)
𝑡 (𝑥 − 𝑦)𝑓(𝑦) 𝑑𝑦,

(2.4)

where, for every 𝑧 ∈ ℝ𝑁 and 𝑡 > 0, we have

𝔥(𝑠)
𝑡 (𝑧) =

1

(2𝜋)𝑁∕2
𝔉−1

(
𝑒−𝑡|𝜉|2𝑠)(𝑧) =

1

(2𝜋)𝑁 ∫ℝ𝑁
𝑒𝚤⟨𝑧,𝜉⟩−𝑡|𝜉|2𝑠 𝑑𝜉. (2.5)

This function (𝑡, 𝑧) ↦ 𝔥(𝑠)
𝑡 (𝑧) is usually referred to as the heat kernel of−(−Δ)𝑠, and it satisfies the

following properties (see, for example, [3, 4, 14, 15, 54] for a complete proof):

(1) 𝔥(𝑠) ∈ 𝐶∞(ℝ+ × ℝ𝑁) and 𝔥(𝑠) > 0;
(2) for every 𝑥 ∈ ℝ𝑁 and 𝑡 > 0, we have

𝔥(𝑠)
𝑡 (𝑥) = 𝔥(𝑠)

𝑡 (−𝑥) and 𝔥(𝑠)
𝑡 (𝑥) =

1

𝑡𝑁∕(2𝑠)
𝔥(𝑠)
1

(𝑡−𝑁∕(2𝑠)𝑥);

(3) for every fixed 𝑥 ∈ ℝ𝑁 and 𝑡 > 0, we have

∫ℝ𝑁
𝔥(𝑠)
𝑡 (𝑥) 𝑑𝑦 = 1;
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LOCAL-NONLOCAL FUJITA-TYPE RESULTS 271

(4) for every fixed 𝑥 ∈ ℝ𝑁 and 𝑡, 𝜏 > 0, we have

∫ℝ𝑁
𝔥(𝑠)
𝑡 (𝑥 − 𝑦)𝔥(𝑠)

𝜏 (𝑦) 𝑑𝑦 = 𝔥(𝑠)
𝑡+𝜏(𝑥);

(5) there exists 𝐶 ⩾ 1 such that

𝐶−1 min
{
𝑡−𝑁∕(2𝑠),

𝑡|𝑥|𝑁+2𝑠

}
⩽ 𝔥(𝑠)

𝑡 (𝑥) ⩽ 𝐶 min
{
𝑡−𝑁∕(2𝑠),

𝑡|𝑥|𝑁+2𝑠

}
for every 𝑥 ∈ ℝ𝑁 and every 𝑡 > 0. (2.6)

(2) The heat kernel of . Now we have reviewed a few basic concepts on the fractional Laplace
operator (−Δ)𝑠, we spend a few words concerning the heat semigroup and the associated global
heat kernel of the operator − = Δ − (−Δ)𝑠 (we refer, for example, to [52] for a thorough investi-
gation on this topic); this kernel will be used to introduce the notion ofmild solution to the Cauchy
problem (1.1) (see Definition 3.1).
Our starting point is the usual realization of the operator −Δ in 𝐿2(ℝ𝑁): denoting by 𝐻2(ℝ𝑁)

the classical Sobolev space𝑊2,2(ℝ𝑁), it is very well known that the operator

 ∶ 𝐻2(ℝ𝑁) → 𝐿2(ℝ𝑁), (𝑢) = 𝔉−1
(|𝜉|2𝔉(𝑢)

)
,

satisfies the following properties:

(a)  is a densely defined, positive and self-adjoint operator;
(b) (𝑢) = −Δ𝑢 for every 𝑢 ∈  ⊆ 𝐻2(ℝ𝑁)

(actually, the above properties of  can be proved by repeating verbatim the computation
carried out in the previous paragraph with the ‘formal’ choice 𝑠 = 1, see also [21, Section 4.3]).
On the other hand, by exploiting the characterization of the Sobolev spaces𝐻𝑘(ℝ𝑁) (for 𝑘 ⩾ 1)

in terms of𝔉 (see, for example, [21, Section 5.8.4]), we have

𝐻2(ℝ𝑁) =
{
𝑢 ∈ 𝐿2(ℝ𝑁) ∶ |𝜉|2𝔉(𝑢) ∈ 𝐿2(ℝ𝑁)

}
⊆ 𝐻𝑠(ℝ𝑁);

thus, taking into account (2.3), we can define

 ∶ 𝐻2(ℝ𝑁) → 𝐿2(ℝ𝑁), (𝑢) = (𝑢) + 𝑠(𝑢) = 𝔉−1
(|𝜉|2𝔉(𝑢)

)
+ 𝔉−1

(|𝜉|2𝑠𝔉(𝑢)
)
.

Clearly, by combining the properties of 𝑠 (discussed in the previous paragraph) with the prop-
erties of recalled above, we immediately derive that  =  + 𝑠 is a densely defined, positive
and self-adjoint operator which realizes  on 𝐿2(ℝ𝑁): indeed, we have

(𝑢) = 𝑢 for every 𝑢 ∈  ⊆ 𝐻2(ℝ𝑁).

We can then exploit once again [28, Theorem 4.9], which ensures that also the operator −
generates a strongly continuous semigroup in the Hilbert space 𝐿2(ℝ𝑁), which we denote by

(𝑒−𝑡)𝑡⩾0
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272 BIAGI et al.

(that is, the family (𝑒−𝑡)𝑡⩾0 satisfies the same properties (P1)–(P4) in the previous paragraph, with
− in place of −𝑠); this semigroup is called the heat semigroup of −.
Now, by arguing exactly as in the previous paragraph, we see that the operator 𝑒−𝑡 (for every

fixed 𝑡 > 0) is a integral operator with convolution-type kernel; more precisely, we have

𝑒−𝑡𝑓(𝑥) = (𝔭𝑡 ∗ 𝑓)(𝑥) = ∫ℝ𝑁
𝔭𝑡(𝑥 − 𝑦)𝑓(𝑦) 𝑑𝑦 (for every 𝑓 ∈ 𝐿2(ℝ𝑁)), (2.7)

where, for every 𝑧 ∈ ℝ𝑁 and 𝑡 > 0, we have

𝔭𝑡(𝑧) =
1

(2𝜋)𝑁∕2
𝔉−1

(
𝑒−𝑡(|𝜉|2+|𝜉|2𝑠))(𝑧) =

1

(2𝜋)𝑁 ∫ℝ𝑁
𝑒𝚤⟨𝑧,𝜉⟩−𝑡(|𝜉|2+|𝜉|2𝑠) 𝑑𝜉 (2.8)

(note that 𝔉(𝑓) = (|𝜉|2 + |𝜉|2𝑠)𝔉(𝑓)); on the other hand, by exploiting (2.5) (jointly with the
explicit expression of𝔉−1(𝑒−𝑡|𝜉|2) and the properties of the Fourier transform), we obtain

𝔭𝑡(𝑧) =
1

(2𝜋)𝑁∕2
𝔉−1

(
𝑒−𝑡|𝜉|2 ⋅ 𝑒−𝑡|𝜉|2𝑠)(𝑧)

=
1

(2𝜋)𝑁∕2
𝔉−1

(
(2𝜋)𝑁∕2𝔉(𝔤𝑡) ⋅ (2𝜋)𝑁∕2𝔉(𝔥(𝑠)

𝑡 )
)
(𝑧)

= 𝔉−1
(
(2𝜋)𝑁∕2 𝔉(𝔤𝑡) ⋅ 𝔉(𝔥(𝑠)

𝑡 )
)
(𝑧)

= (𝔤𝑡 ∗ 𝔥(𝑠)
𝑡 )(𝑧),

where 𝔤𝑡(𝑧) is the usual Gauss–Weierstrass heat kernel of Δ, that is,

𝔤𝑡(𝑧) =
1

(4𝜋𝑡)𝑁∕2
𝑒−|𝑧|2∕(4𝑡).

Summing up, we conclude that

𝔭𝑡(𝑧) =
1

(4𝜋𝑡)𝑁∕2 ∫ℝ𝑁
𝑒−|𝑧−𝜁|2∕(4𝑡)𝔥(𝑠)(𝜁) 𝑑𝜁 (𝑧 ∈ ℝ𝑁, 𝑡 > 0). (2.9)

This function (𝑡, 𝑧) ↦ 𝔭𝑡(𝑧) is referred to as the heat kernel of −, and it satisfies analogous prop-
erties to that of 𝔥(𝑠); for a future reference, we collect these properties (which easily follow from
the ‘explicit’ expression of 𝔭 in (2.8)–(2.9)) in the next theorem.

Theorem 2.4. The heat kernel 𝔭 satisfies the following properties.

(1) 𝔭 ∈ 𝐶∞(ℝ+ × ℝ𝑁) and 𝔭 > 0.
(2) For every 𝑥 ∈ ℝ𝑁 and 𝑡 > 0, we have

𝔭𝑡(𝑥) = 𝔭𝑡(−𝑥).

(3) For every fixed 𝑥 ∈ ℝ𝑁 and 𝑡 > 0, we have

∫ℝ𝑁
𝔭𝑡(𝑥 − 𝑦) 𝑑𝑦 = 1.
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LOCAL-NONLOCAL FUJITA-TYPE RESULTS 273

(4) For every fixed 𝑥 ∈ ℝ𝑁 and 𝑡, 𝜏 > 0, we have

∫ℝ𝑁
𝔭𝑡(𝑥 − 𝑦)𝔭𝜏(𝑦) 𝑑𝑦 = 𝔭𝑡+𝜏(𝑥).

Moreover, by combining (2.6) with the ‘convolution-type’ expression of 𝔭𝑡 in (2.9), we deduce the
following upper estimate: there exists a constant 𝐶 > 0 such that

0 < 𝔭𝑡(𝑥) ⩽ 𝐶𝑡−
𝑛
2𝑠 for every 𝑥 ∈ ℝ𝑁, 𝑡 > 0. (2.10)

We finally point out that, starting from property (P4) of the heat semigroup (𝑒−𝑡)𝑡⩾0, it is quite
standard to prove that the unique solution of the ‘abstract’ 𝐿2-Cauchy problem{

𝜕𝑡𝑢 = −𝑢 + 𝑓 in ℝ𝑁 × (0, +∞)

𝑢(𝑥, 0) = 𝑢0 for 𝑥 ∈ ℝ𝑁

(for any fixed 𝑓, 𝑢0 ∈ 𝐿2(ℝ𝑁)) is given by

𝑢(𝑥, 𝑡) = 𝑒−𝑡𝑢0(𝑥) + ∫
𝑡

0
(𝑒−(𝑡−𝜏)𝑓)(𝑥) 𝑑𝜏;

thus, by (2.9) we can rewrite this unique solution as follows:

𝑢(𝑥, 𝑡) = ∫ℝ𝑁
𝔭𝑡(𝑦)𝑢0(𝑦) dy + ∬𝑆𝑡

𝔭𝑡−𝜏(𝑥 − 𝑦)𝑓(𝑦) dy d𝜏. (2.11)

Remark 2.5. It is worth mentioning that the ‘convolution-type’ formula (2.9) of 𝔭 can be easily
proved by taking into account the probabilistic interpretation of the operator .
Indeed, since  is the sum of the two operators −Δ and (−Δ)𝑠, it is the infinitesimal genera-

tor of a stochastic process, say (𝑋𝑡)𝑡⩾0, which is the sum of two independent processes, namely a
Brownian motion (𝑊𝑡)𝑡⩾0 and a pure jump Lévy flight (𝐽𝑡)𝑡⩾0; thus, given any 𝑡 > 0, we know
that the law of the process 𝑋𝑡 (which is the function 𝔭𝑡) is the convolution of the laws of𝑊𝑡 (the
Gauss–Weierstrass heat kernel 𝔤𝑡) and of 𝐽𝑡 (the fractional heat kernel 𝔥

(𝑠)
𝑡 ).

Remark 2.6. It is important to stress that the computations carried out in the previous paragraphs
in order to obtain the ‘explicit’ expressions of 𝔥(𝑠)

𝑡 and of 𝔭𝑡 in (2.5)–(2.9), respectively, are actually
formal computations; however, starting from the mentioned expressions (2.5)–(2.9), one can prove
a posteriori that all the properties of 𝔥(𝑠) and of 𝔭 hold.

3 EXISTENCE AND NONEXISTENCE RESULTS

3.1 Very weak and mild solutions to problem (1.1)

Taking into account all the facts recalled so far, we can now make precise the notion of solution
to the Cauchy problem (1.1). Actually, as is customary in the context of parabolic problems, we
consider two different notions of solutions, that is, very weak andmild.
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274 BIAGI et al.

Definition 3.1. Let 𝑢0 ∈ 𝐿∞(ℝ𝑁), 𝑢0 ⩾ 0, and let 1 ⩽ 𝑝 < ∞.

(1) (Very weak solution) We say that a function 𝑢 ∶ 𝑆 → ℝ+
0
is a very weak solution to problem (1.1)

if the following properties hold:
(a)1 𝑢 ∈ 𝐿

𝑝

loc
(𝑆);

(b)1 given any 𝑇 > 0, we have 𝑢 ∈ 𝐿∞((0, 𝑇); 𝐿𝑠(ℝ
𝑁));

(c)1 given any 𝜑 ∈ 0, we have

∬𝑆
𝑢(−𝜕𝑡𝜑 + 𝜑) dx dt − ∫ℝ𝑁

𝑢0(𝑥)𝜑(𝑥, 0) dx = ∬𝑆
𝑢𝑝𝜑 dx dt. (3.1)

(2) (Mild solution) We say that a function 𝑢 ∶ 𝑆 → ℝ+
0
is a mild solution to problem (1.1) if the

following properties hold:
(a)2 𝑢 ∈ 𝐶(𝑆) ∩ 𝐿∞(𝑆);
(b)2 for every (𝑥, 𝑡) ∈ 𝑆, we have the identity

𝑢(𝑥, 𝑡) = ∫ℝ𝑁
𝔭𝑡(𝑥 − 𝑦)𝑢0(𝑦) dy + ∬𝑆𝑡

𝔭𝑡−𝜏(𝑥 − 𝑦)𝑢𝑝(𝑦, 𝜏) dy d𝜏. (3.2)

Remark 3.2. We list, for a future reference, some remarks concerning Definition 3.1.

(1) Taking into account Proposition 2.3, it is easy to check that identity (3.1) is meaningful, that
is, for every fixed test function 𝜑 ∈ 0 we have
(i) 𝑢(−𝜕𝑡𝜑 + 𝜑), 𝑢𝑝𝜑 ∈ 𝐿1(𝑆);
(ii) 𝑢0𝜑(⋅, 0) ∈ 𝐿1(ℝ𝑁)

(provided that 𝑢 satisfies properties (a)1–(c)1).
In fact, let 𝑟, 𝑇 > 0 be such that 𝜑 ≡ 0 out of 𝐵𝑟 × [0, 𝑇). First of all we observe that, since

by property a)1 one has 𝑢 ∈ 𝐿𝑝(𝐵𝑟 × (0, 𝑇)), we immediately get

∬𝑆
|𝑢𝑝𝜑| dx dt ⩽ ‖𝜑‖𝐿∞(𝑆) ∬𝐵𝑟×(0,𝑇)

𝑢𝑝 dx dt < +∞.

On the other hand, recalling that 𝜑 ∈ 0, using Proposition 2.3 (and taking into account the
explicit proof of this proposition given in [16, Theorem 9.4]) we derive that

|(−Δ)𝑠(𝑥 ↦ 𝜑(𝑥, 𝑡))| ⩽
𝑐

1 + |𝑥|𝑁+2𝑠
𝟏[0,𝑇)(𝑡) for every (𝑥, 𝑡) ∈ 𝑆,

for some constant 𝑐 > 0 independent of 𝑡; as a consequence, since−𝜕𝑡𝜑 − Δ𝜑 is (smooth and)
supported in 𝐵𝑟 × [0, 𝑇), and since 𝑢 ∈ 𝐿∞((0, 𝑇); 𝐿𝑠(ℝ

𝑁)), we obtain

∫𝑆
|𝑢(−𝜕𝑡𝜑 + 𝜑|𝑑𝑥 𝑑𝑡

⩽ ∫𝐵𝑟×(0,𝑇)
𝑢|𝜕𝑡𝜑 + Δ𝜑|𝑑𝑥 𝑑𝑡 + 𝑐 ∫

𝑇

0

(
∫ℝ𝑁

𝑢

1 + |𝑥|𝑁+2𝑠
𝑑𝑥

)
𝑑𝑡

⩽ 𝑐

(‖𝑢‖𝐿1(𝐵𝑟×(0,𝑇)) + ∫
𝑇

0
‖𝑢(⋅, 𝑡)‖1,𝑠 𝑑𝑡

)
⩽ 𝑐

(‖𝑢‖𝐿1(𝐵𝑟×(0,𝑇)) + ‖𝑢‖∞,(0,𝑇),𝐿𝑠(ℝ
𝑁)

)
< +∞,
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LOCAL-NONLOCAL FUJITA-TYPE RESULTS 275

where we have used the fact that 𝑢 ∈ 𝐿𝑝(𝐵𝑟 × (0, 𝑇)) ⊂ 𝐿1(𝐵𝑟 × (0, 𝑇)), and 𝑐 > 0 is a constant
(possibly different from line to line) only depending on 𝜑.
Finally, since 𝑢0 ∈ 𝐿∞(ℝ𝑁) and 𝜑(⋅, 0) ∈ 𝐶∞

0
(ℝ𝑁), we immediately infer that

𝑢0𝜑(⋅, 0) ∈ 𝐿1(ℝ𝑁).

(2) Owing to the properties of 𝔭 in Theorem 2.4, it is easy to check that also identity (3.2) ismean-
ingful (provided that 𝑢 satisfies properties (a)2–(b)2). In fact, since by assumption we have
𝑢0 ∈ 𝐿∞(ℝ𝑁), for every 𝑥 ∈ ℝ𝑁 we get

0 ⩽ ∫ℝ𝑁
𝔭𝑡(𝑥 − 𝑦)𝑢0(𝑦) 𝑑𝑦 ⩽ ‖𝑢0‖𝐿∞(ℝ𝑁) ∫ℝ𝑁

𝔭𝑡(𝑥 − 𝑦) 𝑑𝑦 = ‖𝑢0‖𝐿∞(ℝ𝑁) < +∞.

Moreover, since by property a)2 we also have 𝑢 ∈ 𝐿∞(𝑆), for every (𝑥, 𝑡) ∈ 𝑆 we get

0 ⩽ ∬𝑆𝑡

𝔭𝑡−𝜏(𝑥 − 𝑦)𝑢𝑝(𝑦, 𝜏) 𝑑𝑦 𝑑𝜏

⩽ ‖𝑢‖𝑝

𝐿∞(𝑆) ∫
𝑡

0

(
∫ℝ𝑁

𝔭𝑡−𝜏(𝑥 − 𝑦) 𝑑𝑦

)
𝑑𝜏 = ‖𝑢‖𝑝

𝐿∞(𝑆)
𝑡 < +∞.

(3.3)

We explicitly note that the definition of mild solution comes from the representation of the
unique solution of the 𝐿2-Cauchy problem for discussed in the previous paragraph: indeed,
our Cauchy problem (1.1) can be rewritten as{

𝜕𝑡𝑢 = −𝑢 + 𝑓 in ℝ𝑁 × (0, +∞)

𝑢(𝑥, 0) = 𝑢0(𝑥) for every 𝑥 ∈ ℝ𝑁;

where 𝑓 = 𝑢𝑝; hence, by the ‘representation formula’ (2.11) we should have

𝑢(𝑥, 𝑡) = ∫ℝ𝑁
𝔭𝑡(𝑦)𝑢0(𝑦) dy + ∬𝑆𝑡

𝔭𝑡−𝜏(𝑥 − 𝑦)𝑓(𝑦) dy d𝜏,

which is precisely formula (3.2) (with 𝑓 = 𝑢𝑝).
(3) In the particular case when 𝑢0 ∈ 𝐿∞(ℝ𝑁) ∩ 𝐿2(ℝ𝑁), if 𝑢 ∈ 𝐶(𝑆) ∩ 𝐿∞(𝑆) is any mild solution

of the Cauchy problem (1.1) it is easy to recognize that

𝑢(𝑥, 0) = 𝑢0(𝑥) for every 𝑥 ∈ ℝ𝑁.

Indeed, since 𝑢0 ∈ 𝐿2(ℝ𝑁), by exploiting property (P3) of the heat semigroup (𝑒−𝑡)𝑡⩾0,
together with the representation (2.7) and estimate (3.3), we get

lim
𝑛→+∞

𝑢(𝑥, 1∕𝑛)

= lim
𝑛→+∞

(
∫ℝ𝑁

𝔭1∕𝑛(𝑥 − 𝑦)𝑢0(𝑦) 𝑑𝑦 + ∬𝑆1∕𝑛

𝔭1∕𝑛−𝜏(𝑥 − 𝑦)𝑢𝑝(𝑦, 𝜏) 𝑑𝑦 𝑑𝜏

)
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276 BIAGI et al.

= lim
𝑛→+∞

(
∫ℝ𝑁

𝔭1∕𝑛(𝑥 − 𝑦)𝑢0(𝑦) 𝑑𝑦

)
= lim

𝑛→+∞
(𝑒−1∕𝑛𝑢0)(𝑥) = 𝑢0(𝑥) for a.e.𝑥 ∈ ℝ𝑁

(up to a sub-sequence, since 𝑒−𝑡𝑢0 → 𝑢0 as 𝑡 → 0+ in 𝐿2(ℝ𝑁)); thus, since 𝑢 ∈ 𝐶(𝑆), we infer
that 𝑢(𝑥, 0) = 𝑢0(𝑥) for (a.e.) 𝑥 ∈ ℝ𝑁 . In particular, by modifying 𝑢0 on a set of zero Lebesgue
measure if needed, we conclude that

𝑢0 ∈ 𝐶(ℝ𝑁) and 𝑢(𝑥, 0) = 𝑢0(𝑥) for every 𝑥 ∈ ℝ𝑁.

(4) Owing to the properties of the heat kernel 𝔭 in Theorem 2.4, and adapting the approach in
the proof of [2, Lemma 2.1], it is not difficult to recognize that any mild solution of problem
(1.1) is also a very weak solution.

3.2 The main result

Now we have properly introduced the two types of solutions for the Cauchy problem (1.1) we are
interested in, we are finally ready to state the main result of this paper.

Theorem 3.3. Let 𝑢0 ∈ 𝐿∞(ℝ𝑁), 𝑢0 ⩾ 0, and let 1 < 𝑝 < ∞. We define

𝑝 = 1 +
2𝑠

𝑁
.

Then, the following facts hold.

(1) (Nonexistence) If 1 < 𝑝 ⩽ 𝑝, there donot exist global in time veryweak solutions to theCauchy
problem (1.1) with 𝑢0 ≢ 0.

(2) (Global existence) If 𝑝 > 𝑝, there exist 𝛿0, 𝜏0 > 0 such that the Cauchy problem (1.1) possesses at
least one global in time very weak solution, provided that

𝑢0(𝑥) < 𝛿0 𝔭𝜏0
(𝑥), for a.e. 𝑥 ∈ ℝ𝑁. (3.4)

Remark 3.4. A careful inspection of the proof of Theorem 3.3-(1) will show that for 𝑢0 = 0 there
exists a unique very weak solution identically vanishing. We stress that uniqueness results when
𝑢0 ⩾ 0 are not yet available, at least to the best of our knowledge.

Remark 3.5. As it will be clear from the proof of Theorem 3.3-(2), the solution we are able to
construct in the case 𝑝 > 𝑝, when 𝑢0 ≠ 0, is actually amild solution to the Cauchy problem (1.1).

4 PROOF OF THEOREM 3.3

In this section we provide the full proof of Theorem 3.3. To ease the readability, we establish the
two assertions (1) and (2) (nonexistence and global existence) separately.
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LOCAL-NONLOCAL FUJITA-TYPE RESULTS 277

Proof of Theorem 3.3-(1) (Nonexistence). Let 1 < 𝑝 ⩽ 𝑝 be fixed, and suppose that there exists a
very weak solution of the Cauchy problem (1.1) (in the sense of Definition 3.1, and for some initial
condition 𝑢0 ∈ 𝐿∞(ℝ𝑁), 𝑢0 ⩾ 0). We then aim at proving that

𝑢 ≡ 0 a.e. in 𝑆. (4.1)

Once we know that (4.1) holds, from (3.1) we infer that

∫ℝ𝑁
𝑢0(𝑥)𝜑(𝑥, 0) dx = ∬𝑆

𝑢(−𝜕𝑡𝜑 + 𝜑) dx dt − ∬𝑆
𝑢𝑝𝜑 dx dt = 0 ∀ 𝜑 ∈ 0,

for which we derive that 𝑢0 ≡ 0 a.e. in ℝ𝑁 . Hence, we turn to establish (4.1). To this end, it is
convenient to distinguish the following two cases:

(a) 1 < 𝑝 < �̄� and (b) 𝑝 = �̄�.

Case (a). To begin with, we choose two functions 𝜁 ∈ 𝐶∞
0

(ℝ𝑁), 𝜓 ∈ 𝐶∞(ℝ+
0
) such that

(i) 𝜁 ≡ 1 on 𝐵1∕2 and 𝜁 ≡ 0 out of 𝐵1;
(ii) 𝜓 ≡ 1 on [0, 1∕2) and 𝜓 ≡ 0 on [1, +∞);
(iii) 0 ⩽ 𝜁, 𝜓 ⩽ 1.

Then, we arbitrarily fix 𝑟 > 1, and we define

𝜉𝑟(𝑥) ∶= 𝜁𝑚
(
𝑥

𝑟

)
, 𝜙𝑟(𝑡) = 𝜓𝑚

(
𝑡

𝑟2𝑠

)
where𝑚 ∶=

2𝑝

𝑝−1
.

Since, obviously, we have 𝜑(𝑥, 𝑡) = 𝜉𝑟(𝑥)𝜙𝑟(𝑡) ∈ 0, we are entitled to use this function 𝜑 as a test
function in (3.1): recalling that (by assumption) 𝑢0 ⩾ 0 a.e. in ℝ𝑁 , this gives

∬𝑆
𝑢𝑝𝜑 𝑑𝑥 𝑑𝑡 = ∬𝑆

𝑢(−𝜕𝑡𝜑 + 𝜑) 𝑑𝑥 𝑑𝑡 − ∫ℝ𝑁
𝑢0(𝑥)𝜉𝑟(𝑥) 𝑑𝑥

⩽ ∬𝑆
𝑢(−𝜕𝑡𝜑 + 𝜑) 𝑑𝑥 𝑑𝑡

= ∬𝑆
𝑢(−𝜉𝑟𝜕𝑡𝜙𝑟 − 𝜙𝑟Δ𝜉𝑟 + 𝜙𝑟(−Δ)𝑠𝜉𝑟) 𝑑𝑥 𝑑𝑡.

(4.2)

We now turn to estimate the right-hand side of the above inequality.
To this aim we first observe that

(i) Δ𝜉𝑟 = 𝑚𝑟−2
[
𝜁𝑚−1Δ𝜁 + (𝑚 − 1)𝜁𝑚−2|∇𝜁|2](𝑥∕𝑟);

(ii) 𝜕𝑡𝜙𝑟 = 𝑚𝑟−2𝑠
[
𝜓𝑚−1𝜕𝑡𝜓

]
(𝑡∕𝑟2𝑠).

(4.3)

Moreover, since the function 𝐺(𝑧) = 𝑧𝑚 is convex, by [48, Lemma 3.2] we have

(−Δ)𝑠𝜉𝑟 = (−Δ)𝑠(𝐺◦(𝑥 ↦ 𝜁(𝑥∕𝑟))) ⩽ 𝑚𝜁𝑚−1
(
𝑥

𝑟

)
(−Δ)𝑠(𝑥 ↦ 𝜁(𝑥∕𝑟))

=
𝑚

𝑟2𝑠
𝜁𝑚−1(𝑥∕𝑟)[(−Δ)𝑠𝜁](𝑥∕𝑟).

(4.4)
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278 BIAGI et al.

Thus, by combining (4.3) and (4.4) (and since 𝑟 > 1), we obtain

− 𝜉𝑟𝜕𝑡𝜙𝑟 − 𝜙𝑟Δ𝜉𝑟 + 𝜙𝑟(−Δ)𝑠𝜉𝑟 ⩽ |𝜉𝑟𝜕𝑡𝜙𝑟 + 𝜙𝑟Δ𝜉𝑟| + 𝜙𝑟(−Δ)𝑠𝜉𝑟

⩽ 𝐜𝑟−2𝑠
(
𝜁(𝑥∕𝑟)𝜓(𝑡∕𝑟2𝑠)

)𝑚−2
= 𝐜𝑟−2𝑠𝜑

𝑚−2
𝑚

= 𝐜𝑟−2𝑠𝜑1∕𝑝,

(4.5)

where we have also used the fact that (−Δ)𝑠𝜁 ∈ 𝑠 (as 𝜁 ∈ 𝐶∞
0

(ℝ𝑁), see Proposition 2.3).
With estimate (4.5) at hand, we can easily conclude the proof of (4.1): indeed, by combining the

cited (4.5) with the above estimate (4.2), and by using Hölder’s inequality, we get

∬𝑆
𝑢𝑝𝜑 𝑑𝑥 𝑑𝑡 ⩽ 𝐜𝑟−2𝑠 ∬𝑆

𝑢𝜑1∕𝑝 𝑑𝑥 𝑑𝑡

(since 𝜑 is supported in 𝐵𝑟 × [0, 𝑟2𝑠))

= 𝐜𝑟−2𝑠 ∫
𝑟2𝑠

0 ∫𝐵𝑟

𝑢𝜑1∕𝑝 𝑑𝑥 𝑑𝑡

⩽ 𝐜𝑟
−2𝑠+(2𝑠+𝑁)

𝑝−1

𝑝

(
∫𝑆

𝑢𝑝𝜑 𝑑𝑥 𝑑𝑡

)1∕𝑝

;

as a consequence, since 𝜑 ≡ 1 on 𝐵𝑟∕2 × [0, 𝑟2𝑠∕2), we obtain

∫
𝑟2𝑠∕2

0 ∫𝐵𝑟∕2

𝑢𝑝 dx dt ⩽ ∬𝑆
𝑢𝑝𝜑 dx dt ⩽ 𝐜𝑟

𝑁+2𝑠−
2sp
𝑝−1 . (4.6)

On the other hand, since we are assuming that 1 < 𝑝 < 𝑝, we have

𝑁 + 2𝑠 −
2𝑠𝑝

𝑝 − 1
< 0;

then, by letting 𝑟 → +∞ in the above (4.6) and by using the Monotone Convergence Theorem
(recall that 𝑟 > 1 was arbitrarily fixed, and 𝑢 ⩾ 0 a.e. in 𝑆), we derive that

∬𝑆
𝑢𝑝 𝑑𝑥 𝑑𝑡 = 0,

from which we conclude that 𝑢 ≡ 0 a.e. in 𝑆, as desired.
Case (b). In this case, we use some ideas exploited in the proof of [22, Theorem 1].
First of all we observe that, if 𝑝 = 𝑝, we have

𝛿 ∶= −2𝑠 + (2𝑠 + 𝑁)
𝑝 − 1

𝑝
= 0; (4.7)

thus, by arguing as in Case (a), by (4.6) and (4.7) we get

∫
𝑟2𝑠∕2

0 ∫𝐵𝑟∕2

𝑢𝑝 𝑑𝑥 𝑑𝑡 ⩽ 𝐜,
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LOCAL-NONLOCAL FUJITA-TYPE RESULTS 279

for some constant 𝐜 > 0 independent of 𝑟. In particular, by letting 𝑟 → +∞ and by using the
Monotone Convergence Theorem, we can infer that 𝑢 ∈ 𝐿𝑝(ℝ𝑁 × (0, +∞)).
We now define, for any 𝑟 > 1, 𝛽 > 1, the functions

𝜉𝑟,𝛽(𝑥) ∶= 𝜁𝑚

(
𝑥

𝛽𝑟

)
, 𝜙𝑟(𝑡) = 𝜓𝑚

(
𝑡

𝑟2𝑠

)
,

where 𝜁, 𝜓 and 𝑚 are as in the previous case. Clearly, 𝜑(𝑥, 𝑡) = 𝜉𝑟,𝛽(𝑥)𝜙𝑟(𝑡) ∈ 0, so we can use
this function 𝜑 as a test function in (3.1): since 𝑢0 ⩾ 0, this gives

∬𝑆
𝑢𝑝𝜑 𝑑𝑥 𝑑𝑡 = ∬𝑆

𝑢(−𝜕𝑡𝜑 + 𝜑) 𝑑𝑥 𝑑𝑡 − ∫ℝ𝑁
𝑢0(𝑥)𝜉𝑟,𝛽(𝑥) 𝑑𝑥

⩽ ∬𝑆
𝑢(−𝜕𝑡𝜑 + 𝜑) 𝑑𝑥 𝑑𝑡

= ∬𝑆
𝑢(−𝜉𝑟,𝛽𝜕𝑡𝜙𝑟 − 𝜙𝑟Δ𝜉𝑟,𝛽 + 𝜙𝑟(−Δ)𝑠𝜉𝑟,𝛽) 𝑑𝑥 𝑑𝑡.

(4.8)

Moreover, by arguing exactly as in Case (a), we have the estimate

(i) |Δ𝜉𝑟,𝛽(𝑥)| ⩽ 𝐜(𝛽𝑟)−2𝜉
1∕𝑝

𝑟,𝛽
(𝑥) for every 𝑥 ∈ ℝ𝑁;

(ii) (−Δ)𝑠𝜉𝑟,𝛽(𝑥) ⩽ 𝐜(𝛽𝑟)−2𝑠𝜉
1∕𝑝

𝑟,𝛽
(𝑥) for every 𝑥 ∈ ℝ𝑁;

(iii) |𝜕𝑡𝜙𝑟(𝑡)| ⩽ 𝐜𝑟−2𝑠𝜙
1∕𝑝
𝑟 (𝑡) ⋅ 𝟏{𝑟2𝑠∕2<𝑡<𝑟2𝑠}(𝑡) for every 𝑡 > 0;

(4.9)

By combining (4.8) and (4.9), and by using Hölder’s inequality, we then get

∬𝑆
𝑢𝑝𝜑 𝑑𝑥 𝑑𝑡

⩽ 𝐜𝑟−2𝑠 ∬𝑆
𝑢𝜙

1∕𝑝
𝑟 𝜉𝑟,𝛽 ⋅ 𝟏{𝑟2𝑠∕2<𝑡<𝑟2𝑠}(𝑡) 𝑑𝑥 𝑑𝑡 + 𝐜(𝛽𝑟)−2𝑠 ∬𝑆

𝑢𝜉
1∕𝑝

𝑟,𝛽
𝜙𝑟(𝑡) 𝑑𝑥 𝑑𝑡

⩽ 𝐜𝑟𝛿𝛽
𝑁(𝑝−1)

𝑝

(
∫

𝑟2𝑠

𝑟2𝑠

2
∫𝐵𝛽𝑟

𝑢𝑝 𝑑𝑥𝑑𝑡

) 1
𝑝

+ 𝐜𝑟𝛿𝛽
−2𝑠+

𝑁(𝑝−1)

𝑝

(
∫

𝑟2𝑠

0 ∫𝐵𝛽𝑟

𝑢𝑝 𝑑𝑥𝑑𝑡

) 1
𝑝

= 𝐜𝛽
𝑁(𝑝−1)

𝑝

(
∫

𝑟2𝑠

𝑟2𝑠

2
∫𝐵𝛽𝑟

𝑢𝑝 𝑑𝑥𝑑𝑡

) 1
𝑝

+ 𝐜𝛽
−2𝑠+

𝑁(𝑝−1)

𝑝

(
∫

𝑟2𝑠

0 ∫𝐵𝛽𝑟

𝑢𝑝 𝑑𝑥𝑑𝑡

) 1
𝑝

,

where we have used the fact that 𝛿 = 0, see (4.7).
In particular, since 𝜑 ≡ 1 on 𝐵𝑟𝛽

2

× [0, 𝑟2𝑠∕2), we obtain

∫
𝑟2𝑠∕2

0 ∫𝐵𝛽𝑟∕2

𝑢𝑝 𝑑𝑥 𝑑𝑡 ⩽ ∬𝑆
𝑢𝑝𝜑 𝑑𝑥 𝑑𝑡

⩽ 𝐜𝛽
𝑁(𝑝−1)

𝑝

(
∫

𝑟2𝑠

𝑟2𝑠

2
∫𝐵𝛽𝑟

𝑢𝑝 𝑑𝑥𝑑𝑡

) 1
𝑝

+ 𝐜𝛽
−2𝑠+

𝑁(𝑝−1)

𝑝

(
∬𝑆

𝑢𝑝𝑑𝑥𝑑𝑡

) 1
𝑝

.

(4.10)
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280 BIAGI et al.

With (4.10) at hand, we can finally complete the proof of (4.1) in this case. In fact, since we have
already recognized that 𝑢 ∈ 𝐿𝑝(ℝ𝑁 × (0, +∞)), for any fixed 𝛽 ∈ (1, 𝑟) we have

lim
𝑟→+∞∫

𝑟2𝑠

𝑟2𝑠

2
∫𝐵𝛽𝑟

𝑢𝑝 𝑑𝑥𝑑𝑡

= lim
𝑟→+∞∫

𝑟2𝑠

0 ∫𝐵𝛽𝑟

𝑢𝑝 𝑑𝑥𝑑𝑡 − lim
𝑟→+∞∫

𝑟2𝑠

2

0 ∫𝐵𝛽𝑟

𝑢𝑝 𝑑𝑥𝑑𝑡

= ∫
+∞

0 ∫ℝ𝑁
𝑢𝑝𝑑𝑥𝑑𝑡 − ∫

+∞

0 ∫ℝ𝑁
𝑢𝑝𝑑𝑥𝑑𝑡 = 0 .

(4.11)

On the other hand, since 𝑝 = �̄�, we also have

−2𝑠 +
𝑁(𝑝 − 1)

𝑝
= −

2𝑠(𝑝 − 1)

𝑝
< 0 . (4.12)

By virtue of (4.11) and (4.12), letting 𝑟 → +∞ and then 𝛽 → +∞ in (4.10), we obtain

∬𝑆
𝑢𝑝 𝑑𝑥 𝑑𝑡 = 0,

from which we deduce that 𝑢 ≡ 0 a.e. in 𝑆, as desired. □

Proof of Theorem3.3-(2) (Global existence).We adapt to the present situation the line of arguments
of the proof of [45, Theorem 1.1]. Let (3.4) be in force for some 𝛿0, 𝜏0 > 0 to be chosen later on, and
let us introduce the following notation:

�̃�0(𝑥, 𝑡) ∶= ∫ℝ𝑁
𝔭𝑡(𝑥 − 𝑦)𝑢0(𝑦) 𝑑𝑦 (4.13)

and

Φ𝑢(𝑥, 𝑦) ∶= ∬𝑆𝑡

𝔭𝑡−𝜏(𝑥 − 𝑦)𝑢𝑝(𝑦, 𝜏) dy d𝜏. (4.14)

Thanks to (3.4), we have that

�̃�0(𝑥, 𝑡) ⩽ 𝛿0 ∫ℝ𝑁
𝔭𝑡(𝑥 − 𝑦)𝔭𝜏0

(𝑦) 𝑑𝑦 = 𝛿0 𝔭𝑡+𝜏0
(𝑥),

where in the last step we used Theorem 2.4-(4).
Exploiting (4.13), we now define the recursive sequence of functions (�̃�𝑛)𝑛∈ℕ as

�̃�𝑛+1(𝑥, 𝑡) ∶= �̃�0(𝑥, 𝑡) + Φ�̃�𝑛(𝑥, 𝑡). (4.15)

By induction, we can prove that (�̃�𝑛)𝑛∈ℕ is monotone increasing. Indeed,

�̃�1(𝑥, 𝑡) = �̃�0(𝑥, 𝑡) + Φ�̃�0(𝑥, 𝑡)

= �̃�0(𝑥, 𝑡) + ∬𝑆𝑡

𝔭𝑡−𝜏(𝑥 − 𝑦)�̃�
𝑝
0
(𝑦, 𝜏) 𝑑𝑦𝑑𝜏 ⩾ �̃�0(𝑥, 𝑡),
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LOCAL-NONLOCAL FUJITA-TYPE RESULTS 281

and, assuming �̃�𝑛 ⩾ �̃�𝑛−1, and hence �̃�
𝑝
𝑛 ⩾ �̃�

𝑝
𝑛−1

, we have

�̃�𝑛+1(𝑥, 𝑡) = �̃�0(𝑥, 𝑡) + Φ�̃�𝑛(𝑥, 𝑡) = �̃�0(𝑥, 𝑡) + ∬𝑆𝑡

𝔭𝑡−𝜏(𝑥 − 𝑦)�̃�
𝑝
𝑛(𝑦, 𝜏) 𝑑𝑦𝑑𝜏

⩾ �̃�0(𝑥, 𝑡) + ∬𝑆𝑡

𝔭𝑡−𝜏(𝑥 − 𝑦)�̃�
𝑝
𝑛−1

(𝑦, 𝜏) 𝑑𝑦𝑑𝜏 = �̃�𝑛(𝑥, 𝑡).

In order to properly choose 𝛿0 > 0, we further define the increasing (since 𝛿0 > 0) sequence of
real numbers (𝛿𝑛)𝑛∈ℕ as

𝛿𝑛+1 ∶= 𝛿0 + 𝛿
𝑝
𝑛 ,

If we choose 𝛿0 > 0 small enough, the sequence (𝛿𝑛)𝑛∈ℕ is convergent, and therefore there exists
𝑀 ∈ ℝ+ such that

𝛿𝑛 ⩽ 𝑀 for every 𝑛 ∈ ℕ. (4.16)

Our next goal is to choose 𝜏0 > 0 such that

�̃�𝑛(𝑥, 𝑡) ⩽ 𝛿𝑛 𝔭𝑡+𝜏0
(𝑥), for every (𝑥, 𝑡) ∈ 𝑆 and for every 𝑛 ∈ ℕ. (4.17)

Before proceeding by induction, recalling that 𝑝 > 𝑝 = 1 + 2𝑠

𝑁
and thanks to both (2.10) and

Theorem 2.4(4), we note that

∬𝑆𝑡

𝔭𝑡−𝜏(𝑥 − 𝑦)𝔭
𝑝
𝜏+𝜏0

(𝑦) 𝑑𝑦𝑑𝜏

⩽ 𝐶𝑝−1 𝔭𝑡+𝜏0
(𝑥)∫

+∞

0
(𝜏 + 𝜏0)

−𝑁(𝑝−1)∕(2𝑠)𝑑𝜏 < 𝔭𝑡+𝜏0
(𝑥),

(4.18)

provided that 𝜏0 > 0 is large enough, namely

𝜏0 >

(
𝐶1−𝑝

(
𝑁(𝑝 − 1)

2𝑠
− 1

))2𝑠∕(2𝑠−𝑁(𝑝−1))

.

Let us now go through the induction procedure. First,

�̃�1(𝑥, 𝑡) = �̃�0(𝑥, 𝑡) + ∬𝑆𝑡

𝔭𝑡−𝜏(𝑥 − 𝑦)𝑢
𝑝
0
(𝑦, 𝜏) 𝑑𝑦𝑑𝜏

⩽ 𝛿0 𝔭𝑡+𝜏0
(𝑥) + 𝛿

𝑝
0 ∬𝑆𝑡

𝔭𝑡−𝜏(𝑥 − 𝑦)𝔭
𝑝
𝜏+𝜏0

(𝑦) 𝑑𝑦𝑑𝜏

⩽
(
𝛿0 + 𝛿

𝑝
0

)
𝔭𝜏+𝜏0

(𝑥) = 𝛿1 𝔭𝜏+𝜏0
(𝑥).
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282 BIAGI et al.

Now, assuming that (4.17) holds for a certain 𝑛 ∈ ℕ, it follows that

�̃�𝑛+1(𝑥, 𝑡) = �̃�0(𝑥, 𝑡) + ∬𝑆𝑡

𝔭𝑡−𝜏(𝑥 − 𝑦)�̃�
𝑝
𝑛(𝑦, 𝜏) 𝑑𝑦𝑑𝜏

⩽ 𝛿0 𝔭𝑡+𝜏0
(𝑥) + 𝛿

𝑝
𝑛 ∬𝑆𝑡

𝔭𝑡−𝜏(𝑥 − 𝑦)𝔭
𝑝
𝑡+𝜏0

(𝑦) 𝑑𝑦𝑑𝜏

⩽
(
𝛿0 + 𝛿

𝑝
𝑛

)
𝔭𝜏+𝜏0

(𝑥) = 𝛿𝑛+1 𝔭𝜏+𝜏0
(𝑥),

where we exploited once again (4.18).
Combining (4.17) and (4.16), we find that

�̃�𝑛(𝑥, 𝑡) ⩽ 𝑀 𝔭𝑡+𝜏0
(𝑥), for every (𝑥, 𝑡) ∈ 𝑆 and for every 𝑛 ∈ ℕ.

Let us now consider the function 𝑢 ∶= sup �̃�𝑛. By monotone convergence, 𝑢 satisfies (3.2) and
therefore 𝑢 is the desired global mild solution to (1.1). In view of Remark 3.2(4), 𝑢 is also a global
in time very weak solution to (1.1). This closes the proof. □
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