
26 February 2025

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Farabegoli, N., Pianini, D., Casadei, R., Viroli, M. (2024). Dynamic IoT deployment reconfiguration: A
global-level self-organisation approach. INTERNET OF THINGS, 28, 1-20 [10.1016/j.iot.2024.101412].

Published Version:

Dynamic IoT deployment reconfiguration: A global-level self-organisation approach

Published:
DOI: http://doi.org/10.1016/j.iot.2024.101412

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/998136 since: 2024-12-05

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.iot.2024.101412
https://hdl.handle.net/11585/998136

Dynamic IoT Deployment Reconfiguration: A
Global-Level Self-Organisation Approach

Nicolas Farabegolia, Danilo Pianinia, Roberto Casadeia, Mirko Virolia

aAlma Mater Studiorum – University of Bologna, Cesena, Italy

Abstract

The edge-cloud continuum provides a heterogeneous, multi-scale, and dynamic

infrastructure supporting complex deployment profiles and trade-offs for ap-

plication scenarios like those found in the Internet of Things and large-scale

cyber-physical systems domains. To exploit the continuum, applications should

be designed in a way that promotes flexibility and reconfigurability, and proper

management (sub-)systems should take care of reconfiguring them in response

to changes in the environment or non-functional requirements. Approaches

may leverage optimisation-based or heuristic-based policies, and decision mak-

ing may be centralised or distributed: this work investigates decentralised

heuristic-based approaches. In particular, we focus on the pulverisation ap-

proach, whereby a distributed software system is automatically partitioned

(“pulverised”) into different deployment units. In this context, we address two

main research problems: how to support the runtime reconfiguration of pul-

verised systems, and how to specify decentralised reconfiguring policies by a

global perspective. To address the first problem, we design and implement a

middleware for pulverised systems separating infrastructural and application

concerns. To address the second problem, we leverage aggregate computing and

exploit self-organisation patterns to devise self-stabilising reconfiguration strate-

gies. By simulating deployments on different kinds of complex infrastructures,

Email addresses: nicolas.farabegoli@unibo.it (Nicolas Farabegoli),
danilo.pianini@unibo.it (Danilo Pianini), roby.casadei@unibo.it (Roberto Casadei),
mirko.viroli@unibo.it (Mirko Viroli)

Preprint submitted to Journal of Internet of Things November 7, 2024

we assess the flexibility of the pulverisation middleware design as well as the

effectiveness and resilience of the aggregate computing-based reconfiguration

policies.

Keywords: distributed systems, edge-cloud continuum, dynamic

reconfiguration, collective adaptive systems, aggregate computing,

pulverisation, distributed middleware

1. Introduction

The term Edge-to-Cloud Continuum (ECC) [1] refers to the heterogeneous,

multi-layer, integrated infrastructure that combines resources at the edge, at

the cloud, and along their data path: access points, routers, edge servers, cloud

servers, etc. The ECC aims to combine the benefits and mitigate the issues of5

both sides, hence supporting requirements of complex deployments (e.g., low la-

tency, privacy, and resource elasticity) and enabling complex and dynamic trade-

offs of cost, performance, and sustainability. As such, it appears to be a key in-

frastructure for applications found in scenarios like the Internet of Things (IoT)

and large-scale Cyber-Physical Systems (CPSs); in this work, we especially fo-10

cus on Collective Adaptive Systems (CASs) [2, 3], namely collections of devices

solving collaborative tasks in dynamic environments (cf. swarms, crowd of wear-

ables, computing ecosystems). However, the heterogeneity, distributed nature,

and dynamicity of the ECC pose new challenges for the engineering and deploy-

ment of applications [4].15

In order to fully and opportunistically exploit the potential of the ECC, ap-

plications should be designed in decoupled modules or components [5, 6, 7, 8],

promoting flexibility in application deployment and management. Then, man-

aging systems should enable the reconfiguration of applications at runtime [7],

for accommodating changes in the environment (infrastructure and/or require-20

ments). Even better, to streamline maintenance, applications should be able to

reconfigure themselves, i.e., they should exhibit self-* properties [9, 10] such as

self-adaptation, self-organisation, and self-(re)configuration.

2

In the literature, several component models and techniques have been pro-

posed for application partitioning and reconfiguration [5, 7]. In the context of25

the IoT and large-scale CPSs, and most specifically for CASs [2], the pulverisa-

tion approach [11] to application partitioning and deployment have proven espe-

cially suitable [12]. Consider, for instance, an IoT application whose goal is co-

ordinating a set of situated smartphones and wearable devices, e.g., implement-

ing a real-time game in the real world. We call these devices application-level30

hosts. Since peer-to-peer communication is hardly viable with the most common

current mainstream technology, the application can exploit the networked in-

frastructure composed of edge servers and the cloud, which are transparent from

the point of view of the business logic, representing purely infrastructural hosts.

In the pulverisation approach, the whole system is partitioned into a collective35

of devices (one per each application-level host), and each device is further split

into multiple deployment units capturing aspects like (i) sensing, (ii) actuation,

and (iii) behaviour. The result is called a pulverised system. When the function-

ality of the system is determined in terms of the activity and interactions carried

out by those deployment units, different allocations of them over the networked40

hosts can be produced, each one resulting in potentially different non-functional

profiles and trade-offs, yet all retaining the same functional logic, as far as the

underlying network is not segmented.

In this paper, we address the problem of managing the deployment of pul-

verised systems in the ECC, with specific focus on the runtime reconfiguration of45

the system, and, particularly, on techniques to express runtime reconfiguration

rules from a global stance, observing and controlling the mapping of the appli-

cation over the ECC as if the latter were a single entity. To this end, we provide

an extension to the pulverisation framework that enables the specification of de-

ployment reconfiguration rules through the Aggregate Computing paradigm [13],50

exposing the whole ECC as a single manifold. To support such extension, we

devise a novel architectural model capturing the separation between the phys-

ical (underlying, among devices) and logical (among application-level hosts)

networks, of which we demonstrate the viability by implementing a practical

3

middleware.55

In a nutshell, the main contributions of this paper are:

1. a middleware architecture for managing pulverised systems in the ECC;

2. the use of Aggregate Computing as a possible solution to manage the dy-

namic reconfiguration of the system;

3. an evaluation of the proposed reconfiguration approach comparing the60

adaptive solution with a non-adaptive counterpart, with a corresponding

open-source, archived artefact [14].

The rest of this paper is organized as follows. Section 2 clarifies the scope and

provides research questions. Section 3 provides a brief overview of the Aggregate

Computing paradigm and the pulverisation approach. Section 4 describes the65

proposed middleware architecture for engineering CASs in the ECC. Section 5

describes the proposed reconfiguration approach based on Aggregate Comput-

ing. Section 6 presents the evaluation of the approach in terms of Quality of

Service (QoS) metrics. Section 7 discusses related work. Finally, Section 8

concludes the paper and outlines future work.70

2. Research Questions

The complexity of modern infrastructures like the ECC poses new chal-

lenges to the design and deployment of distributed systems and applications.

The pulverisation approach has proven an effective solution to modular design

of CASs [11], enabling deployers to come up with different deployment plans to75

be evaluated and enacted [12]. However, prior work has not investigated how

pulverised systems should be managed at runtime, namely how a middleware

for them should be organised and work, and how these could be reconfigured

at runtime to improve their non-functional profile in response to changes in the

application requirements or to unpredicted conditions of the underlying infras-80

tructure. In particular, to address potentially very large-scale systems [2], we

investigate decentralised and heuristic-based reconfiguration solutions (rather

4

than centralised and optimisation-based solutions). Though automatic design

approaches for reconfiguration policies could be adopted [15], e.g., based on

learning (cf. multi-agent reinforcement learning [16]), in this work we focus on85

engineered specification-based approaches, and especially on the feasibility of

using a macro-programming [17] approach like aggregate computing [13, 18] to

support the definition of reconfiguration policies by a global perspective.

In this work, we aim to answer the following research questions:

RQ1) How can a pulverised system be effectively deployed and man-90

aged in complex infrastructures like the Edge-to-Cloud Contin-

uum?

RQ2) How can a pulverised system be dynamically reconfigured in a

decentralised way using global policies?

RQ3) What are the benefits and limitations of using global, decen-95

tralised policies?

To answer these questions, we propose a middleware architecture for engineering

CASs in the ECC supporting the pulverisation approach, and the use of the

Aggregate Computing paradigm as a possible solution to specify distributed

and global reconfiguration policies.100

3. Background

3.1. Aggregate Computing

Aggregate computing [18] is a development approach for programming CASs.

It comes with a formal basis, captured by field calculi [18], concrete program-

ming language implementations (like ScaFi [19]), and tools (like the Alchemist105

simulator [20]). Aggregate computing has been used in the past to program

self-adaptive systems in the context of the IoT and the ECC. Application sce-

narios include crowd detection and management [13], smart cities [11], contact

tracing [21], and smart warehouses [22], among the others.

5

To provide a more concrete and detailed example, in the context of smart110

traffic management, aggregate computing can be used to manage the city traf-

fic flow, where each car shares its GPS positioning, and the system regulates

the traffic lights to limit congestions. During an emergency (e.g. ambulance

deployment), the system can promptly react by managing the traffic light, and

signalling the emergency to the cars suggesting appropriate movement. Aggre-115

gate computing can be adopted for managing the traffic and coordinate the cars

avoiding traffic congestions, especially during an emergency event. In this sce-

nario the ECC can be opportunistically exploited: during normal condition the

cars host the computation of the aggregate program interacting in a peer-to-peer

fashion; while the edge nodes collect traffic sensors and cameras data to man-120

age the traffic lights. During an emergency, to ensure low-latency, the aggregate

programs’ execution is moved into the appropriate edge node(s) (physically lo-

cated near the emergency region) ensuring faster communication, and send back

to the cars only the final, computed instructions. The cloud can be exploited

to collect data, and improve the traffic management algorithm with the new125

collected data from the edge nodes. Thanks the ECC the system can be dy-

namically reconfigured to ensure the best performance at time. Understanding

aggregate computing boils down to understanding two main, synergic pieces:

the system model that defines how execution unfolds, and the programming

model that defines how the behavioural logic is expressed.130

3.1.1. System model

We define an aggregate system as a collection of (computational) devices

organised as follows. A device has sensors and actuators—their only interface

to the local environment. A device can interact only with a dynamic subset

of other devices, called its neighbours. Each device executes in asynchronous135

sense–compute–act rounds:

1. sense: the device acquires its local context by sampling sensors and get-

ting the most recent unexpired message from all the neighbours;

6

2. compute: the device executes the program (see Section 3.1.2) against its

local context;140

3. act : the program’s output defines what actuations are performed and

what data is shared with neighbours.

This model abstracts from several details which may be configured on a per-

application basis: neighbouring relationship, round frequency, message expira-

tion, etc.145

3.1.2. Programming model

The developer writes a single program for the entire system: this is called an

aggregate program and is evaluated by all the devices in asynchronous rounds

as discussed previously. Denotationally, the programming model leverages the

abstraction of a computational field [23, 18], namely a map from a domain of150

device to computational values. So, for example, the act of reading the tem-

perature sensor, when performed by all the devices, yields a (dynamic) field of

temperatures. The field calculus [18] and its implementations like ScaFi [19]

are functional languages: so, denotationally, programs consist of functions ac-

cepting fields as inputs and producing fields as output (while, operationally,155

on a single device, the functions operate on “plain old” local values or fields

restricted to the neighbourhood). Each function may embed both computation

and communication (by “marking” values to be shared—as actual communica-

tions happen according to the execution model), hence a function call may be

used to activate a collective behaviour. Examples will be provided in Section 5.160

Further details, not fundamental for understanding the paper, can be found in

referenced work [18].

3.1.3. Aggregate computing for reconfiguration: motivation

Before discussing our aggregate computing approach to reconfiguration in

Section 5, we motivate the investigation in terms of the following features of the165

paradigm.

7

Practicality. Aggregate computing comes with a set of open-source tools [18] in-

cluding Domain-Specific Languages (DSLs), libraries, and simulators: the ScaFi

language [19], its library, and the Alchemist simulator [20] will be leveraged in

the experiments of Section 6.170

Formal framework. Aggregate computing is based on field calculi, for which var-

ious formal results hold [18]. Prominent examples include self-stabilisation [24],

the ability to build distributed algorithms guaranteed to eventually converge to

stable (i.e. non-changing) outputs in finite time once inputs get stable; space-

time universality, an expressiveness result that extends Turing-completeness to175

distributed computations, carrying the ability of expressing any effectively com-

putable space-time function [18]; and distribution independence, the ability to

express programs resilient to changes in system scale and density [18].

Macro/global perspective [17]. The field abstraction promotes reasoning in

terms of collective behaviours, which facilitates mapping desired global outcomes180

to local behaviour [17, 25].

Compositionality. By exploitation of the functional paradigm, language design,

and libraries of self-organisation building blocks [24], it is possible to specify

programs by composing blocks of collective behaviour.

Declarativity. The abstract execution and programming models provide flexi-185

bility and delay implementation decisions.

These features support reconfiguration in multiple ways. The availability of

tools, both practical and formal, is useful for development and verification of

reconfiguration logic in concrete systems. The macro perspective should help

in designing reconfiguration policies that take into account non-local aspects190

(such as the resources available in large portions of the network, or connectivity

patterns). Compositionality should support modular construction of reconfigu-

ration policies. Declarativity, by allowing flexibility in the execution (e.g., where

and how frequently) of reconfiguration policies, should help to address the het-

8

erogeneity of different deployments. This manuscript aims to substantiate these195

intuitive considerations.

3.2. Application Partitioning and Deployment via Pulverisation

3.2.1. Core concepts

Pulverisation [11] is rooted in the idea that some distributed application,

designed assuming a specific set of connected logical devices can be decomposed200

into smaller components (with clearly defined responsibilities and relationships)

deployable on the underlying infrastructure, defined as a network of hosts (this

terminology is also summarised in Table 1). Thus, when applicable (see next),

pulverisation neatly separates the application logic from its target deployment

infrastructure, allowing for the design of the former regardless of the latter.205

In other words, pulverisation can be seen as a way to separate functional and

non-functional concerns, delaying the design of the deployment to later stages

of the development (up to runtime). Similarly to other paradigms that also

decouple business logic from deployment (such as task graphs [26] or reactive

programming [27], where tasks or reactive operators can be assigned to different210

nodes of a network), pulverisation splits a collective behaviour into individual

devices and their individual behaviours into uniform sets of components.

Concretely, pulverisation requires the single device logic to be separable into

sub-components, which may require specific capabilities in order to be deploy-

able on a host. Though the approach can be extended to arbitrary partitioning,215

we consider the classical partitioning in three main concerns:

1. sensing : acquiring information from the local environment;

2. actuation: acting on the local environment;

3. business logic: processing sensing data and taking decisions about actua-

tion.220

In some cases, the business logic can be further split into sub-components, e.g.,

to isolate the persistent state of the device, or to capture communication with

9

other devices. The degree at which a specific application can be pulverised is

ultimately determined by its design and technological framework: in some cases,

the application may need to be modified to be pulverised, yet in other cases a225

neat separation is induced by the structural features of the paradigm/frame-

work.

Notably, a prominent example of a “naturally pulverisable” paradigm is

aggregate computing [11], which we introduced in Section 3.1). Thus, aggre-

gate computing could be used simultaneously (i) as programming paradigm to230

specify the high-level collective behaviour of an application, and (ii) at the lower

level, as a technology to program infrastructural reconfiguration policies. Some

motivating factors that led us to propose this specific model for reconfiguration

rules (cf. Section 3.1.3) also hold when deciding whether or not to adopt ag-

gregate computing for the construction of the application: compared to other235

approaches amenable to pulverisation, such as Tuples-On-The-Air (TOTA) [28],

the main reasons to lean towards aggregate computing are mainly related to the

practicality (with relatively mature and available tools) and the compositionality

(which permits easier reuse of existing collective behaviours)—cf. Section 3.1.3.

The problem of deployment of pulverised applications can be framed in the240

larger topic of service placement [29]. In particular, according to the service

placement taxonomy in [29], our placement approach is distributed, online,

and addresses dynamic and possibly mobile systems. Following the concep-

tual framework in [29], the pulverisation application model can be seen as a

connected graph of inter-dependent components, but is actually more specific245

than that. The peculiarity of pulverisation is that it targets collective systems:

a collective computation is split by their participating devices, and their indi-

vidual behaviour is further split uniformly around a set of common component

types.

3.2.2. Example250

Consider, for instance, a simple system composed of two rain gauges con-

trolling a valve, which should be open only if the average of the two gauges is

10

above a threshold, or if either one is close to its maximum. The system can be

naturally programmed considering three logical devices: the two gauges and the

valve. Without pulverisation, the designer must also take a look on whether255

the system is actually composed of three physical devices, what they do sup-

port, and how they are connected. For instance, the valve might be attached

to the same device controlling a gauge (so devices might actually be two); one

or both gauges may be battery-powered thin devices (e.g., a LoraWAN mote),

unable to host anything but minimal computation; there may or may not be260

the opportunity to send data to a remote server; the devices might be able to

communicate directly or not, etc. All these aspects are irrelevant to the core

business logic of the system, which can be easily defined without mentioning

any of them, yet they need to be taken into account when designing the system

with a classical approach, as such design encompasses lower-level details such265

as the actual communication among the involved physical devices.

Using pulverisation, the system behaviour should be specified to implement

the core business logic as if the participants to the system were the three logical

devices, considering them as if they were always available and connected. Once

the behaviour is defined, it is broken down (pulverised) into small components.270

These components may specify a set of required capabilities that the physical

hosts need to expose in order to host them; e.g., a component in charge of

producing the gauge reading will need a sensor to be physically available, and a

component evaluating whether the valve should open could need a better CPU

than a microcontroller. Once done, the pulverised components can be deployed275

on the valid available physical devices, regardless of their actual hardware (as

far as the aforementioned capabilities are provided) and network topology (as

far as the network is not perpetually segmented). At this point, the same

behaviour specification can be executed regardless of whether the gauges send

readings via LoRa motes, the valve is or not attached to either of the gauges,280

the computation happens on the end devices, in the edge, or in the cloud, and

so on.

11

3.2.3. On design and execution of pulverised systems

Pulverisation, at its core, is a technique for separation of concerns, separat-

ing application logic (written in a pulverisable programming paradigm) from285

distribution logic (as defined by the reconfiguration rules), coupled with au-

tomated distribution/partitioning of components (defined by the pulverisation

middleware). Methodologically, applying pulverisation to a given application

requires to [12]:

1. collect the functional requirements,290

2. write the system behaviour specification, and

3. partition the application into pulverised components, to obtain what we

call a pulverised application or pulverised system.

The pulverised components also work as deployment units, i.e., the minimally

deployable software elements. A deployment plan is a mapping between deploy-295

ment units to the deployment domain (the set of target hosts). In parallel to

the partitioning, the available infrastructure can be analysed to build a model

of the possible target infrastructures. At this point, several available deploy-

ment plans can be evaluated and compared, for instance via simulation, before

performing the actual deployment of the pulverised components.300

To sustain such approach, however, at deployment time, either a software

maintainer or a middleware must perform a wiring of the deployment units in

such a way that the system can operate on its underlying infrastructure. The

wiring process can be supported by an optimisation-based approach, especially

when the number of device is not too high, and we know in advance the topology305

of the network and the capabilities of the devices. We argue that, due to the

openess of the ECC and the dynamicity of the system, it is not always possible to

find an optimal solution. In this context, more scalable and effective approaches

are needed, for example by leveraging a capability-based approach which can be

exploited to constraint the placement of the components in the available hosts.310

In case of reconfiguration, the deployment units may need to be relocated

12

and a re-wiring performed—ideally automatically by the middleware. A middle-

ware for managing pulverised systems has to deal with several concerns, thereby

including scheduling, communication, and coordination. Of these, the most crit-

ical is the communication between the pulverised components, especially in a315

distributed setting like the ECC: realising communication channels among logi-

cal devices implies closing the gap between the logical network and the physical

network. We consider the logical network as the ensemble of logical devices and

their communication routes, which are defined logically when the application

to be pulverised is designed. Later, as said, a logical device may end up being320

mapped to one or more physical devices (depending on whether its deployment

units are hosted on the same physical device or not).

Term Meaning

Infrastructure A network of hosts (deployment domain)

(Logical) Device An entity of the application business logic

(Physical) Host Physical device that may host deployment units

Pulverised applica-

tion/system

An application pulverised into devices and pulverisation

components

(Pulverisation) Com-

ponent

A deployment unit, part of a device functionality

Table 1: Terminology. Parts of terms in parentheses may be omitted for brevity.

4. Middleware architecture

As discussed in the previous section, a pulverised application features two

distinct levels of abstraction: the logical level, where the application is de-325

signed, and the physical level, where the application is deployed. To capture

these abstractions, the middleware architecture is sliced in two distinct layers:

the Infrastructure Layer, mapping the physical level, and the Application Man-

agement Layer, mapping the logical level. The former manages the aspects

of the system closer to the metal, implementing the communication between330

13

hosts, which are network nodes (physical hosts, or, equivalently from the point

of view of the system, virtual machines or containers). Also, it is responsible

for managing the reconfiguration policies, which need to be aware of the phys-

ical network topology. The Application Management Layer builds instead on

the network channels reified by the Infrastructure Layer and it is designed to335

manage the pulverised components, moving them across the network as defined

by the reconfiguration policies, and exposing virtually direct communication

channels (whose actual shape, seen at the lower level, may be multi-hop) to the

pulverised components that are being executed.

In other words, the Application Management Layer deals with the logical340

level of the system, reifying logical devices; while the Infrastructure Layer is

responsible for managing the physical level of the system, thus including hosts.

In a typical workflow, the developer willing to operate on such middleware

implements the components of each logical device conforming to the interface

provided by the middleware, which must provide means to apply the partition-345

ing as defined by the pulverisation approach. Then, the developer registers them

to the middleware via a dedicated API, letting the middleware manage the de-

ployment units. Similarly, the developer can implement reconfiguration policies

by registering them in the Reconfiguration Manager via a dedicated API. Once

the components are registered and the middleware is configured, the developer350

is responsible for deploy the middleware instance on the infrastructure, i.e., via

an executable file or a container.

In the following discussion, we detail how these layers work.

4.1. Pulverisation and Aggregate Computing Integration

The pulverisation model is strictly related to the Aggregate Computing355

paradigm, since it provides a (natural) way to partition a logical device into

independent components. This partition is devised to preserve the computa-

tional model of Aggregate Computing, where the computation is performed in

a distributed fashion by the devices of the system.

14

Agent

Computation round

Context

Evaluation

Aggregate

Program

Evaluation

Context

Action

Scheduling

Policy

Sensors

State

Inbound

Message Box

Comm.

Outbound

Message Box

Actuators

neighbours
Aggregate

Program

0
1

2

3 α

κ χ

σ

β

Figure 1: Aggregate Computing execution loop. The blue box represents the key components

of the Aggregate Computing paradigm involved in the pulverisation model. In the pulverised

view, each component is independent and managed by the pulverisation middleware.

In Aggregate Computing, each device executes a program in a round-based360

fashion, where the computation is divided into three main phases:

1. Context Evaluation: the device acquires the sensors’ values, the previous

state, and the messages from the neighbours;

2. Program Evaluation: from the data acquired in the previous phase, the

device computes the program producing the output;365

3. Context Action: from the output of the program, a new state is produced,

as well as a new message for the neighbours, and the actuators are acti-

vated based on the prescriptive actions.

The aforementioned phases are reported in Figure 1, where the Aggregate

Computing execution loop is depicted. Moreover, The blue box represents the370

Aggregate Computing components involved in the pulverisation partitioning,

where each of them is managed by the middleware architecture (cf. Section 4.2).

In this context, the pulverisation model shifts the focus from a single device

execution, to a more distributed model where the components can be deployed

15

on different hosts, and is the responsibility of the middleware to manage the375

communication among them to ensure the round-based execution correctness.

4.2. Application Management Layer

The Application Management Layer is responsible for reify logical devices

and hence execute one or more pulverised applications. More in detail, this

layer manages the deployment units: a deployment unit is a deployable software380

package that consists of a possibly dynamic collection of one or more pulverised

components belonging to the same logical device instance. The deployment unit

can change by hosting a new component or removing an existing one, based on

the current deployment plan of the system. The management of the deployment

units is performed by the Deployment Unit Control Manager. The informa-385

tion about the actual system’s configuration is provided by the Infrastructure

Layer, and it is used by the Application Management Layer to manage the

deployment units accordingly.

This is the layer exposed to the application developer, since it provides

a logical abstraction of the system, without leaking details of the underlying390

physical infrastructure. In fact, in this layer, the developer deals with log-

ical devices and components associated with them, without worrying about

where the components will be executed or how they will communicate with

each other, thus abstracting away details on how the communication between

the pulverised components will be performed in practice. In fact, a different395

component called Communication Manager manages the communication among

pulverised components at runtime, based on the information provided by the

Physical Network Communication, which is part of the Infrastructure Layer

and has visibility of hosts, it can thus route and retrieve messages among them.

Figure 2 shows the aforementioned layer and the interaction between the400

Deployment Unit Control Manager, and the Communication Manager.

4.3. Infrastructure Layer

The Infrastructure Layer is responsible for managing hosts and the commu-

nication among them. In particular, this layer can be further divided into two

16

Communication

Manager

Deployment Unit

Control Manager

ασ ββσ α

manages manages

Deployment Unit Deployment Unit

Physical Network

Communication

Network Topology

Manager

Reconfiguration Manager

M
id

d
le
w
a
re

U
se

r-
d
e
fi
n
e
d

A
p
p
li
c
a
ti
o
n

M
a
n
a
g
e
m
e
n
t
L
a
y
e
r

In
fr
a
st
ru

c
tu

re

L
a
y
e
rR

e
c
o
n
fi
g
.

C
o
m
m
.

· · ·

Aggregate Computing

Figure 2: Representation of the two middleware layers and the mapping between them in

the architectural model. In the Application Management Layer, a link between components

represents logical communication. In the Infrastructure Layer, a link between hosts represents

an existing direct network communication channel. The Aggregate Computing subcomponent

in the Reconfiguration Manager can be used to manage global reconfiguration policies.

17

sub-layers: Reconfiguration Layer and Communication Layer. The former is re-405

sponsible for managing the reconfiguration of the deployment units according to

the adopted reconfiguration strategy, while the latter is responsible for realising

the actual communication among the hosts and keeping track of the physical

network topology (which hosts can directly communicate with which, and how

messages should be routed so that a host can reach any other one).410

From Figure 2, the Reconfiguration Manager communicates with

Deployment Unit Control Manager of the Application Management Layer to

perform runtime reconfigurations of the system. In fact, the Reconfiguration

Manager exposes, for each application executed in the middleware, which de-

ployment units are currently selected to be executed on the local host. This415

information is used by the Deployment Unit Control Manager to modify the

deployment units, starting and stopping the affected components as described

in Section 4.2.

The Reconfiguration Manager must be aware of the current infrastruc-

ture topology to be able to select which deployment units should be available420

and where. Thus, it can access such information from the Network Topology

Manager, the middleware component dedicated to keeping an up-to-date view

of the current network topology. The information provided by the Network

Topology Manager can be (and typically is) enriched with data such as channel

latency, jitter, and status information at the destination (for instance, aver-425

age CPU load, memory usage, etc.). All these additional information can be

exploited in the reconfiguration policies to take more informed decisions. For

instance, when a latency-sensitive reconfiguration policy is adopted, the latency

information can be accessed by the Reconfiguration Manager to identify the

best host in which to deploy a specific deployment unit, minimising latency. Sim-430

ilarly, a latency-based global policy can use this additional information to place

the communication components into physically close hosts, reducing the overall

latency of the communication for the devices in that physical area. A more de-

tailed description on how the reconfiguration policies can be implemented and

managed by the middleware is provided in Section 5.435

18

Middleware instance

Physical network link

Physical Device

Figure 3: Representation of a possible deployment of the middleware showing the Reconfigu-

ration Manager component supported by the Aggregate Computing for managing the recon-

figuration policies. The dashed lines represent the physical network communication channels

between the devices, reflecting the physical neighbourhood relationships. The gray rounded

rectangle inside each device represents the middleware instance running on the device. The

coloured rounded rectangles (inside the gray one) represent the middleware’s components, as

depicted in Figure 2.

Finally, the Physical Network Communication is responsible for perform-

ing communication among hosts through any established network protocol. The

role of this component is twofold: enabling the communication between pul-

verised components hosted on different network nodes (supporting the Commu-

nication Manager), and providing the Network Topology Manager with infor-440

mation required to keep an updated infrastructure map (for instance, by sending

periodical heartbeats and/or status updates).

In Figure 3, we depict several hosts (thick squares) running the middle-

ware instances (coloured rounded rectangles), connected to each other by phys-

ical network communication channels (dashed lines). The Reconfiguration445

Manager, as reported in Figure 2, can leverage the Aggregate Computing

paradigm to manage the reconfiguration policies. In this context, the figure

shows that the Aggregate Computing part is executed on each host, and via

19

the Physical Network Communication component, the coordination messages

are exchanged among the neighbour hosts of the physical network. From the450

figure emerges the complete distributed nature of the middleware, where each

host runs an instance of it and communicates with the other instances in a

neighbour-to-neighbour fashion.

In an ECC infrastructure, heterogeneity can lead to the adoption of differ-

ent communication protocols across different hosts. As an example, LoRaWAN455

motes may communicate with the homonym protocol with a LoRa gateway,

which then sends the data to an edge server via MQTT, and it, in turn, com-

municates via HTTPS with some cloud-hosted instances. In such a scenario,

the Physical Network Communication, provides a common interface to inter-

act exposing primitive operations, abstracting away the actual communication460

protocols used by the hosts.

The overall mapping between the logical devices and their physical hosts is

depicted in Figure 4, showing an example of how the proposed architecture is

capable of enforcing deep decoupling between logic devices and their perceived

network and hosts executing them, connected to a physical network.465

5. Aggregate Computing for dynamic reconfiguration

Although pulverisation is an effective way to flexibly deploy Aggregate Com-

puting applications on the ECC, the latter can also be exploited to implement

the reconfiguration policies, especially in a highly dynamic environment like

the ECC. In this section, we show that Aggregate Computing is a practical470

tool to express reconfiguration policies in a high-level fashion, from a global

stance (positively answering RQ2). This way the role of Aggregate Comput-

ing is potentially dual: on one side, it provides a suitable programming model

for implementing collective behaviours, on the other side, it can be used to

implement global reconfiguration policies.475

20

A
p
p
li
ca
ti
o
n
M
gm

t.
L
a
ye
r

In
fr
a
st
ru
ct
u
re

L
a
ye
r

β

σ α

β

σ α

β

σ α

β

σ

α

β

σ α

β

σ

α

β

σ α

β

σ α

Physical Link

Virtual Link

Host

Logical Device 1

Logical Device 2

Figure 4: Representation of a simple system composed of four logical devices (Application

Management Layer), each pulverised in three components. The figure shows the mapping

between the logical devices and the hosts (Infrastructure Layer). Note how the pulverisation

into components and the creation of deployment units enables a high degree of decoupling

between logical devices and hosts.

5.1. Syntax Introduction and Aggregate Operators

We introduce the syntax adopted in the following examples. All the code

snippets are written in Scala 2, which is also the language used in the ScaFi

framework [19].

5.1.1. Scala Syntax480

To simplify the understanding of the code snippets for readers unaquainted

with Scala 2, we introduce the syntactic elements used in this paper’s exam-

ples. The reader is referred to the Scala 2 language specification1 for a more

comprehensive overview of the language.

A function is defined by the def keyword, followed by the function name485

and, within parentheses, the function input parameters, whose type is annotated

after a colon; finally, the return type annotation concludes the function signa-

ture. Scala supports currying, namely, multiple parameter lists (each enclosed

1https://scala-lang.org/files/archive/spec/2.13/

21

https://scala-lang.org/files/archive/spec/2.13/

in parentheses) can be defined. Additionally, generic functions may feature type

parameters enclosed within square brackets between the function name and the490

parameter list(s) (for instance, [A] indicates that the function is generic in A).

Anonymous functions (lambda expressions) can be defined with the

(parameters) => body syntax. where parameters is the list of input param-

eters and body is the body of the function. Lambda expressions with a single

parameter can be written without parentheses around the parameter list. Ad-495

ditionally, the parameter list and the => symbol can be omitted if the body uses

the parameters only once: for instance, +1 is equivalent to x=>x+1, and + is

equivalent to (x,y)=>x+y.

5.1.2. ScaFi Syntax and Aggregate Operators

The ScaFi framework provides a set of primitives that provide a practical500

implementation of the higher-order field calculus [30] and can be combined to

realise complex aggregate programs. A description of these operators follows.

Neighboring – nbr. This operator has a dual function: the data it is fed with

is shared with the neighbours, and returns a data structure where each value

is the one shared by the corresponding neighbor, thus implementing a sort of505

send/receive operator that enables operations in space. For instance, nbr(0)

shares with the neighbours the value 0; generally, any expression result can be

used as parameter of nbr.

Repeating – rep. The repeating operator captures state evolution. It requires an

initial value and a function that computes the next state based on the previous510

one, enabling stateful operations in time. For instance, rep(0)(x=>x+1) will

produce a sequence of integers starting from 0.

Domain separation – branch. The domain separation is the distributed equiv-

alent of branching in concentrated systems. Devices which share the same con-

dition will compute the same branch of the program, and will not communicate515

with the devices computing the other branch, thus de-facto partitioning the

22

network. Note that, within aggregate programs, the native Scala if statement

is not allowed, as it interferes with the distributed branching semantics.

Functional selection – mux. Given the behaviour of the branch operator, an

additional form of branching is required for computations that need to com-520

municate with all neighbours on both branches and return only one of the

two results. This abstraction is provided by the mux operator. For instance,

mux(cond){trueBranch}{falseBranch} will compute the trueBranch if cond

is true. falseBranch otherwise.

Folding – foldHood and foldHoodPlus. Since nbr produces a value per neigh-525

bor, its usage is only meaningful if the values are combined, or, in a functional

programming sense, folded into a single value. The foldHood operator provides

this functionality. It takes as input an initial value, a reduction function, and

an expression containing a neighboring operation. The operation is executed,

and the resulting field, mapping device identifiers to values, is then folded into a530

single value by applying the reduction function element by element from the pro-

vided initial value. foldHoodPlus is similar to foldHood, but discards the local

field value. For instance, foldHood(0)(+)(nbr(1)) sums the values shared

by the neighbours and the local value, while foldHoodPlus(0)(+)(nbr(1))

sums the values shared by the neighbours excluding the local value.535

5.1.3. Aggregate building blocks

Together, the aggregate operators are universal, in the sense that they can be

used to implement any distributed algorithm. However, many of these may not

be self-stabilising, i.e., they may not converge to the correct behaviour after any

disruptive event [31]. To simplify the construction of self-stabilising software, a540

set of common patterns have been identified and implemented as building blocks

in the ScaFi framework [24]. They implement common collective behaviours in

a self-stabilising fashion, and, crucially, their functional composition produces

self-stabilising algorithms. We briefly introduce them in the remainder of this

section.545

23

Gradient-cast – G. This building block propagates information from the closest

source to its surroundings (possibly, the whole network), by building a gradient

based on the provided distance metric.

Converge-cast – C. The converge-cast is the dual of the gradient-cast. It collects

information from the surroundings towards a sink, based on a potential field,550

often built using the G operator: it is common for the result of a G operation to

be fed as parameter of a call to C.

Sparse-choice – S. The sparse-choice building block implements symmetry

breaking in homogeneous networks, it takes a grain parameter and a distance

metric, and partitions the network into areas whose size is proportional to the555

grain parameter.

5.2. Aggregate-based Reconfiguration Policies

A reconfiguration policy is a function outputting a Set[Component], rep-

resenting the components that must be executed by the local host. All the

information required to manage the reconfiguration are accessible via sensing560

operation provided by the Aggregate Computing framework. From a global

stance, the aggregate function running using the ECC as a single computation

device outputs a field that associates to each point a set of pulverised com-

ponents. Of course, provided that the types of the pulverised components are

compatible with the local host, approaches other than aggregate computing565

could be used; however, we will show in this section that adopting the latter

provides guarantees and allows to succinctly express rich policies. We will do

so by presenting a series of increasingly complex examples, to showcase how the

approach can scale easily even when policies become intricate. For simplicity,

we assume three pulverised components: Behavior, Sensor, and Actuator.570

In Listing 1, we present one of the simplest possible policies: all the compo-

nents local to the device.

The idea of using Aggregate Computing to implement reconfiguration poli-

cies is rooted on the idea that networked hosts represent samples (points) over

24

1 def main(): Set[Component] = Set(Behavior, Sensors, Actuators)

Listing 1: All components are local to the device.

a manifold in which multiple metrics can be defined. Although designed to575

support spatial and spatio-temporal computations, in principle Aggregate Com-

puting can execute on any Riemannian manifold, as far as suitable metrics are

defined (many algorithms assume the strict triangle inequality to hold). As an

example, a valid metric could be the round-trip latency between two directly

communicating hosts, or the sum of the CPU usage: in the former case, hosts580

connected by low-latency links will see each other closer than those with high-

latency links; in the latter case, hosts with high CPU usage will be perceived

as far from the others. Listing 2 shows a policy that offloads the behaviour

component to the nearest host with the lowest CPU load and latency below a

threshold. It does so by building a field of latencies, and consider only the direc-585

tions in which it is below a threshold (Line 4 to Line 6), then selecting among

them the host with the lowest CPU load (Line 9), and finally propagating its

decision (Line 11 to Line 14). More specifically, the foldHoodPlus function is

used to collect the latencies and CPU loads of the neighbours, and filter out the

neighbours with a latency above the threshold. Of the remaining neighbours, we590

are interested in the one with the lowest CPU load, since we want to offload the

behaviour component to the host with the lowest CPU load. This operation is

trivially performed by the Scala standard library function minBy, which selects

the minimum element of a collection based on a specific criterion (in this case,

the CPU load). Once the candidate host is selected, the decision is propagated595

to the neighbours, via the nbr operator by providing the id of the selected host

and the component to offload — in this case, the Behavior component. Finally,

the foldHoodPlus function is used to collect the decisions of the neighbours,

by accumulating only the components that are meant to be executed locally.

However, note that this policy has several flaws: first, it never propagates infor-600

mation but to the immediate surroundings of each host; second (consequence of

25

first), the policy may thus be unstable and create cycles in which nodes perpet-

ually offload and get back their own behaviour component. In other words, this

solution is non-self-stabilising : when using Aggregate Computing to coordinate

large scale systems, it is indeed better to avoid low-level mechanisms (nbr and605

rep), and rely on high-level building blocks. These building blocks are built in

such a way that their composition guarantees the self-stabilisation property, as

proved in [32].

1 def maxLatency = ... // the maximum admitted latency

2 def cpuLoad = ... // the local cpu load

3 def main(): Set[Component] = {

4 val selected = foldHoodPlus(List())((acc, (lat, c)) =>

5 mux(lat < maxLatency){ acc :+ (mid(), (lat, c)) }{ acc }

6)(nbrLatency() -> nbr(cpuLoad))

7 // Select the node with lowest CPU load

8 val (bestId, _) =

9 selected.minBy { case (_, (lat, cpuLoad)) => cpuLoad }

10 // Propoagate the offloading decision

11 val decision = nbr { (bestId, Behavior) }

12 foldHoodPlus(Set())((acc, (id, comp)) =>

13 mux(id == mid()){acc + comp}{acc}

14)(decision) ++ Set(Sensor, Actuator)

15 }

Listing 2: Rule expressing the intent to offload the behaviour component to the nearest host

with the lowest CPU load and latency below a threshold.

Thus, as a third example, we show in Listing 3 a policy in which all the

behaviour components get centralised into the node with the best available610

CPU using functions that operate over building blocks, and thus guarantee self-

stabilisation. To do so, it builds a field of tuples containing node id and CPU

capacity, of which the maximum in the network is selected via gossip (Line 4),

then, from the node with the best CPU, we propagate a potential field (Line 5),

which is used, in turn, to build a spanning tree over which all behaviours are col-615

lected (Line 6). Finally, every host decides which component(s) to run: Sensor

26

and Actuator are locally executed (if available), and the Behavior is offloaded

to the node having the lower CPU load on the network (Line 9).

In this example, the gossip function is used to propagate in all the network

the maximum CPU capacity and the id of the node having it. Then, based620

on the id of the node with the best CPU capacity, a gradient is propagated

having as source the node with the best CPU capacity. As stated above, this

gradient is used to backtracking the potential field generated by the gradient

function, and collect into the source node (the one with the best CPU capacity)

all the intended components to be executed. This operation is managed by625

the C function, which is used to collect the components to be executed by the

source node. Finally, the flatMap function is used to select the components to

be executed by the local node.

1 // local CPU capacity, e.g., IPC * frequency * cores

2 def cpuCapacity = ...

3 def main(): Set[Component] = {

4 val (id, bestCpu) = gossip(cpuCapacity, max)

5 val potential: Double = gradient(source = id == mid())

6 val selected = C(potential, _ ++ _, Set((mid(), Behavior)), Set())

7 selected.flatMap { case (id, comp) =>

8 if (mid() == id) Set(comp) else Set()

9 } ++ Set(Sensor, Actuator)

10 }

Listing 3: Rule expressing the intent to offload the behaviour to the best CPU in the system.

Of course, centralise everything is not a policy that can scale with the num-

ber of nodes in the system. In Listing 4, the last snippet of this short tour, we630

show how to achieve hybrid coordination through the Self-organising Coordi-

nation Regions (SCR) pattern [33]. We first split the whole ECC into regions

of coordination, each one with a leader elected through boundedElection [34]

(Line 5). We then propagate a potential field from each leader (Line 9), pre-

ferring low-latency connections, which is used to build a regional spanning tree635

that accumulates information into the partition leader (Line 10). Finally, we

27

select the components to run locally, with local leaders taking charge of all the

regional behaviours (Line 11 to Line 13).

The boundedElection function is used to elect the leader of the region based

on the CPU capacity of the nodes. With this function, a number of leaders are640

elected forming regions that are bounded to maxLag latency, respecting the

limit parameter. Then, for each leader, a potential field is propagated to

determining the potential of the region. As for the previous example, via the C

function, the components to be executed are collected into the leader node.

1 // local CPU capacity, e.g., IPC * frequency * cores

2 def cpuCapacity = ...

3 def maxLag = ... // the maximum admitted latency

4 def main(): Set[Component] = {

5 val leader = boundedElection(

6 strength=cpuCapacity, metric=nbrLag, limit=maxLag

7)

8 val potential: Double =

9 gradient(source=leader == mid(), metric=nbrLag)

10 val selected = C(potential, _ ++ _, Set((mid(), Behavior)), Set())

11 selected.flatMap { case (id, comp) =>

12 if (mid() == id) Set(comp) else Set()

13 } ++ Set(Sensor, Actuator)

14 }

Listing 4: Rule expressing the intent to offload the behaviour to the node with best CPU

capacity within a bounded latency.

6. Evaluation645

In this section, we exercise an implementation of our proposed middleware

and reconfiguration programming approach. In particular, we show how the

SCR pattern can be exploited to manage the dynamic relocation of the compo-

nent’s execution at runtime according to the pulverisation partitioning.

The discussion is organised as follows: Section 6.1 introduces the goals of the650

evaluation and how they provide evidence for the research questions; Section 6.2

28

describes the case study; Section 6.3 defines the methodology and provides detail

on the reconfiguration strategies under test; finally, in Section 6.4 we show the

final results.

6.1. Evaluation Goals655

The goal of the evaluation is to provide evidence that:

1. the host allocation of the pulverised components of a distributed appli-

cation can be modified at runtime using the proposed architecture, more

specifically (cf. RQ1);

2. it is possible to implement a distributed reconfiguration from a global660

stance, specifically by using the Aggregate Computing paradigm (cf.

RQ2);

3. the ability to reconfigure the system at runtime is helpful to achieve bet-

ter QoS and performance trade-offs compared to a traditional pulverised

deployment with no runtime reconfiguration (cf. RQ3).665

6.2. Scenario

We consider a network of one thousand heterogeneous hosts on which mul-

tiple distributed applications are executing concurrently, among which our pul-

verised application. Hosts can be either thin or thick, depending on their

computational capabilities. Thin hosts have limited computational capabili-670

ties (e.g., due to being battery powered), but they are the majority of the

devices (950/1000), and are equipped with sensors and actuators that are re-

quired for the application—they could be, for instance, smartphones. Thick

hosts, instead, have more computational resources and memory, but they are

fewer (only 50/1000) and do not have sensors or actuators—they could be, for675

instance, edge servers or cloud instances. For simplicity, we assume that the

thick devices share the same hardware specifications, since the main focus is

on evaluate the feasibility of reconfiguration approach, and not on accurately

modelling the hardware.

29

Once pulverised, our application is composed of multiple logical devices, each680

of which is made of three components: sensors, actuators, and behaviour. Sen-

sors and actuators require specialised hardware to be executed, and must thus

remain aboard thin hosts, while the behaviour component can be executed on

either host type. Even though thin hosts could in principle run the behaviour

component, they always try to offload it to a thick host in order to save bat-685

tery. To observe the system under stress, we assume that, when the behaviour

component is executed on a thick host, it drains 3% of its computational capa-

bilities.

With the proposed reconfiguration approach, we aim to show that a more

efficient relocation of the behaviour component can be achieved, compared to a690

local counterpart where each device tries to offload its behaviour to the closed

thick host. In this last scenario, if a thick device became overloaded, the pre-

defined thin devices requiring the offloading would not be able to offload their

behaviour component, thus becoming non-operational. In this context, the pro-

posed approach tries to better adapt the behaviour component allocation by695

shaping the regions of coordination according to the thick devices’ load, thus

dynamically selecting the best thick device to host the behaviour component,

namely the one with the lowest CPU load (if possible). Note how this condition

would make a static pulverisation approach hardly viable, as the overall compu-

tational capacity of the thick hosts is not large enough to host the behaviour of700

all the logic devices: the implementor would need to identify a set of thin hosts

to “sacrifice”, as they would quickly run off battery. In our testbed we show

that, instead, a dynamically reconfigurable system is viable albeit, of course,

with non-perfect QoS as it can be configured to share the burden among several

thin hosts.705

6.3. Experimental configuration

6.3.1. System dynamics

Every experiment simulates the network for 12 minutes (720 seconds). We

perform two experiments. In the first one, we are interested in observing how

30

the system reacts to changes in the available thick host capacity, thus verifying710

whether or not it can adjust in response to changes in the system dynamics even

though the network topology is unchanged. To do so, we apply a dynamic load

driver to the thick host, simulating a variable load from the applications that are

being executed concurrently with the pulverised one. In the second experiment,

we stress the reconfiguration capabilities in case of graceful degradation and slow715

recovery. To do so, we turn off batches of 25% of all thick hosts (simulating, e.g.,

a brown out) until the system is left with only 25% of its original capacity. We

then proceed to a progressive reactivation. Crucially, in these cases the network

is allowed to be segmented, thus some thin hosts may be forced to execute the

behaviour component locally, as no thick host is reachable. Our goal is to observe720

whether the system can remain functional in case of disruptions affecting the

network topology, and whether it recovers to its original QoS once the system

recovers from the disaster.

6.3.2. Network topologies

The devices are displaced on the network according to two different network725

topologies: a Barabasi-Albert network [35]; and a Lobster network [36] with

at most 4 hops from the backbone and maximum node degree limited to 20

direct neighbours. The former implements a scale-free network, while the latter

is representative of a backbone network composed of a set of edge-server and

multiple devices connected to them forming small sub-networks. In both cases,730

we mark as thick hosts the 50 nodes with the highest degree in the network.

6.3.3. Metrics

In all experiments, we measure the QoS of the system through a metric that

captures the fraction of thin hosts that can successfully offload their behaviour

pulverised component to a thick host. In this context, we intend QoS as an in-735

dicator of the system’s ability to adapt to the changing conditions of the system,

and consequently of the reliability and availability of the system. Thus, by

denoting the set of thin hosts as τ and the set of thin hosts whose behaviour has

31

been successfully offloaded to a thick hosts as τo ⊆ τ , then QoS = τo/τ. Thus

defined, the QoS is a value in the range [0, 1] representing the probability that740

a thin host successfully offload its behaviour component to a thick host. When

QoS = 1, all thin hosts have successfully offloaded their behaviour component

to a thick host, while when QoS = 0 no thin host has been able to offload its

behaviour component.

6.3.4. Baseline745

The baseline we compare with is a system where offloading is pre-defined:

every thin host offloads its behaviour component to the nearest thick host (mea-

sured in terms of hop count). In case multiple thick hosts have the same hop

distance from the thin host, then the one with the shortest latency (round-trip

time, measured at the beginning of the experiment) is selected. Note that, with750

a no reconfiguration system in place, the result of QoS ̸= 1 would imply that

a certain percentage of devices is not operational. The main reason for this

is that the thick hosts are overloaded, and they cannot host all the behaviour

components of the thin devices requiring the offloading. The thin devices not

capable of offloading their behaviour because of this condition are not opera-755

tional. With support for reconfiguration at runtime, the system could keep

operating, but with a degraded QoS. In our experiments, we implement the

baseline strategy using the same reconfiguration framework in order to get a

fair comparison, and focus on the benefit of an aggregate specification.

6.3.5. Dynamic reconfiguration760

We showcase the viability and efficacy of the proposed approach by realising

a collective reconfiguration strategy that, in few lines of code, captures a complex

collective behaviour.

We let each thick host act as a source of a potential field whose lowest value,

centered in the thick host itself, is its current CPU load. This field grows at765

every hop based on the expected offloading cost (in this case, 3% of the overall

CPU usage). In case a node is reached by multiple gradients, the one with the

32

1 def isThick: Boolean = ... // true if the device is thick

2 def offloadWeight: Int = ... // the offload weight

3 def cpuCost(): Int = if (isThick) /* cpu load */ else offloadWeight

4 def behavior = ... // the local behavior component

5 def main(): Set[Component] = {

6 val potential =

7 G(source=isThick, field=cpuCost(), acc=_+_, metric=cpuCost)

8 val managed: Set[Behavior] = C(potential, _++_, Set(behavior))

9 var load = cpuCost()

10 val runOnThick: Set[Behavior] =

11 if (isThick) managed.takeWhile{load+=offloadWeight; load<100}

12 else Set()

13 val onLeader = G(isThick, runOnThick, identity(), cpuCost)

14 if (isThick) onLeader

15 else Set(behavior) -- onLeader ++ Set(Sensor, Actuator)

16 }

Listing 5: SCR-based dynamic reconfiguration.

lowest value is selected, creating a natural partitioning of the network. All these

operations are conveniently summarised by the G building block at line 7 of List-

ing 5. Interestingly, since the lowest value of the potential field is associated770

with the available CPU of the thick hosts, hosts with a higher CPU load will

have a smaller region of influence, and thus the system will automatically per-

form a load balancing operation. Now, the potential can be used to accumulate

all behaviours to be executed on the thick host who is leading a certain area,

again supported by an existing building block: C (Listing 5, line 8). The thick775

host will select the behaviours to be executed locally (Listing 5, lines 9—12) and

propagate the decision along the potential (Listing 5, line 13). Finally, every

device will return the set of components to be executed locally: the selected

ones for the leading thick host; Sensor and Actuator for the thin ones plus the

local behaviour if not selected for the offloading (Listing 5, line 15). Overall,780

this strategy is an implementation of the SCR pattern, which can be realised in

a handful lines of code.

33

1

2

3

1

2

3

1

2

3

Figure 5: Visual representation of three changing conditions of the reconfiguration algorithm.

The coloured shapes represent the regions coordinated by the leaders (squares inside each

region). The region’s area is proportional to the leader’s CPU load.

To better understand the reconfiguration algorithm described above, we pro-

vide a visual representation of the algorithm in Figure 5. Initially, the regions

are formed via SCR based on the actual CPU load of leaders (left side of the fig-785

ure), depicted in the figure as squares. The middle part of the figure shows how

the regions are dynamically adapted when leaders 3 and 4 are increasing their

CPU load. When this condition occurs, the regions of leaders 3 and 4 are re-

duced, and the regions of leader 1 is increased to accommodate the thin devices

that were previously in the regions of leaders 3 and 4. Finally, the right side of790

the figure shows the opposite condition, where leaders 3 and 4 are decreasing

their CPU load, and the regions of leaders 3 and 4 are increased, while the region

of leader 1 is reduced. With this dynamic reshaping of the regions, the system

can adapt to the dynamic changing conditions of the system, and maximize the

number of thin devices that can offload their behaviour component.795

To keep the model simple, we consider only the CPU load of each host in

the System. This is mainly due to the fact that we suppose the thick device

share the same hardware characteristics, so even though additional parameters

(e.g. CPU capacity) could be considered, in this simulated scenario they do

not provide any additional values for the purpose of this evaluation. However,800

more complex metrics based on the combination of multiple parameters can

be defined, and such investigation represents a promising direction for future

works.

34

6.3.6. Tools and reproducibility

We repeat every experiment for 10 times with a different random seed; the805

results presented in this manuscript show the average ± one standard deviation

(1σ). The experiments have been executed using the Alchemist Simulator [20].

The Reconfiguration specifications have been written in Scafi [19]. Data analysis

and visualisation were performed using xarray [37] and matplotlib [38] respec-

tively. For inspectability and reproducibility, the experiments have been released810

with a permissive open-source licence 2 and archived for future reference on Zen-

odo [14]. For the sake of brevity, we only show the results of the most relevant

experiments. In the aforementioned repository, we provide the complete set of

72 charts, including experiments performed with a different device count and

behaviour CPU load.815

6.4. Results

Results are depicted in Figure 6 for the dynamic load experiments, and in

Figure 7 for the graceful degradation and recovery. In both cases, the collective

strategy shows better overall results in terms of QoS when compared to the local

one (baseline) after a period of adaptation and stabilisation of the distributed820

data structures, during which the results may get worse. In fact, the aggregate

policies require some time for the self-stabilisation process to complete, and

until stabilisation is reached, the QoS can be affected negatively. Moreover,

we observe that the collective strategy has a more pronounced sensitivity to

network density and segmentation: the algorithm is naturally capable of find-825

ing alternative offloading routes and exploit them, but doing so is faster as the

network is denser, and it is impossible to do in case of segmentation. In fact,

in the graceful degradation and recovery scenario, if we compare the results of

the two different network topologies, we observe that the proposed approach

(although still better performing than the baseline) obtains much better results830

in the scale-free network. The reason is that in the lobster topology segmen-

2https://github.com/nicolasfara/reconfiguration-experiments

35

https://github.com/nicolasfara/reconfiguration-experiments

100 200 300 400 500 600 700
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Q
oS

Scale–free topology − variable load

100 200 300 400 500 600 700
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Q
oS

Lobster topology − variable load

0

20

40

60

80

100

C
P

U
lo

ad
in

%

0

20

40

60

80

100

C
P

U
lo

ad
in

%

QoS [local] QoS [collective] Load driver (right)

Figure 6: Results for the dynamic load scenario with a scale-free (upper) and lobster (lower)

topology. The collective strategy is depicted in green, the local one in violet, and the load

driver is dashed and black. Shadows around the lines represent ±1σ. The collective strategy

shows better overall results in terms of QoS, at the cost of longer transients due to adaptation

and stabilisation of the distributed data structures. Also, the collective strategy benefits from

denser networks: the more alternative paths are available to choose from and the lower the

probability of segmentation is, the better the overall performance.

36

tation as a consequence of the random removal of a node is much more likely

compared to a scale-free topology.

Similarly, in the variable load experiment we observe almost the same per-

formance on a lobster topology, and yet a considerable improvement in the835

scale-free topology. The reason behind this behaviour is due to the network

density (the ratio between the actual number of edges and the maximum pos-

sible number of edges in the network): denser networks have more alternative

paths to choose from, hence allowing the proposed adaptation to select from a

wider spectrum of alternatives.840

6.5. Threats to validity

Our experiments do not consider a realistic energy use model. Frequent

system reconfiguration, even though leading to a better QoS, may cause the

overall power usage to be greater than a statically defined system. However,

this ultimately boils down to the construction of an accurate energy model and845

subsequent selection of an appropriate reconfiguration policy, which are out of

the scope of this work.

Related to this point is the actual heterogeneity of the hosts on the ECC.

In our experiments, we simplify by talking about thin and thick hosts, but in

reality the situation is way more nuanced: smartphones and wearables come in850

all sorts of hardware configurations, and, similarly, the infrastructure is very

diverse (both in the edge and in the cloud). Capturing the heterogeneity with

the proposed approach implies a non-trivial effort describing appropriate metrics

that, in turn, can drive the reconfiguration policies, similarly to what has been

discussed for the energy model.855

Different network topologies may have shown different results. In our exper-

iments, we tried to cover two very different topologies in the attempt to stress

the system under very different conditions, namely a scale-free network and a

lobster network. Although those topologies can approximate complex infras-

tructures like the ECC, further experiments are needed using real-world data860

coming from real-world infrastructures.

37

100 200 300 400 500 600 700
time (s)

0.0

0.1

0.2

0.3

0.4

0.5

Q
oS

Scale–free topology − graceful degradation and recovery

100 200 300 400 500 600 700
time (s)

0.0

0.1

0.2

0.3

0.4

0.5

Q
oS

Lobster topology − graceful degradation and recovery

0

20

40

60

80

100

C
P

U
lo

ad
in

%

0

20

40

60

80

100

C
P

U
lo

ad
in

%

QoS [local] QoS [collective] Load driver (right)

Figure 7: Results for the graceful degradation and recovery scenario with a scale-free (upper)

and lobster (lower) topology. The collective strategy is depicted in green, the local one in

violet, and the load driver is dashed and black. Shadows around the lines represent ±1σ of

the value. The collective strategy shows better response to degradation and better recovery

capabilities, particularly in denser networks where the probability of segmentation is lower.

38

Although we measure degradation in terms of failures of the thick hosts,

we did not consider the failure of the thin hosts. We believe that this is more

representative of a true stress condition, as the failure of thin hosts would have

reduced the overall load of the system, as every thin host maps onto a pulverised865

device.

Another aspect we did not consider is the latency dynamicity. In these

experiments, we fix a channel latency value for each link in the network, and we

simulate using that value. Also, we assume no packet loss (or, equivalently, that

package retransmission is always successful), symmetric latency, and that the870

latency is low enough compared to the rate at which the application operates.

All these aspects call for a more in-depth and realistic evaluation, which is in

our research roadmap.

7. Related work

This work contributes to distributed systems’ reconfiguration by providing a875

middleware for pulverised systems and investigating global-level, decentralised

reconfiguration heuristics expressed in aggregate computing. Therefore, the

work lies at the intersection of different research threads: component mod-

els, application partitioning, application deployment and reconfiguration, and

macro-programming languages. We stress that a comparison of pulverisation880

with different component models and partitioning solutions is beyond the scope

of this paper; as a consequence, the comparison with other reconfiguration tech-

niques (which are specific to component models and partitioning solutions) is

also not relevant. Also, notice that we abstract from how pulverised systems

are specified: applications might be designed as such up-front or automatically885

pulverised [12]. In the following, we provide an overview of related research

efforts, to clarify the positioning of the contribution.

7.1. Component models and application partitioning

Regarding the specification of (non-monolithic) distributed systems, ap-

proaches typically adopt component models [5], or techniques that leverage890

39

them, such as Architecture Description Languages (ADLs) [39], service-oriented

frameworks [40], and Statecharts [41] (or derived [42, 43]) approaches. Rel-

evant examples of component models include Fractal [44], which provides a

hierarchical and reflective approach, BIP [45], which provides a flat and correct-

by-construction approach, the Gamma Statechart Composition Framework [46],895

which provides a composition language for the composition of statechart-based

reactive components, and STATEMATE [47], which provides a graphical-

oriented set of tools for the specification, analysis, design, and documentation of

complex reactive systems. The pulverisation approach is not properly a com-

ponent model but may use component models to specify a partitioning schema900

for distributed applications (cf. Section 3.2).

Application partitioning [6] is the activity of splitting an application into

distinct components while retaining its original semantics; it could be a manual

activity performed at the design phase, realised by reifying multiple executable

and deployable components [5], or an automatic activity performed by software,905

offline or online [6]. For instance, in BIP, the application software has to be re-

cast (e.g., by source translations) to a BIP model to be verified and operated at

runtime. Partitioning approaches can be distinguished by granularity (e.g., com-

ponents, classes, methods), partitioning model (e.g., graph-based, optimisation-

based, hybrid), goal (e.g., improving performance, reducing footprint), time of910

the allocation decision (e.g., offline, online, hybrid), etc. [6]. Pulverisation works

at the granularity of components, uses a graph-based model [11], can support

multiple goals [12], and enables deployment decisions both offline and online—

the latter possibility being shown in this paper.

7.2. Application deployment and reconfiguration915

Regarding deployment and reconfiguration, proposals typically combine (i)

one or more DSLs for specifying application architectures, deployments, and

reconfiguration policies, and (ii) a middleware responsible for managing the

system, often organised according to the MAPE-K (Monitor-Analyse-Plan-

Execute with Knowledge) pattern [9]. Sometimes, approaches cover only some920

40

of these aspects. For instance, in the multi-tier programming language [48]

like ScalaLoci [49] the developer explicitly specifies, in a single codebase, the

different locations (tiers) and the deployment units for them, and the system

statically checks the correctness of interaction; however, there is no support for

dynamic reconfiguration. For instance, in BIP, a deployment is denoted as an925

assignment of components to a map, which is a set of locations upon which a

connectivity relationship is defined.

An overview and survey of automatic deployment of distributed systems is

provided by Arcangeli et al. in [50]. Approaches can be classified according

to what kind of software is deployed (cf. component models and partitioning930

solutions), where, and how. A related, recent survey of formal methods and ap-

proaches for verification-oriented component-based reconfiguration is provided

in [7]. As mentioned, reconfiguration approaches target different component

models [7]. For the BIP component model, DR-BIP [45] has been proposed as

an ADL for dynamically reconfigurable systems; it is based on the definition935

of motifs, which are parametrised around maps and encapsulate (i) behaviour,

expressed as a set of components; (ii) interaction rules; and (iii) reconfiguration

rules, expressed as guarded functions that change the contents of motifs. While

pulverisation abstracts from how a deployment is designed and performed, a

concrete implementation has to take these decisions: in this work, we propose940

a middleware that provides generic services for managing deployments, where

the deployment logic can be expressed separately as aggregate programs.

Our approach to reconfiguration with aggregate computing is peculiar in

that it targets pulverised systems (especially for large-scale CPSs and collective

systems), and is based on self-organising reconfiguration policies that are decen-945

tralised, heuristic, and global. In the literature, the majority of approaches are

centralised, which a single entity responsible for generating deployment plans.

For instance, in DELADAS [51] and ConfSolve [52], reconfiguration rules are ex-

pressed in terms of constraint sets and deployment planning is recast to solving

a constraint satisfaction problem by a centralised solver. The ADSL (AWaRE950

DSL) [53] is another work on constraint-based self-management, still based on a

41

constraint solver and a central mapping orchestrator. A different approach, still

based on centralised model checking, and not only focussed on deployment re-

configuration but generally on self-managing systems, is ASSL [54]: it provides

a formal language to express self-management policies based on fluents (states),955

events, and actions; however, in case of large models, the authors recommended

reducing the state graph for model checking to be viable.

Due to the emphasis on optimisation and constraint solving, few approaches

address large-scale systems. One example is [55], a model-based approach for

deployment of software on fleets of devices across the ECC. However, the work960

is not about the deployment of component-partitioned applications, but rather

on the deployment of different versions of the same software. Also, it still

adopts centralised constraint solving, showing limitations regarding scalability

(e.g., taking several minutes to assign few deployment plans to few hundreds

of devices). MuScADeL [56] shares similar goals to this work: supporting de-965

ployment of large and heterogeneous, geographically-dispersed, and multi-layer

infrastructures. The constraints included in component specifications are used

to produce probe artifacts that are exploited by the middleware to support data

collection: higher-level probes query and aggregate data from lower-level probe.

However, the generation of a deployment plan is still based on centralised con-970

straint solving.

7.3. Macro-programming

Macro-programming is the umbrella term for programming approaches sup-

porting developers in the specification of the macro-level/system-level/global

behaviour of a network of interacting devices [17]. As reported in recent sur-975

veys [17, 57], macro-programming approaches tend to address specific domains

like Wireless Sensor Networks (WSNs), multi-robot systems, and the IoT. In

the context of WSNs, much of the emphasis is on sensing, data routing, and data

processing; moreover, often the behaviour is a task graph, and the deployment

goal is to find a placement of tasks on a target network [26]. However, there980

are also a few general-purpose macro-programming approaches, like aggregate

42

computing [13].

Characterising features of macro-programming solutions include the use of

macro-level abstractions (e.g., collective data structures or spatial abstractions)

and rules for setting up the link between micro-level and macro-level behaviour.985

With respect to macro-programming, the reconfiguration approaches covered

in Section 7.2 differ from the micro-level descriptions (e.g., DR-BIP) or overly

abstract specifications (e.g., constraint sets like in DELADAS and ConfSolve)

typically addressed by a centralised orchestrator. To the best of our knowl-

edge, our work is the first one to propose a macro-programming solution for990

reconfiguration in the IoT domain, though specific to the pulverisation model.

Though other general-purpose macro-programming approaches exist, like

SCEL (Service Component Ensemble Language) and derivates [58], aggregate

computing has shown to be more practical and especially suitable for self-

organisation engineering [18]. Indeed, thanks to its ability to capture macro-995

scopic behaviour patterns as reusable functions of computational fields, it sup-

ports flexible specification of decentralised reconfiguration logic by a global per-

spective (cf. Listing 5). Additionally, formal results, such as the preserva-

tion of self-stabilisation across composition of self-stabilising aggregate program

fragments [24], provide certain guarantees about the self-organising processes1000

involved.

Regarding the effectiveness of aggregate programming for the reconfiguration

task at hand, we may distinguish three aspects: productivity, scalability, and

explainability. Productivity is enhanced by the macro-programming approach,

the compositional nature of the paradigm, and the availability of practical DSLs1005

that include comprehensive libraries of self-organizing building blocks. Previ-

ous work provided preliminary comparative results showing benefits, in terms

of reduced boilerplate code, with respect to actor-based and publish-subscribe

solutions [59, 60]. This is in contrast to rule-based approaches, which tend

to adopt a “local” perspective that may not straightforwardly map to desired1010

global outcomes, due to emergence. Scalability is promoted by the decentralised

aggregate execution model (cf. Section 3.1) as well as patterns like SCR (cf.

43

Section 5.2). Finally, explainability is inherent in the use of a language for ex-

pressing reconfiguration logic—which is not generally the case when machine

learning-based techniques are adopted.1015

8. Conclusions and future work

The original pulverisation approach focuses on how to partition the system

into smaller components, improving the separation between functional aspects

and deployment concerns. Prior works on pulverisation [11, 12] validated the

partitioning and deployment approach on static deployments. In this paper, we1020

focused on reconfiguration and accordingly proposed a middleware architecture

for pulverised systems (cf. RQ1) and an aggregate computing-based approach

for specifying reconfiguration policies (cf. RQ2, RQ3).

With respect to the research questions stated in Section 2, in this paper we:

1. answered the RQ1 by devising a general architecture structured in layers1025

where each layer is responsible for a specific aspect of the system;

2. positively answered the RQ2 demonstrating the feasibility of Aggregate

Computing to express decentralised reconfiguration policies from a global

perspective. In particular, we have shown how the SCR pattern can be

used to express reconfiguration policies in a succinct and high-level fash-1030

ion. In this regard, we have conducted several experiments in different

conditions, showing the effectiveness of the proposed approach in different

network topologies and system conditions like device failure and variable

load of the system;

3. show better performance results on average with the proposed approach1035

compared to a local one, highlighting the benefits of Aggregate Computing

to express reconfiguration policies, positively answering the RQ3.

With this work, we focused on the reconfiguration layer of the middleware

architecture, making some assumptions about the other layers, like the one

44

responsible for the network topology management and communication. A valu-1040

able next step would be to devise an implementation for the infrastructure layer

investigating the adoption of distributed solutions for managing the network

topology and communication. Then, provide a complete implementation of the

middleware architecture where both the application management layer and the

infrastructure layer cooperate to manage the system. A related research direc-1045

tion is the detection of anomalies that trigger reconfigurations and their explana-

tion before reconfiguration. Detection could be performed in two ways: offline,

through static program analysis, or online, through monitoring. In the former

case, the specification is fed to a specialized tool that analyses the program and

detects potential anomalies ahead of runtime execution; counteractions include1050

a revision of the specification, or specially-crafted reconfiguration policies that

tackle these statically-detectable anomalies before they manifest. The online

case is arguably complimentary to the former, and its integration with the pro-

posed architecture could in the future lead to an integrated framework which,

besides responding to anomalies and self-stabilise to a new configuration, can1055

provide hints to prevent anomalies altogether.

Acknowledgements

This work has been supported by the Italian PRIN Project COMMON-

WEARS (2020HCWWLP).

References1060

[1] D. Rosendo, A. Costan, P. Valduriez, G. Antoniu, Distributed intelligence

on the edge-to-cloud continuum: A systematic literature review, J. Parallel

Distributed Comput. 166 (2022) 71–94. doi:10.1016/J.JPDC.2022.04.

004.

[2] R. D. Nicola, S. Jähnichen, M. Wirsing, Rigorous engineering of collective1065

adaptive systems: special section, Int. J. Softw. Tools Technol. Transf.

22 (4) (2020) 389–397. doi:10.1007/s10009-020-00565-0.

45

https://doi.org/10.1016/J.JPDC.2022.04.004
https://doi.org/10.1016/J.JPDC.2022.04.004
https://doi.org/10.1016/J.JPDC.2022.04.004
https://doi.org/10.1007/s10009-020-00565-0

[3] R. Casadei, Artificial Collective Intelligence Engineering: A Survey of Con-

cepts and Perspectives, Artificial Life (2023) 1–35doi:10.1162/artl_a_

00408.1070

[4] S. Dustdar, V. Casamayor-Pujol, P. K. Donta, On distributed computing

continuum systems, IEEE Trans. Knowl. Data Eng. 35 (4) (2023) 4092–

4105. doi:10.1109/TKDE.2022.3142856.

URL https://doi.org/10.1109/TKDE.2022.3142856

[5] I. Crnkovic, S. Sentilles, A. Vulgarakis, M. R. V. Chaudron, A classifica-1075

tion framework for software component models, IEEE Trans. Software Eng.

37 (5) (2011) 593–615. doi:10.1109/TSE.2010.83.

[6] J. Liu, E. Ahmed, M. Shiraz, A. Gani, R. Buyya, A. Qureshi, Application

partitioning algorithms in mobile cloud computing: Taxonomy, review and

future directions, J. Netw. Comput. Appl. 48 (2015) 99–117. doi:10.1016/1080

j.jnca.2014.09.009.

[7] H. Coullon, L. Henrio, F. Loulergue, S. Robillard, Component-based dis-

tributed software reconfiguration: A verification-oriented survey, ACM

Comput. Surv. (may 2023). doi:10.1145/3595376.

[8] N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara, F. Montesi,1085

R. Mustafin, L. Safina, Microservices: Yesterday, today, and tomorrow, in:

Present and Ulterior Software Engineering, Springer, 2017, pp. 195–216.

doi:10.1007/978-3-319-67425-4_12.

[9] J. O. Kephart, D. M. Chess, The vision of autonomic computing, Computer

36 (1) (2003) 41–50. doi:10.1109/MC.2003.1160055.1090

URL https://doi.org/10.1109/MC.2003.1160055

[10] M. Salehie, L. Tahvildari, Self-adaptive software: Landscape and research

challenges, ACM Trans. Auton. Adapt. Syst. 4 (2) (2009) 14:1–14:42. doi:

10.1145/1516533.1516538.

URL https://doi.org/10.1145/1516533.15165381095

46

https://doi.org/10.1162/artl_a_00408
https://doi.org/10.1162/artl_a_00408
https://doi.org/10.1162/artl_a_00408
https://doi.org/10.1109/TKDE.2022.3142856
https://doi.org/10.1109/TKDE.2022.3142856
https://doi.org/10.1109/TKDE.2022.3142856
https://doi.org/10.1109/TKDE.2022.3142856
https://doi.org/10.1109/TKDE.2022.3142856
https://doi.org/10.1109/TSE.2010.83
https://doi.org/10.1016/j.jnca.2014.09.009
https://doi.org/10.1016/j.jnca.2014.09.009
https://doi.org/10.1016/j.jnca.2014.09.009
https://doi.org/10.1145/3595376
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1145/1516533.1516538

[11] R. Casadei, D. Pianini, A. Placuzzi, M. Viroli, D. Weyns, Pulverization

in cyber-physical systems: Engineering the self-organizing logic separated

from deployment, Future Internet 12 (11) (2020) 203. doi:10.3390/

FI12110203.

URL https://doi.org/10.3390/fi121102031100

[12] R. Casadei, G. Fortino, D. Pianini, A. Placuzzi, C. Savaglio, M. Viroli,

A methodology and simulation-based toolchain for estimating deployment

performance of smart collective services at the edge, IEEE Internet Things

J. 9 (20) (2022) 20136–20148. doi:10.1109/JIOT.2022.3172470.

[13] J. Beal, D. Pianini, M. Viroli, Aggregate programming for the internet of1105

things, Computer 48 (9) (2015) 22–30. doi:10.1109/MC.2015.261.

URL https://doi.org/10.1109/MC.2015.261

[14] N. Farabegoli, nicolasfara/reconfiguration-experiments: 1.0.0 (Dec. 2023).

doi:10.5281/zenodo.10372019.

URL https://doi.org/10.5281/zenodo.103720191110

[15] G. R. Russo, V. Cardellini, F. L. Presti, Reinforcement learning based

policies for elastic stream processing on heterogeneous resources, in: 13th

ACM International Conference on Distributed and Event-based Systems,

DEBS 2019, Proceedings, ACM, 2019, pp. 31–42. doi:10.1145/3328905.

3329506.1115

[16] K. Zhang, Z. Yang, T. Başar, Multi-agent reinforcement learning: A se-

lective overview of theories and algorithms (2021) 321–384doi:10.1007/

978-3-030-60990-0_12.

URL http://dx.doi.org/10.1007/978-3-030-60990-0_12

[17] R. Casadei, Macroprogramming: Concepts, state of the art, and opportu-1120

nities of macroscopic behaviour modelling, ACM Comput. Surv. 55 (13s)

(jul 2023). doi:10.1145/3579353.

47

https://doi.org/10.3390/fi12110203
https://doi.org/10.3390/fi12110203
https://doi.org/10.3390/fi12110203
https://doi.org/10.3390/fi12110203
https://doi.org/10.3390/fi12110203
https://doi.org/10.3390/FI12110203
https://doi.org/10.3390/FI12110203
https://doi.org/10.3390/FI12110203
https://doi.org/10.3390/fi12110203
https://doi.org/10.1109/JIOT.2022.3172470
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.5281/zenodo.10372019
https://doi.org/10.5281/zenodo.10372019
https://doi.org/10.5281/zenodo.10372019
https://doi.org/10.1145/3328905.3329506
https://doi.org/10.1145/3328905.3329506
https://doi.org/10.1145/3328905.3329506
http://dx.doi.org/10.1007/978-3-030-60990-0_12
http://dx.doi.org/10.1007/978-3-030-60990-0_12
http://dx.doi.org/10.1007/978-3-030-60990-0_12
https://doi.org/10.1007/978-3-030-60990-0_12
https://doi.org/10.1007/978-3-030-60990-0_12
https://doi.org/10.1007/978-3-030-60990-0_12
http://dx.doi.org/10.1007/978-3-030-60990-0_12
https://doi.org/10.1145/3579353

[18] M. Viroli, J. Beal, F. Damiani, G. Audrito, R. Casadei, D. Pianini, From

distributed coordination to field calculus and aggregate computing, J. Log.

Algebraic Methods Program. 109 (2019) 100486. doi:10.1016/j.jlamp.1125

2019.100486.

[19] R. Casadei, M. Viroli, G. Aguzzi, D. Pianini, Scafi: A scala DSL and

toolkit for aggregate programming, SoftwareX 20 (2022) 101248. doi:

10.1016/J.SOFTX.2022.101248.

URL https://doi.org/10.1016/j.softx.2022.1012481130

[20] D. Pianini, S. Montagna, M. Viroli, Chemical-oriented simulation of com-

putational systems with ALCHEMIST, J. Simulation 7 (3) (2013) 202–215.

doi:10.1057/jos.2012.27.

[21] G. Audrito, F. Terraneo, W. Fornaciari, Fcpp+miosix: Scaling aggregate

programming to embedded systems, IEEE Trans. Parallel Distributed Syst.1135

34 (3) (2023) 869–880. doi:10.1109/TPDS.2022.3232633.

URL https://doi.org/10.1109/TPDS.2022.3232633

[22] L. Testa, G. Audrito, F. Damiani, G. Torta, Aggregate processes as dis-

tributed adaptive services for the industrial internet of things, Pervasive

Mob. Comput. 85 (2022) 101658. doi:10.1016/J.PMCJ.2022.101658.1140

URL https://doi.org/10.1016/j.pmcj.2022.101658

[23] M. Mamei, F. Zambonelli, L. Leonardi, Co-fields: A physically inspired

approach to motion coordination, IEEE Pervasive Comput. 3 (2) (2004)

52–61. doi:10.1109/MPRV.2004.1316820.

[24] M. Viroli, G. Audrito, J. Beal, F. Damiani, D. Pianini, Engineering re-1145

silient collective adaptive systems by self-stabilisation, ACM Trans. Model.

Comput. Simul. 28 (2) (2018) 16:1–16:28. doi:10.1145/3177774.

URL https://doi.org/10.1145/3177774

[25] K. Tumer, D. H. Wolpert, A survey of collectives, in: K. Tumer,

D. H. Wolpert (Eds.), Collectives and the design of complex systems,1150

48

https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1016/j.softx.2022.101248
https://doi.org/10.1016/j.softx.2022.101248
https://doi.org/10.1016/j.softx.2022.101248
https://doi.org/10.1016/J.SOFTX.2022.101248
https://doi.org/10.1016/J.SOFTX.2022.101248
https://doi.org/10.1016/J.SOFTX.2022.101248
https://doi.org/10.1016/j.softx.2022.101248
https://doi.org/10.1057/jos.2012.27
https://doi.org/10.1109/TPDS.2022.3232633
https://doi.org/10.1109/TPDS.2022.3232633
https://doi.org/10.1109/TPDS.2022.3232633
https://doi.org/10.1109/TPDS.2022.3232633
https://doi.org/10.1109/TPDS.2022.3232633
https://doi.org/10.1016/j.pmcj.2022.101658
https://doi.org/10.1016/j.pmcj.2022.101658
https://doi.org/10.1016/j.pmcj.2022.101658
https://doi.org/10.1016/J.PMCJ.2022.101658
https://doi.org/10.1016/j.pmcj.2022.101658
https://doi.org/10.1109/MPRV.2004.1316820
https://doi.org/10.1145/3177774
https://doi.org/10.1145/3177774
https://doi.org/10.1145/3177774
https://doi.org/10.1145/3177774
https://doi.org/10.1145/3177774

Springer Science & Business Media, 2004, Ch. 1, p. 1–42. doi:10.1007/

978-1-4419-8909-3_1.

[26] A. Pathak, V. K. Prasanna, Energy-efficient task mapping for data-driven

sensor network macroprogramming, IEEE Trans. Computers 59 (7) (2010)

955–968. doi:10.1109/TC.2009.168.1155

URL https://doi.org/10.1109/TC.2009.168

[27] E. Bainomugisha, A. L. Carreton, T. V. Cutsem, S. Mostinckx, W. D.

Meuter, A survey on reactive programming, ACM Comput. Surv. 45 (4)

(2013) 52:1–52:34. doi:10.1145/2501654.2501666.

URL https://doi.org/10.1145/2501654.25016661160

[28] M. Mamei, F. Zambonelli, Programming pervasive and mobile computing

applications: The TOTA approach, ACM Trans. Softw. Eng. Methodol.

18 (4) (2009) 15:1–15:56. doi:10.1145/1538942.1538945.

URL https://doi.org/10.1145/1538942.1538945

[29] F. Aı̈t-Salaht, F. Desprez, A. Lebre, An overview of service placement1165

problem in fog and edge computing, ACM Comput. Surv. 53 (3) (2021)

65:1–65:35. doi:10.1145/3391196.

URL https://doi.org/10.1145/3391196

[30] G. Audrito, M. Viroli, F. Damiani, D. Pianini, J. Beal, A higher-order

calculus of computational fields, ACM Trans. Comput. Log. 20 (1) (2019)1170

5:1–5:55. doi:10.1145/3285956.

URL https://doi.org/10.1145/3285956

[31] E. W. Dijkstra, Self-stabilizing systems in spite of distributed control, Com-

mun. ACM 17 (11) (1974) 643–644. doi:10.1145/361179.361202.

URL https://doi.org/10.1145/361179.3612021175

[32] M. Viroli, J. Beal, F. Damiani, G. Audrito, R. Casadei, D. Pianini, From

field-based coordination to aggregate computing, in: Coordination Models

49

https://doi.org/10.1007/978-1-4419-8909-3_1
https://doi.org/10.1007/978-1-4419-8909-3_1
https://doi.org/10.1007/978-1-4419-8909-3_1
https://doi.org/10.1109/TC.2009.168
https://doi.org/10.1109/TC.2009.168
https://doi.org/10.1109/TC.2009.168
https://doi.org/10.1109/TC.2009.168
https://doi.org/10.1109/TC.2009.168
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1145/1538942.1538945
https://doi.org/10.1145/1538942.1538945
https://doi.org/10.1145/1538942.1538945
https://doi.org/10.1145/1538942.1538945
https://doi.org/10.1145/1538942.1538945
https://doi.org/10.1145/3391196
https://doi.org/10.1145/3391196
https://doi.org/10.1145/3391196
https://doi.org/10.1145/3391196
https://doi.org/10.1145/3391196
https://doi.org/10.1145/3285956
https://doi.org/10.1145/3285956
https://doi.org/10.1145/3285956
https://doi.org/10.1145/3285956
https://doi.org/10.1145/3285956
https://doi.org/10.1145/361179.361202
https://doi.org/10.1145/361179.361202
https://doi.org/10.1145/361179.361202

and Languages - 20th IFIPWG 6.1 International Conference, COORDINA-

TION 2018, Proceedings, Vol. 10852 of LNCS, Springer, 2018, pp. 252–279.

doi:10.1007/978-3-319-92408-3_12.1180

[33] D. Pianini, R. Casadei, M. Viroli, A. Natali, Partitioned integration and

coordination via the self-organising coordination regions pattern, Future

Gener. Comput. Syst. 114 (2021) 44–68. doi:10.1016/J.FUTURE.2020.

07.032.

URL https://doi.org/10.1016/j.future.2020.07.0321185

[34] D. Pianini, R. Casadei, M. Viroli, Self-stabilising priority-based multi-

leader election and network partitioning, in: IEEE International Conference

on Autonomic Computing and Self-Organizing Systems, ACSOS 2022, Pro-

ceedings, IEEE, 2022, pp. 81–90. doi:10.1109/ACSOS55765.2022.00026.

[35] A.-L. Barabási, R. Albert, Emergence of scaling in random networks, Sci-1190

ence 286 (5439) (1999) 509–512. doi:10.1126/science.286.5439.509.

URL http://dx.doi.org/10.1126/science.286.5439.509

[36] X. Zhou, B. Yao, X. Chen, Every lobster is odd-elegant, Inf. Process. Lett.

113 (1-2) (2013) 30–33. doi:10.1016/J.IPL.2012.09.008.

URL https://doi.org/10.1016/j.ipl.2012.09.0081195

[37] S. Hoyer, J. Hamman, xarray: N-D labeled arrays and datasets in Python,

Journal of Open Research Software 5 (1) (2017). doi:10.5334/jors.148.

URL https://doi.org/10.5334/jors.148

[38] J. D. Hunter, Matplotlib: A 2d graphics environment, Computing in Sci-

ence & Engineering 9 (3) (2007) 90–95. doi:10.1109/MCSE.2007.55.1200

[39] N. Medvidovic, R. N. Taylor, A classification and comparison framework

for software architecture description languages, IEEE Trans. Software Eng.

26 (1) (2000) 70–93. doi:10.1109/32.825767.

50

https://doi.org/10.1007/978-3-319-92408-3_12
https://doi.org/10.1016/j.future.2020.07.032
https://doi.org/10.1016/j.future.2020.07.032
https://doi.org/10.1016/j.future.2020.07.032
https://doi.org/10.1016/J.FUTURE.2020.07.032
https://doi.org/10.1016/J.FUTURE.2020.07.032
https://doi.org/10.1016/J.FUTURE.2020.07.032
https://doi.org/10.1016/j.future.2020.07.032
https://doi.org/10.1109/ACSOS55765.2022.00026
http://dx.doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
https://doi.org/10.1016/j.ipl.2012.09.008
https://doi.org/10.1016/J.IPL.2012.09.008
https://doi.org/10.1016/j.ipl.2012.09.008
https://doi.org/10.5334/jors.148
https://doi.org/10.5334/jors.148
https://doi.org/10.5334/jors.148
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/32.825767

[40] A. L. Lemos, F. Daniel, B. Benatallah, Web service composition: A survey

of techniques and tools, ACM Comput. Surv. 48 (3) (2016) 33:1–33:41.1205

doi:10.1145/2831270.

[41] D. Harel, Statecharts: A visual formalism for complex systems, Sci.

Comput. Program. 8 (3) (1987) 231–274. doi:10.1016/0167-6423(87)

90035-9.

URL https://doi.org/10.1016/0167-6423(87)90035-91210

[42] S. D. Dewasurendra, statecharts for reconfigurable control of complex reac-

tive systems: a new formal verification methodology, in: First International

Conference on Industrial and Information Systems, IEEE, 2006, p. 274–278.

doi:10.1109/iciis.2006.365736.

URL http://dx.doi.org/10.1109/ICIIS.2006.3657361215

[43] P. Sánchez, B. Álvarez, R. Mart́ınez, A. Iborra, Embedding statecharts

into teleo-reactive programs to model interactions between agents, J. Syst.

Softw. 131 (2017) 78–97. doi:10.1016/J.JSS.2017.05.081.

URL https://doi.org/10.1016/j.jss.2017.05.081

[44] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, J. Stefani, The FRAC-1220

TAL component model and its support in java, Software: Practice and

Experience 36 (11–12) (2006) 1257–1284. doi:10.1002/spe.767.

[45] R. E. Ballouli, S. Bensalem, M. Bozga, J. Sifakis, Four exercises in pro-

gramming dynamic reconfigurable systems: Methodology and solution

in DR-BIP, in: Leveraging Applications of Formal Methods, Verifica-1225

tion and Validation. ISoLA, Proceedings, Part III, Vol. 11246 of Lec-

ture Notes in Computer Science, Springer, 2018, pp. 304–320. doi:

10.1007/978-3-030-03424-5_20.

[46] B. Graics, V. Molnár, A. Vörös, I. Majzik, D. Varró, Mixed-semantics

composition of statecharts for the component-based design of reactive1230

systems, Softw. Syst. Model. 19 (6) (2020) 1483–1517. doi:10.1007/

51

https://doi.org/10.1145/2831270
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/10.1109/ICIIS.2006.365736
http://dx.doi.org/10.1109/ICIIS.2006.365736
http://dx.doi.org/10.1109/ICIIS.2006.365736
https://doi.org/10.1109/iciis.2006.365736
http://dx.doi.org/10.1109/ICIIS.2006.365736
https://doi.org/10.1016/j.jss.2017.05.081
https://doi.org/10.1016/j.jss.2017.05.081
https://doi.org/10.1016/j.jss.2017.05.081
https://doi.org/10.1016/J.JSS.2017.05.081
https://doi.org/10.1016/j.jss.2017.05.081
https://doi.org/10.1002/spe.767
https://doi.org/10.1007/978-3-030-03424-5_20
https://doi.org/10.1007/978-3-030-03424-5_20
https://doi.org/10.1007/978-3-030-03424-5_20
https://doi.org/10.1007/s10270-020-00806-5
https://doi.org/10.1007/s10270-020-00806-5
https://doi.org/10.1007/s10270-020-00806-5
https://doi.org/10.1007/s10270-020-00806-5
https://doi.org/10.1007/s10270-020-00806-5
https://doi.org/10.1007/S10270-020-00806-5
https://doi.org/10.1007/S10270-020-00806-5
https://doi.org/10.1007/S10270-020-00806-5

S10270-020-00806-5.

URL https://doi.org/10.1007/s10270-020-00806-5

[47] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,

A. Shtull-Trauring, M. B. Trakhtenbrot, STATEMATE: A working envi-1235

ronment for the development of complex reactive systems, IEEE Trans.

Software Eng. 16 (4) (1990) 403–414. doi:10.1109/32.54292.

URL https://doi.org/10.1109/32.54292

[48] P. Weisenburger, J. Wirth, G. Salvaneschi, A survey of multitier pro-

gramming, ACM Comput. Surv. 53 (4) (2021) 81:1–81:35. doi:10.1145/1240

3397495.

[49] P. Weisenburger, M. Köhler, G. Salvaneschi, Distributed system devel-

opment with scalaloci, Proc. ACM Program. Lang. 2 (OOPSLA) (2018)

129:1–129:30. doi:10.1145/3276499.

URL https://doi.org/10.1145/32764991245

[50] J. Arcangeli, R. Boujbel, S. Leriche, Automatic deployment of distributed

software systems: Definitions and state of the art, J. Syst. Softw. 103 (2015)

198–218. doi:10.1016/j.jss.2015.01.040.

[51] A. Dearle, G. Kirby, A. McCarthy, A framework for constraint-based de-

ployment and autonomic management of distributed applications, in: 1st1250

International Conference on Autonomic Computing (ICAC 2004). Proceed-

ings., IEEE, 2004, pp. 300–301. doi:10.1109/ICAC.2004.3.

[52] J. A. Hewson, P. Anderson, A. D. Gordon, Constraint-based autonomic

reconfiguration, in: SASO, IEEE Computer Society, 2013, pp. 101–110.

doi:10.1109/SASO.2013.23.1255

[53] M. B. Chhetri, H. P. Luong, A. V. Uzunov, Q. B. Vo, R. Kowalczyk,

S. Nepal, I. Rajapakse, ADSL: an embedded domain-specific language for

constraint-based distributed self-management, in: ASWEC, IEEE Com-

puter Society, 2018, pp. 101–110. doi:10.1109/ASWEC.2018.00022.

52

https://doi.org/10.1007/S10270-020-00806-5
https://doi.org/10.1007/S10270-020-00806-5
https://doi.org/10.1007/S10270-020-00806-5
https://doi.org/10.1007/s10270-020-00806-5
https://doi.org/10.1109/32.54292
https://doi.org/10.1109/32.54292
https://doi.org/10.1109/32.54292
https://doi.org/10.1109/32.54292
https://doi.org/10.1109/32.54292
https://doi.org/10.1145/3397495
https://doi.org/10.1145/3397495
https://doi.org/10.1145/3397495
https://doi.org/10.1145/3276499
https://doi.org/10.1145/3276499
https://doi.org/10.1145/3276499
https://doi.org/10.1145/3276499
https://doi.org/10.1145/3276499
https://doi.org/10.1016/j.jss.2015.01.040
https://doi.org/10.1109/ICAC.2004.3
https://doi.org/10.1109/SASO.2013.23
https://doi.org/10.1109/ASWEC.2018.00022

[54] E. Vassev, M. Hinchey, The ASSL approach to formal specification of self-1260

managing systems, in: Models, Mindsets, Meta: The What, the How, and

the Why Not?, Vol. 11200 of Lecture Notes in Computer Science, Springer,

2018, pp. 268–296. doi:10.1007/978-3-030-22348-9_17.

[55] H. Song, R. Dautov, N. Ferry, A. Solberg, F. Fleurey, Model-based fleet

deployment in the IoT-edge-cloud continuum, Softw. Syst. Model. 21 (5)1265

(2022) 1931–1956. doi:10.1007/s10270-022-01006-z.

[56] R. Boujbel, S. Leriche, J.-P. Arcangeli, A Framework for Autonomic Soft-

ware Deployment of Multiscale Systems, International Journal On Ad-

vances in Software 7 (1 & 2) (2014) 353–369.

URL https://hal.science/hal-032564041270

[57] I. G. S. Júnior, T. S. d. Santana, R. d. F. Bulcão-Neto, B. F. Porter,

The state of the art of macroprogramming in IoT: An update, Journal

of Internet Services and Applications 13 (1) (2022) 54–65. doi:10.5753/

jisa.2022.2372.

[58] R. D. Nicola, M. Loreti, R. Pugliese, F. Tiezzi, A formal approach to au-1275

tonomic systems programming: The SCEL language, ACM Trans. Auton.

Adapt. Syst. 9 (2) (2014) 7:1–7:29. doi:10.1145/2619998.

URL https://doi.org/10.1145/2619998

[59] G. Audrito, R. Casadei, F. Damiani, G. Salvaneschi, M. Viroli, Functional

programming for distributed systems with XC, in: K. Ali, J. Vitek (Eds.),1280

36th European Conference on Object-Oriented Programming, ECOOP

2022, June 6-10, 2022, Berlin, Germany, Vol. 222 of LIPIcs, Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 20:1–20:28. doi:

10.4230/LIPICS.ECOOP.2022.20.

URL https://doi.org/10.4230/LIPIcs.ECOOP.2022.201285

[60] R. Casadei, F. Damiani, G. Torta, M. Viroli, Actor-based designs for dis-

tributed self-organisation programming, in: Active Object Languages: Cur-

rent Research Trends, Vol. 14360 of Lecture Notes in Computer Science,

53

https://doi.org/10.1007/978-3-030-22348-9_17
https://doi.org/10.1007/s10270-022-01006-z
https://hal.science/hal-03256404
https://hal.science/hal-03256404
https://hal.science/hal-03256404
https://hal.science/hal-03256404
https://doi.org/10.5753/jisa.2022.2372
https://doi.org/10.5753/jisa.2022.2372
https://doi.org/10.5753/jisa.2022.2372
https://doi.org/10.1145/2619998
https://doi.org/10.1145/2619998
https://doi.org/10.1145/2619998
https://doi.org/10.1145/2619998
https://doi.org/10.1145/2619998
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20
https://doi.org/10.4230/LIPICS.ECOOP.2022.20
https://doi.org/10.4230/LIPICS.ECOOP.2022.20
https://doi.org/10.4230/LIPICS.ECOOP.2022.20
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20
https://doi.org/10.1007/978-3-031-51060-1_2
https://doi.org/10.1007/978-3-031-51060-1_2
https://doi.org/10.1007/978-3-031-51060-1_2

Springer, 2024, pp. 37–58. doi:10.1007/978-3-031-51060-1_2.

URL https://doi.org/10.1007/978-3-031-51060-1_21290

54

https://doi.org/10.1007/978-3-031-51060-1_2
https://doi.org/10.1007/978-3-031-51060-1_2

	Introduction
	Research Questions
	Background
	Aggregate Computing
	System model
	Programming model
	Aggregate computing for reconfiguration: motivation

	Application Partitioning and Deployment via Pulverisation
	Core concepts
	Example
	On design and execution of pulverised systems

	Middleware architecture
	Pulverisation and Aggregate Computing Integration
	Application Management Layer
	Infrastructure Layer

	Aggregate Computing for dynamic reconfiguration
	Syntax Introduction and Aggregate Operators
	Scala Syntax
	ScaFi Syntax and Aggregate Operators
	Aggregate building blocks

	Aggregate-based Reconfiguration Policies

	Evaluation
	Evaluation Goals
	Scenario
	Experimental configuration
	System dynamics
	Network topologies
	Metrics
	Baseline
	Dynamic reconfiguration
	Tools and reproducibility

	Results
	Threats to validity

	Related work
	Component models and application partitioning
	Application deployment and reconfiguration
	Macro-programming

	Conclusions and future work

